Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

Metal-free electrochemistry promoted denitrogenative [4+2]

annulation of 1,2,3-benzotriazinones with alkynes

Jinkang Chen,^{*a*,*} LinXia Xiao,^{*a*} Liang Qi^{*a*,*}

^{*a*} College of Pharmaceutical Sciences, Jiangsu Vocational College of Medicine, Yancheng 224000, China

Table of Contents

1. General Information	2
2. General Procedure for the Synthesis of 1,2,3-benzotriazin-4(3H)-ones	2
3. Experimental Section	2
4. General Procedure for the Synthesis of Products 3	7
5. Characterization Data of the Product	8
6. References	19
7. ¹ H and ¹³ C Spectrums of Compounds	19

1. General Information

Unless otherwise noted, all reactions were carried out without exclusion of air or moisture. Commercial solvents and reagents were used without further purification. Analytical thin layer chromatography (TLC) was performed using silica gel GF254 plates. Column chromatography was performed using silica gel (300-400 mesh) eluting with petroleum ether and ethyl acetate. Nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR and ¹⁹F NMR) were recorded with a Bruker Magnet system 400' 54 Ascend (¹H at 400 MHz, ¹³C at 100 MHz and ¹⁹F at 376 MHz). Unless otherwise noted, all spectra were acquired in CDCl₃. Chemical shifts are reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, δ = 0.00 ppm) and are referenced to residual solvent (CDCl₃, δ = 7.26 ppm (¹H), 77.0 ppm (¹³C)). Coupling constants were reported in hertz (Hz). High-resolution mass spectrometry was performed on an Agilent 1290-6540 UHPLC Q-Tof HR-MS System ESI spectrometer.

2. General Procedure for the Synthesis of 1,2,3-benzotriazin-4(3H)-ones ^[1]

To a mixture of methyl anthranilate (10 mmol, 1.0 equiv) in HCl (con., 2.5 mL) was drop-wise added a solution of NaNO₂ (11 mmol, 1.1 equiv) in water (5 mL) at 0 °C. The resulting solution was stirred for 30 min. Then, a solution of NaOAc (38 mmol, 3.8 equiv) in water (10 mL) was slowly added followed by addition of aryl amine (15 mmol, 1.5 equiv) at 0 °C. The resulting mixture was stirred at 0 °C for 5 h. The precipitate was collected by filtration, washed with cold water (50 ml), and purified by recrystallization from ethanol to afford triazene. The above triazene and morpholine (2.70 g, 30 mmol, 3.0 equiv.) were refluxed (oil bath) in ethanol (100 mL) until triazene was completely consumed by TLC. The reaction mixture was cooled to afford 1,2,3-benzotriazinones via crystallization.

3. Experimental Section

1) Conditions optimizing

	N HeO	Fe Fe electrolyte (2.0 equiv) solvent, r.t., 1.8 h	
	1a 2a		3a 🏾 OMe
entry	electrolytes	solvent	yield ^b
1	ⁿ Bu ₄ NBF ₄	DMSO	44
2	ⁿ Bu ₄ NBF ₄	DMF	trace
4	ⁿ Bu ₄ NBF ₄	MeCN	42
6	ⁿ Bu ₄ NBF ₄	THF	22
7	ⁿ Bu ₄ NBF ₄	1,4-dioxane	trace
8	ⁿ Bu ₄ NBF ₄	HFIP	Trace
14	"Bu ₄ NBF ₄	DMSO: $H_2O = 40:1$	55
15	ⁿ Bu ₄ NBF ₄	DMSO: $H_2O = 20:1$	68
16	"Bu ₄ NBF ₄	DMSO: $H_2O = 10:1$	70
17	"Bu ₄ NBF ₄	$DMSO:H_2O = 8:1$	78
18	"Bu4NBF4	$DMSO:H_2O = 8:1$	64 ^c
19	"Bu ₄ NBF ₄	DMSO: $H_2O = 8:1$	67^d
	"Bu ₄ NPF ₆	$DMSO:H_2O = 8:1$	51
9	ⁿ Bu ₄ NClO ₄	$DMSO:H_2O = 8:1$	62
10	ⁿ Bu ₄ NOAc	$DMSO:H_2O = 8:1$	36
11	KPF ₆	$DMSO:H_2O = 8:1$	0
13	"Bu ₄ NBr	DMSO	41
14	"Bu4NBF4	$DMSO:H_2O = 8:1$	62^e

Table SI-1 Optimization of electrolytes and solvents^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), electrolytes (2.0 equiv), solvent (4.5 mL), 10 mA, 1.8 h (3.4 F/mol), under Air. ^{*b*} Isolated yields. ^{*c*} 5 mA, 3.6 h was used. ^{*d*} 20 mA, 0.9 h. ^{*e*} DIPEA (2.0 equiv) was used.

Table SI-2 Optimization of electrodes^a

	$ \begin{array}{c} 0 \\ N^{\prime}N \\ 1a \\ 2a \end{array} $	anode cathode "Bu ₄ NBF ₄ (2.0 equiv) DMSO, r.t., 1.8 h	
entry	anode	cathode	yield ^{b}
1	Fe	Graphite rod	42
2	Pt	Fe	39
3	Fe	Pt	49

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), ^{*n*}Bu₄NBF₄ (0.4 mmol), DMSO:H₂O = 8:1 (4.5 mL), 10 mA, 1.8 h (3.4 F/mol), under Air. ^{*b*} Isolated yields.

