Supporting information

Diastereoselective synthesis and structure-affinity relationships of σ_1 receptor ligands with spirocyclic scaffold

Tobias Winge,^a Dirk Schepmann,^a Judith Schmidt,^a Constantin Daniliuc,^b Ernst-Ulrich Würthwein,^b Bernhard Wünsch^a*

- ^{a)} Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany Tel.: +49-251-8333311; Fax: +49-251-8332144; Email: wuensch@uni-muenster.de
- ^{b)} Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation (CMTC), Corrensstraße 40, D-48149 Münster, Germany

Contents

Chemistry, General Methods	2
HPLC Analysis	3
Synthesis of some educts	5
X-ray crystal structure analysis of 8b (dan10126)	11
Receptor binding studies	16
Performance of the binding assays	19
Quantum chemical Calculations	21
References	37
NMR Spectra	40
HPLC purity measurements	76

Chemistry, General Methods

Oxygen and moisture sensitive reactions were carried out under nitrogen, dried with silica gel with moisture indicator (orange gel, VWR, Darmstadt, Germany) and in dry glassware (Schlenk flask or Schlenk tube). Temperature was controlled with dry ice/acetone (-78 °C), ice/water (0 °C), Cryostat (Julabo TC100E-F, Seelbach, Germany), magnetic stirrer MR 3001 K (Heidolph, Schwalbach, Germany) or RCT CL (IKA, Staufen, Germany), together with temperature controller EKT HeiCon (Heidolph) or VT-5 (VWR) and PEG or silicone bath. All solvents were of analytical or technical grade quality. Demineralized water was used. CH₂Cl₂ was distilled from CaH₂; THF was distilled from sodium/benzophenone; MeOH was distilled from magnesium methanolate. Thin layer chromatography (tlc): tlc silica gel 60 F₂₅₄ on aluminum sheets (VWR). Flash chromatography (fc): Silica gel 60, 40-63 µm (VWR); parentheses include: diameter of the column (\emptyset), length of the stationary phase (h), fraction size (v) and eluent. Automated flash chromatography: Isolera[™] Spektra One (Biotage[®]); parentheses include: cartridge size, eluent, fractions size was always 20 mL. Dry column vacuum chromatography (DCVC) was performed according to Pedersen et al using glass funnels with sintered glass disc filters and a height of 11 cm;¹ parentheses include: diameter of the column (\emptyset), length of the compressed stationary phase (h), eluent. Melting point: Melting point system MP50 (Mettler Toledo, Gießen, Germany), open capillary, uncorrected. MS: MicroTOFQII mass spectrometer (Bruker Daltonics, Bremen, Germany); deviations of the found exact masses from the calculated exact masses were 5 ppm or less; the data were analyzed with DataAnalysis[®] (Bruker Daltonics). NMR: NMR spectra were recorded in deuterated solvents on Agilent DD2 400 MHz and 600 MHz spectrometers (Agilent, Santa Clara CA, USA); chemical shifts (δ) are reported in parts per million (ppm) against the reference substance tetramethylsilane and calculated using the solvent residual peak of the undeuterated solvent; coupling constants are given with 0.5 Hz resolution; assignment of ¹H and ¹³C NMR signals was supported by 2-D NMR techniques where necessary. IR: FT/IR IR Affinity[®]-1 spectrometer (Shimadzu, Düsseldorf, Germany) using ATR technique. Purity by quantitative NMR (qNMR) was performed according to literature using 1,3,5-trimethoxybenzene (Sigma-Aldrich, standard for quantitative NMR, TraceCERT®) as the standard.²

HPLC Analysis

Set 1: Pump: LPG-3400SD, degasser: DG-1210, autosampler: ACC-3000T, UVdetector: VWD-3400RS, interface: DIONEX UltiMate 3000, data acquisition: Chromeleon 7 (Thermo Fisher Scientific).

Set 2: pump: L-7150A, autosampler: L-7200, UV-detector: L-7400, interface: D-7000 I/F, data acquisition: HSM-software (all LaChrom, Merck Hitachi).