2) Mechanism Studies

(1) radical trapping experiments

A mixture of **1a** (1.0 equiv, 0.2 mmol), **2a** (3 equiv, 0.6 mmol), TEMPO or BHT (2.0 equiv, 0.4 mmol), and "Bu₄NBF₄ (0.4 mmol, 2.0 equiv) in mixed DMSO (4.0 mL) and H₂O (0.5 mL) solution was added to a 20 mL oven-dried sealed tube with a magnetic stir bar. Subsequently, the tube was equipped with a Fe plate (anode, 20 mm \times 10 mm \times 0.1 mm) and a Fe plate (cathode, 20 mm \times 10 mm \times 5 mm), the distance between which was approximately 0.8 cm. All operations are performed in air. The constant current (10 mA) electrolysis was then performed at room temperature (Sealed tube) with vigorous stirring 1.8 h. Upon completion, the reaction mixture was poured into 20 mL H₂O and extracted with 50 mL EtOAc for three times. The combined organic layer was washed with 20 mL H₂O for two times and dried over anhydrous Na₂SO₄. Subsequently, the solvent was removed under reduced pressure. The resulting mixture was anlyzed by LC-MS. When TEMPO or BHT was present, the corresponding product **3aa** was not detected. Instead, the radical-trapped product **4** could be detected by LC-MS in the presence of TEMPO.

(2) divided cell experiments

The reaction vessel is an H-type divided electrolytic cell (10 mL+ 10 mL) separated by a hydrogen

ion permeable membranel (Dupont N-117). And this H-type cell was equipped with a Fe anode (20 mm \times 10 mm \times 0.1 mm) and a Fe cathode (20 mm \times 10 mm \times 0.1 mm) and connected to a direct current (DC) regulated power supply. To the anodic chamber was added "Bu₄NBF₄ (0.4 mmol, 2.0 equiv) in mixed DMSO (4.0 mL) and H₂O (0.5 mL). To the cathodic chamber was added **1a** (1.0 equiv, 0.2 mmol), **2a** (3 equiv, 0.6 mmol), and "Bu₄NBF₄ (0.4 mmol, 2.0 equiv) in mixed DMSO (4.0 mL). The resulting mixture was electrolyzed under constant current conditions (I = 10 mA) at room temperature for 1.8 h under magnetic stirring (air atmosphere). Upon completion of the reaction, the reaction mixture was poured into 20 mL H₂O and extracted with 50 mL EtOAc for three times. The combined organic layer was washed with 20 mL H₂O for two times and dried over anhydrous Na₂SO₄. Subsequently, the solvent was removed under reduced pressure. The resulting mixture was purfied by chromatography on silica gel with PE/EA (40:1 to 20:1) to give the **3aa** (41.6 mg, 70%).

(3) CV experiments

The general procedure for cyclic voltammetry experiments: Cyclic voltammetry (CV) experiments were conducted in a 20 mL glass vial fitted with a platinum wire working electrode, a Ag/AgCl reference electrode, and a glassy carbon counter electrode (3 mm in diameter). All measurements were carried out in 20 mL anhydrous DMSO: $H_2O = 8:1$ with an electrolyte (nBu_4NBF_4 , 2.0 equiv), using a scan rate of 100 mV/s.

Figure SI-1 CV experiments of blank, 1a, 2a, and 1a+2a in an electrolyte of "Bu4NBF4 from -

3.0V to 0.0 V at room temperature

(4) intermediate trapping experiments

A mixture of **1a** (1.0 equiv, 0.2 mmol), alkyne **2a** (3 equiv, 0.6 mmol), and "Bu₄NBF₄ (0.4 mmol, 2.0 equiv) in mixed DMSO (4.0 mL) and H₂O (0.5 mL) solution was added to a 20 mL oven-dried sealed tube with a magnetic stir bar. Subsequently, the tube was equipped with a Fe plate (anode, 20 mm \times 10 mm \times 0.1 mm) and a Fe plate (cathode, 20 mm \times 10 mm \times 5 mm), the distance between which was approximately 0.8 cm. All operations are performed in air. The constant current (10 mA) electrolysis was then performed at room temperature (Sealed tube) with vigorous stirring 0.5 h. Upon completion, the reaction mixture was poured into 20 mL H₂O and extracted with 50 mL

EtOAc for three times. The combined organic layer was washed with 20 mL H₂O for two times and dried over anhydrous Na₂SO₄. Subsequently, the solvent was removed under reduced pressure. The resulting mixture was anlyzed by LC-MS, the intermediate could be detected by LC-MS.

120-	Apex Peak #18 Scan: #78	7 AV: 1.74 - 1.75 min ((9) NL: 4.93E+006			+ c	ESI sid=5.00 Full ms	[100.000-120	0.000]
100-	% 242.2		O D Ph						
	118.0		CX N.						
50-			0 Ph						
	119.6 243.5	316.1 393.	Exact Mass: 316.1						
0-	· I								m/z
-20-5	00 250	375	500	625	750	875	1,000	1,125	1,200

4. General Procedure for the Synthesis of Products 3

A mixture of **1** (1.0 equiv, 0.2 mmol), alkyne **2** (3 equiv, 0.6 mmol), and ${}^{n}Bu_{4}NBF_{4}$ (0.4 mmol, 2.0 equiv) in mixed DMSO (4.0 mL) and

 H_2O (0.5 mL) solution was added to a 20 mL oven-dried sealed tube with a magnetic stir bar. Subsequently, the tube was equipped with a Fe plate (anode, 20 mm × 10 mm × 0.1 mm) and a Fe plate (cathode, 20 mm × 10 mm × 5 mm), the distance between which was approximately 0.8 cm. All operations are performed in air. The constant current (10 mA) electrolysis was then performed at room temperature (Sealed tube) with vigorous stirring 1.8-2.0 h, 3.4-3.7 F/mol. Upon completion, the reaction mixture was poured into 20 mL H₂O and extracted with 50 mL EtOAc for three times. The combined organic layer was washed with 20 mL H₂O for two times and dried over anhydrous Na₂SO₄. Subsequently, the solvent was removed under reduced pressure. The resulting mixture was purified by chromatography on silica gel with PE/EA (100:1 to 6:1) to give the **3**. Gram-scale:

A mixture of **1a** (1.0 equiv, 5.0 mmol), alkyne **2a** (3 equiv, 15 mmol), and "Bu₄NBF₄ (10 mmol, 2.0 equiv) in mixed DMSO (80 mL) and H₂O (10 mL) solution was added to a 150 mL oven-dried beaker with a magnetic stir bar. Subsequently, the beaker was equipped with a Fe plate (anode, 20 cm \times 10 cm \times 0.1 mm) and a Fe plate (cathode, 20 cm \times 10 cm \times 0.1 mm), the distance between which was approximately 2.5cm. All operations are performed in air. The constant current (20 mA) electrolysis was then performed at room temperature with vigorous stirring 22 h. Upon completion, the reaction mixture was poured into 100 mL H₂O and extracted with 150 mL EtOAc for three times. The combined organic layer was washed with 100 mL H₂O for two times and dried over anhydrous Na₂SO₄. Subsequently, the solvent was removed under reduced pressure. The resulting mixture was purified by chromatography on silica gel with PE/EA (50:1 to 30:1) to give the **3aa** (1.10 g, 74%).

5. Characterization Data of the Product

2,3-diphenylisoquinolin-1(2H)-one (3aa)

3aa was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (46.4 mg, 78%). M.P.: 177.4-178.7 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 7.9 Hz, 1H), 7.72-7.68 (m, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.29-7.25 (m, 2H), 7.23-7.03 (m, 8H), 6.60 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 143.5, 139.0, 136.7, 136.2, 132.8, 129.4, 129.2, 128.6, 128.3, 128.0, 127.8, 127.6, 126.9, 126.0, 125.4, 107.9. These data are consistent with that in the literature.^[2]

3-phenyl-2-(*p*-tolyl)isoquinolin-1(2*H*)-one (3ab)

3ab was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (38.6 mg, 62%). M.P.: 157.4-159.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.66-7.70 (m, 1H), 7.61-7.43 (m, 2H), 7.23-7.12 (m, 5H), 7.06 (d, *J* = 8.1 Hz, 2H), 7.00 (d, *J* = 8.3 Hz, 2H), 6.59 (s, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 143.7, 137.4, 136.7, 136.4, 136.3, 132.7, 129.3, 129.3, 129.0, 128.4, 127.9, 127.8, 126.8, 126.0, 125.4, 107.8, 21.1. These data are consistent with that in the literature.^[2]

2-(4-methoxyphenyl)-3-phenylisoquinolin-1(2*H*)-one (3ac)

3ac was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (10:1); White solid (36.7 mg, 56%). M.P.: 173.5-175.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 8.0 Hz, 1H), 7.66-7.70 (m, 1H), 7.60-7.43 (m, 2H), 7.23-7.14 (m, 5H), 7.03 (d, *J* = 8.9 Hz, 2H), 6.78 (d, *J* = 8.9 Hz, 2H), 6.59 (s, 1H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 158.5, 143.9, 136.7, 136.3, 132.7, 131.8, 130.2, 129.2, 128.3, 127.9, 127.8, 126.8, 126.0, 125.4, 113.9, 107.7, 55.3. These data are consistent with that in the literature.^[2]

2-(4-(*tert*-butyl)phenyl)-3-phenylisoquinolin-1(2H)-one (3ad)

3ad was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (48.8 mg, 69%). M.P.: 161.2-164.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.71-7.61 (m, 1H), 7.59-7.45 (m, 2H), 7.29-7.21 (m, 2H), 7.18-7.11 (m, 5H), 7.06-6.96 (m, 2H), 6.59 (s, 1H), 1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 150.5, 143.8, 136.8, 136.3, 136.3, 132.7, 129.2, 128.7, 128.4, 127.9, 127.7, 126.8, 126.0, 125.5, 125.4, 107.8, 34.5, 31.2. These data are consistent with that in the literature.^[3]

2-(4-bromophenyl)-3-phenylisoquinolin-1(2H)-one (3ae)