Method 1 (Purity)

Set 1

Column:	LiChropher [®] 60 RP-select B (5 µm), LiChroCART [®] 250-4
	mm cartridge
Guard column:	LiChropher [®] 60 RP-select B (5 µm), LiChroCART [®] 4-4 mm
	cartridge (No.: 1.50963.0001), manu-CART [®] NT cartridge
	holder
Flow rate:	1.0 mL/min
Injection volume:	5.0 μL; method: cut lead and rear
Detection wavelength	210 nm
Solvent A:	Demineralized water + 0.05 % (V/V) trifluoroacetic acid
Solvent B:	Acetonitrile with 0.05 % (V/V) trifluoroacetic acid
Gradient elution (% A):	0 - 4 min: 90 %; 4 - 29 min: gradient from 90 % to 0 %; 29
	- 31 min: 0 %; 31 - 31.5 min: gradient from 0 % to 90 %;
	31.5 - 40 min: 90 %.

Method 2 (preparative separation)

Set 2

Column:	Agilent Prep-C18 (10 μm), 21.2 x 250 mm
Flow rate	20 mL/min
Injection Volume	400 μL, Method: Full
Detection Wavelength	210 nm
Run time	30 min
Solvent	Acetonitrile:H ₂ O: 50:50

Method 3 (preparative separation)

Set 2

Column:	Agilent Prep-C18 (10 μm), 21.2 x 250 mm
Guard Column	-
Flow rate	20 mL/min
Injection Volume	400 μL, Method: Full
Detection Wavelength	210 nm
Run time	30 min
Solvent	Acetonitrile:H ₂ O: 40:60

Synthesis of some educts

cis-2-Phenyltetrahydro-2H-pyran-4-ol

At room temperature under N₂, trifluoracetic acid (59.4 mL, 777 mmol, 10.0 eq.) was added to a mixture of benzaldehyde (7.92 mL, 77.7 mmol, 1.00 eq.) and but-3-en-1-ol (10.0 mL, 116 mmol, 1.50 eq.). The reaction mixture was stirred for 20 h at room temperature. Saturated aqueous Na₂CO₃ solution (250 mL) followed by NaOH (4.00 g) was added to the mixture and the solution was stirred for 72 h at room temperature. The aqueous layer was extracted with CH₂Cl₂ (4 x 150 mL) and the combined organic layers were washed with water, brine and dried (Na₂SO₄). The organic layer was concentrated *in vacuo* and the residue was purified by DCVC (\emptyset = 6 cm, h = 5 cm, cHex:EtOAc: 85:15 \rightarrow 50:50).

Yellow oil, $R_{\rm f}$ = 0.20 (cHex/EtOAc 80:20), yield 12.1 g (87%).

C₁₁H₁₄O₂ (178.2 g/mol).

Analytical data in accordance with literature.³

¹**H NMR** (600 MHz, CDCl₃): δ (ppm) = 1.55 (dt, J = 12.6/11.2 Hz, 1H, 3-C $H_{2(ax)}$), 1.63 (tdd, J = 12.6/11.0/4.9 Hz, 1H, 5-C $H_{2(ax)}$), 1.96 (ddq, J = 12.5/4.2/2.0 Hz, 1H, 5-C $H_{2(eq)}$), 2.18 (ddt, J = 12.5/4.4/2.2 Hz, 1H, 3-C $H_{2(eq)}$), 3.58 (ddd, J = 12.6/11.9/2.1 Hz, 1H, 6-C $H_{2(ax)}$), 3.93 (tt, J = 11.0/4.6 Hz, 1H, 4-CH), 4.17 (ddd, J = 11.8/4.9/1.8 Hz, 1H, 6-C $H_{2(eq)}$), 4.31 (dd, J = 11.4/2.1 Hz, 1H, 2-CH), 7.25 – 7.29 (m, 1H, 4- $H_{(Ph)}$), 7.32 – 7.36 (m, 4H, 2- $H_{(Ph)}$, 3- $H_{(Ph)}$, 5- $H_{(Ph)}$, 6- $H_{(Ph)}$). A signal for the OH proton is not observed in the spectrum.

¹³**C NMR** (151 MHz, CDCl₃): δ (ppm) = 35.6 (C-5), 43.4 (C-3), 66.5 (C-6), 68.6 (C-4), 78.5 (C-2), 126.0 (C-2_(Ph), C-6_(Ph)), 127.8 (C-4_(Ph)), 128.6 (C-3_(Ph), C-5_(Ph)), 142.0 (C-1_(Ph)).