3ae was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (38.4 mg, 51%). M.P.: 164.5-167.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.0 Hz, 1H), 7.73-7.66 (m, 1H), 7.59-7.49 (m, 2H), 7.39 (d, *J* = 8.6 Hz, 2H), 7.25-7.09 (m, 5H), 7.01 (d, *J* = 8.6 Hz, 2H), 6.61 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 143.1, 138.1, 136.7, 135.8, 133.0, 131.8, 131.0, 129.2, 128.3, 128.3, 128.1, 127.1, 126.1, 125.2, 121.6, 108.2. These data are consistent with that in the literature.^[3]

3-phenyl-2-(2-(trifluoromethyl)phenyl)isoquinolin-1(2H)-one (3af)

3af was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (29.9 mg, 41%). M.P.: 167.1-169.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 7.8 Hz, 1H), 7.77-7.66 (m, 1H), 7.66-7.45 (m, 4H), 7.42-7.35 (m, 1H), 7.28-7.24 (m, 1H), 7.23-7.13 (m, 5fH), 6.59 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 143.4, 136.8, 135.3, 133.6, 133.0, 132.6, 132.2, 129.7, 128.8, 128.4 (q, *J* = 32.8 Hz), 127.6, 127.8, 127.1 (q, *J* = 4.1 Hz), 126.1, 126.1, 122.9 (q, *J* = 270.4 Hz), 108.1. HRMS calcd. for: C₂₂H₁₅F₃NO [M+H]⁺ 366.1100, found 366.1097.

3-phenyl-2-(*m*-tolyl)isoquinolin-1(2*H*)-one (3ag)

3ag was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (41.1 mg, 66%). M.P.: 164.1-167.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.72-7.66 (m, 1H), 7.62-7.46 (m, 2H), 7.31-7.24 (m, 2H), 7.24-7.16 (m, 1H), 7.16-7.10 (m, 2H), 7.08-6.96 (m, 3H), 6.96-6.91 m, 1H), 6.60 (s, 1H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 143.7, 139.1, 137.5, 136.8, 136.1, 132.7, 129.9, 129.4, 128.7, 128.5, 128.3, 127.6, 126.8, 126.4, 126.0, 125.4, 107.7, 21.2. HRMS calcd. for:C₂₂H₁₈NO [M+H]⁺ 283.1264, found 283.1264.

7-methoxy-2,3-diphenylisoquinolin-1(2H)-one (3ah)

3ag was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (10:1); Yellow solid (41.8 mg, 64%). M.P.: 200.4-203.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 2.7 Hz, 1H), 7.50 (d, *J* = 8.7 Hz, 1H), 7.35-7.22 (m, 3H), 7.22-7.18 (m, 1H), 7.18-7.10 (m, 7H), 6.58 (s, 1H), 3.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 158.9, 141.3, 139.2, 136.3, 130.8, 129.4, 129.3, 128.5, 127.8, 127.7, 127.7, 127.6, 126.5, 123.3, 108.1, 107.7, 55.6. These data are consistent with that in the literature.^[3]

7-chloro-2,3-diphenylisoquinolin-1(2H)-one (3ai)

3ai was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (44.5 mg, 67%). M.P.: 184.3-186.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 2.2 Hz, 1H), 7.66-7.60 (m, 1H), 7.54-7.48 (m, 1H), 7.32-7.23 (m, 2H), 7.24-7.13 (m, 7H), 7.13-7.08 (m, 1H), 6.57 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 144.0, 138.8, 135.9, 135.1, 133.2, 132.8, 129.3, 129.2, 128.7, 128.2, 127.9, 127.8, 127.8, 127.6, 126.5, 107.1. HRMS calcd. for: C₂₁H₁₄CINNaO [M+Na]⁺ 354.0662, found 354.0655.

6-chloro-2,3-diphenylisoquinolin-1(2H)-one (3aj)

3ai was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); Yellow solid (39.1 mg, 59%). M.P.: 195.3-198.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.6 Hz, 1H), 7.54 (d, *J* = 1.9 Hz, 1H), 7.45 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.30-7.24 (m, 2H), 7.23-7.05 (m, 8H), 6.51 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 145.1, 139.2, 138.7, 138.0, 135.8, 130.2, 129.3, 129.2, 128.7, 128.3, 127.9, 127.8, 127.4, 125.2, 123.7, 106.7. These data are consistent with that in the literature.^[3]

methyl 1-oxo-2,3-diphenyl-1,2-dihydroisoquinoline-6-carboxylate (3ak)

3ak was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (10:1); Colorless liquid (26.3 mg, 37%).¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 8.4 Hz, 1H), 8.27 (d, *J* = 1.6 Hz, 1H), 8.10 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.31-7.26 (m, 2H), 7.24-7.15 (m, 6H), 7.15-7.08 (m, 2H), 6.66 (s, 1H), 4.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 162.6, 144.5, 138.8, 136.5, 135.8, 133.8, 129.2, 129.2, 128.7, 128.7, 128.2, 128.2, 128.1, 127.9, 127.9, 126.8, 107.7, 52.6. HRMS calcd. for: C₂₃H₁₈NO₃ [M+H]⁺ 356.1281, found 356.1287.

5-chloro-2,3-diphenylisoquinolin-1(2H)-one (3al)

3al was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (41.8 mg, 63%). M.P.: 190.7-194.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.0 Hz, 1H), 7.75 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.43 (t, *J* = 7.9 Hz, 1H), 7.32-7.25 (m, 2H), 7.24-7.16 (m, 6H), 7.14-7.07 (m, 2H), 6.96 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 144.8, 138.7, 136.0, 134.6, 132.9, 130.5, 129.2, 128.7, 128.3, 127.9, 127.9, 127.3, 127.0, 126.9, 125.9, 103.9. These data are consistent with that in the literature.^[3]

3-(4-methoxyphenyl)-2-phenylisoquinolin-1(2H)-one (3ba)

3al was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (10:1); Colorless liquid (47.4 mg, 72%).¹H NMR (400 MHz, CDCl₃) δ 8.45 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.73-7.64 (m, 1H), 7.60-7.54 (m, 1H), 7.53-7.46 (m, 1H), 7.33-7.24 (m, 2H), 7.25-7.19 (m, 1H), 7.15-7.10 (m, 2H), 7.10-7.04 (m, 2H), 6.72-6.67 (m, 2H), 6.58 (s, 1H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 159.1, 143.3, 139.1, 136.8, 132.7, 130.5, 129.3, 128.6, 128.6, 128.3, 127.6, 126.7, 125.9, 125.2, 113.2, 107.7, 55.1. These data are consistent with that in the literature.^[2]

3-(4-fluorophenyl)-2-phenylisoquinolin-1(2H)-one (3ca)

3ca was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (42.9 mg, 68%). M.P.: 206.7-208.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 9.3 Hz, 1H), 7.67 (t, J = 8.2 Hz, 1H), 7.56-7.44 (m, 2H), 7.31-7.22 (m, 2H), 7.22-7.16 (m, 1H), 7.14-7.02 (m, 4H), 6.84 (t, J = 8.6 Hz, 2H), 6.56 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, J = 248.9 Hz), 163.0, 142.5, 139.0, 136.6, 132.8, 132.3 (d, J = 3.6 Hz), 131.1 (d, J = 8.3 Hz), 129.3, 128.7, 128.4, 127.8, 127.1, 126.0, 125.5, 114.9 (d, J = 21.7 Hz), 108.0. These data are consistent with that in the literature.^[3]

3-(4-chlorophenyl)-2-phenylisoquinolin-1(2H)-one (3da)

3da was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (45.8 mg, 69%). M.P.: 190.7-193.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (dd, J = 8.1, 1.2 Hz, 1H), 7.73-7.58 (m, 1H), 7.58-7.44 (m, 2H), 7.34-7.16 (m, 3H), 7.15-7.02 (m, 6H), 6.54 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 142.3, 138.8, 136.5, 134.6, 134.1, 132.8, 130.4, 129.3, 128.8, 128.3, 128.1, 127.8, 127.1, 126.0, 125.4, 108.1. These data are consistent with that in the literature.^[3]

3-(4-bromophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ea)

3ea was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (30.8 mg, 41%). M.P.: 188.3-191.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.75-7.66 (m, 1H), 7.61-7.45 (m, 2H), 7.34-7.27 (m, 4H), 7.26-7.19 (m, 1H), 7.15-7.08 (m, 2H), 7.06-6.99 (m, 2H), 6.58 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 142.3, 138.8, 136.5, 135.1, 132.9, 131.1, 130.7, 129.3, 128.8, 128.4, 127.9, 127.2, 126.1, 125.5, 122.4, 108.1. These data are consistent with that in the literature.^[2]

3-(2-methoxyphenyl)-2-phenylisoquinolin-1(2H)-one (3fa)

3fa was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (10:1); White solid (27.5 mg, 42%). M.P.: 139.1-141.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.68-7.63 (m, 1H), 7.60-7.45 (m, 2H), 7.45-7.04 (m, 6H), 6.88-6.83 (m, 2H), 6.60-6.53 (m, 2H), 3.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 156.0, 141.2, 138.8, 136.9, are consistent with that in the literature.^[4]

2-phenyl-3-(o-tolyl)isoquinolin-1(2H)-one (3ga)

3ga was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (37.4 mg, 60%). M.P.: 139.1-141.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.78-7.65 (m, 1H), 7.59-7.48 (m, 2H), 7.25-7.07 (m, 7H), 7.03 (t, *J* = 6.8 Hz, 2H), 6.51 (s, 1H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 142.7, 138.6, 136.7, 136.0, 135.4, 132.7, 130.6, 129.8, 128.5, 128.4, 128.3, 127.8, 126.8, 125.9, 125.5, 125.0, 107.4, 20.1. HRMS calcd. for:C₂₂H₁₈NO [M+H]⁺ 283.1264, found 283.1268.

3-(2-chlorophenyl)-2-phenylisoquinolin-1(2H)-one (3ha)

3ha was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (44.5 mg, 67%). M.P.: 186.4-188.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.75-7.67 (m, 1H), 7.61-7.48 (m, 2H), 7.43-7.32 (m, 1H), 7.25-6.99 (m, 8H), 6.56 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 140.3, 138.5, 136.5, 134.9, 133.5, 132.7, 132.0, 129.9, 129.3, 129.2, 128.7, 128.4, 128.3, 128.0, 127.2, 126.1, 126.0, 125.8, 108.0. These data are consistent with that in the literature.^[5]

3-(3-chlorophenyl)-2-phenylisoquinolin-1(2H)-one (3ia)

3ia was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (40.5 mg, 61%). M.P.: 166.4-169.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.1 Hz, 1H), 7.74-7.67 (m, 1H), 7.64-7.47 (m, 2H), 7.38-7.20 (m, 4H), 7.19-7.05(m, 4H), 7.04-6.98 (m, 1H), 6.60 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 142.0, 138.7, 137.8, 136.5, 133.8, 132.9, 129.3, 129.3, 129.0, 128.8, 128.4, 128.2, 127.9, 127.5, 127.3, 126.1, 125.6, 108.2. These data are consistent with that in the literature.^[6]

3-(3-bromophenyl)-2-phenylisoquinolin-1(2H)-one (3ja)

3ja was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (32.3 mg, 43%). M.P.: 186.7-189.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.69-7.62 (m, 1H), 7.57-7.45 (m, 2H), 7.35-7.31 (m, 1H), 7.30-7.16 (m, 4H), 7.12-7.05 (m, 2H), 7.04-6.93 (m, 2H), 6.55 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 141.9, 138.7, 138.0, 136.4, 132.9, 132.1, 131.1, 129.3, 129.2, 128.8, 128.4, 127.9, 127.9, 127.3, 126.1, 125.5, 121.8, 108.2. These data are consistent with that in the literature.^[5]

2-phenyl-3-(*m*-tolyl)isoquinolin-1(2*H*)-one (3ka)

S17

3ka was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (38.6 mg, 62%). M.P.: 125.8-128.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.72-7.66 (m, 1H), 7.62-7.47 (m, 2H), 7.31-7.24 (m, 2H), 7.23-7.17 (m, 1H), 7.15-7.11 (m, 2H), 7.08-6.97 (m, 3H), 6.96-6.91 (m, 1H), 6.60 (s, 1H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 143.7, 139.1, 137.5, 136.8, 136.1, 132.7, 129.9, 129.4, 128.7, 128.5, 128.3, 127.6, 126.8, 126.4, 126.0, 125.4, 107.7, 21.2. These data are consistent with that in the literature.^[5]

3-(naphthalen-2-yl)-2-phenylisoquinolin-1(2H)-one (3la)

3la was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (50:1); White solid (52.8 mg, 76%). M.P.: 196.1-198.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 8.0 Hz, 1H), 7.84-7.67 (m, 4H), 7.64-7.51 (m, 3H), 7.50-7.44 (m, 2H), 7.29-7.11 (m, 6H), 6.71 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 143.5, 139.0, 136.8, 133.8, 132.8, 132.7, 132.4, 129.4, 128.6, 128.5, 128.4, 128.0, 127.7, 127.6, 127.2, 127.0, 126.6, 126.5, 126.4, 126.1, 125.4, 108.4. These data are consistent with that in the literature.^[2]

2-phenyl-3-(pyridin-3-yl)isoquinolin-1(2H)-one (3na)

3na was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (10:1 - 2:1); White solid (43.7 mg, 73%). M.P.: 193.4-194.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.55-8.51 (m, 1H), 8.50-8.45 (m, 1H), 8.43 (dd, *J* = 4.9, 1.7 Hz, 1H), 7.76-7.69 (m, 1H), 7.64-7.51 (m, 2H), 7.437.36 (m, 1H), 7.36-7.27 (m, 2H), 7.26-7.21 (m, 1H), 7.16-7.11 (m, 2H), 7.10-7.05 (m, 1H), 6.63 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 149.5, 149.1, 140.0, 138.5, 136.4, 136.3, 133.0, 132.2, 129.4, 129.0, 128.4, 128.1, 127.5, 126.2, 125.7, 122.5, 108.7. These data are consistent with that in the literature.^[5]

2-phenyl-3-(thiophen-2-yl)isoquinolin-1(2H)-one (3oa)

30a was prepared according to general procedure; Eluent: petroleum ether/ethyl acetate (40:1 - 20:1); White solid (42.5 mg, 70%). M.P.: 179.2-179.6 °C.¹H NMR (400 MHz, CDCl₃) δ 8.44 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.76-7.66 (m, 1H), 7.62-7.55 (m, 1H), 7.55-7.49 (m, 1H), 7.42-7.30 (m, 3H), 7.25-7.18 (m, 3H), 6.83-6.79 (m, 2H), 6.74 (dd, *J* = 3.6, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 139.1, 137.2, 136.7, 136.5, 132.9, 129.3, 129.0, 128.8, 128.3, 128.3, 127.3, 127.2, 126.6, 126.1, 125.5, 108.7. HRMS calcd. for: C19H14NOS [M+H]⁺ 304.0791, found 304.0791.

6. References

- [1] K. Madasamy, M. H. Balakrishnan, R. Korivi, S. Mannathan, J. Org. Chem. 2022, 87, 8752-8756.
- [2] D. Y. Li, X. S. Shang, G. R. Chen, P. N. Liu, Org. Lett. 2013, 15, 3848-3851.
- [3] M. Zhang, H.-J. Zhang, W. Ruan, T.-B. Wen, Eur. J. Org. Chem. 2015, 2015, 5914-5918.
- [4] H. Wang, S. Yu, Org. Lett. 2015, 17, 4272-4275.
- [5] H. Xie, Q. Xing, Z. Shan, F. Xiao, G.-J. Deng, Adv. Synth. Catal. 2019, 361, 1896-1901.

7. ¹H and ¹³C Spectrums of Compounds

¹H NMR of 2,3-diphenylisoquinolin-1(2*H*)-one (3aa)

¹³C NMR of 2,3-diphenylisoquinolin-1(2*H*)-one (3aa)

163.1	143.5 139.0 136.7	136.2 132.8	129.4 129.2 128.6	128.3 128.0 127.8	127.6 126.9	126.0 125.4	107.9	77.3 77.0 76.7
								\searrow

¹H NMR of 3-phenyl-2-(*p*-tolyl)isoquinolin-1(2*H*)-one (3ab)

¹³C NMR of 3-phenyl-2-(*p*-tolyl)isoquinolin-1(2*H*)-one (3ab)

¹H NMR of 2-(4-methoxyphenyl)-3-phenylisoquinolin-1(2*H*)-one (3ac)

¹³C NMR of 2-(4-methoxyphenyl)-3-phenylisoquinolin-1(2*H*)-one (3ac)

163.3 158.5 136.7 136.7 136.7 136.8 127.9 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.0 127.9	76.7 76.7	— 55.3
---	--------------	--------

¹³C NMR of 2-(4-(*tert*-butyl)phenyl)-3-phenylisoquinolin-1(2*H*)-one (3ad)

163.2 150.5 150.5 143.8 136.3 136.3 136.3 132.3 128.7 128.7 128.7 128.7 127.9 127.9 127.9 126.0 125.5 125.5 125.5 125.5	— 107.8	77.3 0.77 76.7	- 34.5 - 31.2
--	---------	----------------------	------------------

3ad ¹³C NMR (100 MHz), CDCl₃

¹H NMR of 2-(4-bromophenyl)-3-phenylisoquinolin-1(2*H*)-one (3ae)

¹³C NMR of 2-(4-bromophenyl)-3-phenylisoquinolin-1(2*H*)-one (3ae)

162.9 143.1 138.1 138.6 136.6 135.8 133.0 133.0	131.0 129.2 128.3 128.3 128.3 128.1 128.1 126.1 126.1 126.2 125.2 121.6 108.2	77.3 77.3 76.7
		\searrow

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of 3-phenyl-2-(2-(trifluoromethyl)phenyl)isoquinolin-1(2*H*)-one (3af)

¹³C NMR of 3-phenyl-2-(2-(trifluoromethyl)phenyl)isoquinolin-1(2*H*)-one (3af)

¹H NMR of 3-phenyl-2-(*m*-tolyl)isoquinolin-1(2*H*)-one (3ag)

¹³C NMR of 3-phenyl-2-(*m*-tolyl)isoquinolin-1(2*H*)-one (3ag)

¹H NMR of 7-methoxy-2,3-diphenylisoquinolin-1(2*H*)-one (3ah)

¹³C NMR of 7-methoxy-2,3-diphenylisoquinolin-1(2*H*)-one (3ah)

162.8 158.9 139.2 139.2 139.2 136.3 136.3 136.3 129.3 129.3 127.7 127.7 127.7 127.5	77.3 77.0 76.7	- 55.6

¹H NMR of 7-chloro-2,3-diphenylisoquinolin-1(2*H*)-one (3ai)

¹³C NMR of 7-chloro-2,3-diphenylisoquinolin-1(2*H*)-one (3ai)

¹H NMR of 6-chloro-2,3-diphenylisoquinolin-1(2*H*)-one (3aj)

¹³C NMR of 6-chloro-2,3-diphenylisoquinolin-1(2*H*)-one (3aj)

¹H NMR of methyl 1-oxo-2,3-diphenyl-1,2-dihydroisoquinoline-6-carboxylate (3ak)

¹³C NMR of methyl 1-oxo-2,3-diphenyl-1,2-dihydroisoquinoline-6-carboxylate (3ak)

				*	ľ		
ç							
MeO ₂ C Ph							
¹³ C NMR (100 MHz), CDCl ₃							
		lu -					
					Ì		
ĸĸġġĊĸĊġĊĸĹġĊġĊĊġĊĊġĸĸġĊĸĸĸĊĸţĸĸĸŶĊġĊĸĸţĊĿĬĊĊĬţĸĸţĊĸĬĊĸţŎĸĬĸĬĸĸŎĸĊĊĸĸŶġĔĬĸĬĊĸŎġ	anananya, ny kaominina amin'ny faritr'i Ananany Indri		under mer einer geschlicht der Landschlichten			yadı də əfdiyalı yüz yer yeri billi tarafı da yara Bilanda	annada fan sag dy geland allet new fil ywys yn dwr yw fan yn

¹H NMR of 5-chloro-2,3-diphenylisoquinolin-1(2*H*)-one (3al)

¹³C NMR of 5-chloro-2,3-diphenylisoquinolin-1(2*H*)-one (3al)

ပ္၀	00000	0 0 1 0 0	တက္ဝတ္	ထ ဂ	
N N	4 00 00 4 01	ပ်တ်ထဲထဲဂ	NNN0	ഗ് ന്	e o r
0 1	40000	M N N N N	NNNN	N O	NN 9
<u> </u>		\neg \neg \neg \neg \neg \neg	$\overline{}$	~ ~	ファフ
			And the second s		

¹H NMR of 3-(4-methoxyphenyl)-2-phenylisoquinolin-1(2*H*)-one (3ba)

¹³C NMR of 3-(4-methoxyphenyl)-2-phenylisoquinolin-1(2*H*)-one (3ba)

163.2 159.1 130.1 130.1 130.5 132.7 128.6 127.6 128.6 127.6 127.6 127.6 127.6 127.6 127.6 127.6 127.6 127.6 127.6 127.6 127.6 127.6 127.7 127.6 127.7 177.7	77.3 76.7 76.7	— 55.1
---	----------------------	--------

оМе

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR of 3-(4-fluorophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ca)

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.

¹³C NMR of 3-(4-fluorophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ca)

163.4 163.0 142.5 138.9 138.9 132.3 132.3 132.3 132.3 132.3 132.3 132.3 132.3 132.3 132.3 132.3 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 132.5 128.7 128.7 128.7 128.7 128.7 132.5 125.5	108.0	77.3 76.7
	l.	

¹H NMR of 3-(4-chlorophenyl)-2-phenylisoquinolin-1(2*H*)-one (3da)

¹³C NMR of 3-(4-chlorophenyl)-2-phenylisoquinolin-1(2*H*)-one (3da)

162.9 142.3 138.8 138.6 134.6 134.6 134.6 134.6 132.8 132.8 128.3 128.3 128.3 128.1 128.1 128.1 127.1 127.1 125.4	108.1 77.3 77.0 76.7

¹H NMR of 3-(4-bromophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ea)

¹³C NMR of 3-(4-bromophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ea)

¹H NMR of 3-(2-methoxyphenyl)-2-phenylisoquinolin-1(2*H*)-one (3fa)

¹³C NMR of 3-(2-methoxyphenyl)-2-phenylisoquinolin-1(2*H*)-one (3fa)

163.0 156.0 156.0 138.8 131.1 138.8 132.5 132.5 132.5 132.5 132.5 132.5 132.5 132.5 126.7 125.7	77.3 76.7 76.7	54.7
---	----------------------	------

¹H NMR of 2-phenyl-3-(*o*-tolyl)isoquinolin-1(2*H*)-one (3ga)

¹³C NMR of 2-phenyl-3-(*o*-tolyl)isoquinolin-1(2*H*)-one (3ga)

163.1	1422 1386 1386 1386 1386 1386 1386 1286 128 128 128 128 125 125 125 125 125 125 125 125 125 125	77.3 76.7 76.7	20.0

¹H NMR of 3-(2-chlorophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ha)

¹³C NMR of 3-(2-chlorophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ha)

162.9	140.3	138.4	136.5	134.8	133.5	132.7	132.0	129.9	129.3	129.2	128.7	128.4	128.3	128.0	127.2	126.1	126.0	125.8	108.0		77.3 77.0 76.7
_	L	L					L	L	L	_	-		-	-	4	_					\checkmark

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR of 3-(3-chlorophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ia)

¹H NMR(400 MHz), CDCl₃

¹³C NMR of 3-(3-chlorophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ia)

¹H NMR of 3-(3-bromophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ja)

¹³C NMR of 3-(3-bromophenyl)-2-phenylisoquinolin-1(2*H*)-one (3ja)

¹H NMR of 2-phenyl-3-(*m*-tolyl)isoquinolin-1(2*H*)-one (3ka)

¹³C NMR of 2-phenyl-3-(*m*-tolyl)isoquinolin-1(2*H*)-one (3ka)

163.10	143.73 139.10 137.46 136.79 136.79 136.07 129.35 129.35 129.35 129.35 129.35 129.35 127.60 126.83 127.60 126.83 125.97 125.36 107.70	77.32 77.00 76.68	21.18

¹H NMR of 3-(naphthalen-2-yl)-2-phenylisoquinolin-1(2*H*)-one (3la)

¹³C NMR of 3-(naphthalen-2-yl)-2-phenylisoquinolin-1(2*H*)-one (3la)

	S.	0	ø	ø	8	~	4	4	œ.	S.	4	0	~	œ.	N	0	0	S.	4	$\overline{\mathbf{x}}$	4	4	
က်	ς Ω	ດ	ø	က်	N	N	N	ດ	ø	ω	œ	ø	~	~	\sim	~	Ö	ø	Ö	Ö	۰ú	α	
ဖ	4	С	С	С	С	С	С	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0	
_						_	-	-	-	_	L.		_			$ \leq $	2	_	_	_			
															0	1,000							

77.3 77.0 76.7

¹³C NMR of 2-phenyl-3-(pyridin-3-yl)isoquinolin-1(2*H*)-one (3na)

¹H NMR of 2-phenyl-3-(thiophen-2-yl)isoquinolin-1(2*H*)-one (30a)

¹³C NMR of 2-phenyl-3-(thiophen-2-yl)isoquinolin-1(2*H*)-one (30a)