HRMS: m/z = 171.1374, calcd. 171.1380 for $C_{11}H_{15}O_2^+$ [M+H]⁺.

IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3348 (O-H),3028 (C-H_{aryl}), 2941 (CH_{alkyl}).

Purity (HPLC): 96.3% (*t*_R = 12.7 min).

(RS)-1-Oxaspiro[5.5]undecan-4-ol

At room temperature under N₂, trifluoracetic acid (29.7 mL, 388 mmol, 10.0 eq.) was added to a mixture of cyclohexanone (4.02 mL, 38.8 mmol, 1.00 eq.) and but-3-en-1-ol (5.00 mL, 58.3 mmol, 1.50 eq.). The reaction mixture was stirred for 24 h at room temperature. Saturated aqueous Na₂CO₃ solution (120 mL) followed by NaOH (4.00 g) was added to the mixture and the solution was stirred for 72 h at room temperature. The aqueous layer was extracted with CH₂Cl₂ (4 x 150 mL) and the combined organic layers were washed with water, brine and dried (Na₂SO₄). The organic layer was concentrated *in vacuo* and the residue was purified by DCVC (\emptyset = 6 cm, h = 5 cm, cHex:EtOAc: 85:15 \rightarrow 50:50).

C₁₀H₁₈O₂ 170.3 (g/mol).

Yellow oil, *R*_f = 0.23 (cHex/EtOAc 80:20), yield 3.73 g (56%).

Analytical data in accordance with literature.⁴

¹**H NMR** (400 MHz, CDCl₃): δ (ppm) = 1.19 (dd, J = 12.7/10.8 Hz, 1H, 5-C $H_{2(ax)}$), 1.25 – 1.31 (m, 1H, 9-C $H_{2(ax)}$), 1.31 – 1.36 (m, 1H, 7/11-C $H_{2(ax)}$), 1.36 – 1.42 (m, 2H, 7/11-C $H_{2(eq)}$, 8/10-C $H_{2(ax)}$), 1.43 – 1.48 (m, 2H, 3-C $H_{2(ax)}$, 8/10-C $H_{2(ax)}$), 1.49 – 1.55 (m, 2H, 8/10-C $H_{2(eq)}$, 9-C $H_{2(eq)}$), 1.57 – 1.63 (m, 1H, 7/11-C $H_{2(ax)}$), 1.63 – 1.70 (m, 1H, 8/10-C $H_{2(eq)}$), 1.81 – 1.87 (m, 1H, 7/11-C $H_{2(eq)}$), 1.86 – 1.95 (m, 2H, 3-C $H_{2(eq)}$, 5-C $H_{2(eq)}$), 3.58 (td, J = 12.1/2.4 Hz, 1H, 2-C $H_{2(ax)}$), 3.79 (ddd, J = 12.1/5.2/2.4 Hz, 1H, 2-C $H_{2(eq)}$), 3.90 – 4.02 (m, 1H, 4-CH). A signal for the OH proton is not observed in the spectrum.

¹³**C** NMR (101 MHz, CDCl₃): δ (ppm) = 21.6 (*C*-8/10), 21.9 (*C*-8/10), 26.2 (*C*-9), 31.3 (*C*-7/11), 36.1 (*C*-3), 39.8 (*C*-7/11), 45.2 (*C*-5), 59.2 (*C*-2), 65.0 (*C*-4), 73.8 (*C*-6).

HRMS: m/z = 171.1374, calcd. 171.1380 for $C_{10}H_{19}O_2^+$ [M+H]⁺.

IR (neat): *v* [cm⁻¹] = 3356 (O-H), 2930 (CH_{alkyl}).

Purity (qNMR): 95.4%.

(RS)-2-Phenyltetrahydropyran-4-one (9)

At 0 °C under N₂, Dess-Martin periodinane (DMP, 13.1 g, 30.9 mmol, 1.10 eq.) was added portionwise to a solution of *cis*-2-phenyltetrahydro-2*H*-pyran-4-ol (5.00 g, 28.1 mmol, 1.00 eq.) in CH₂Cl₂ (60 mL). The reaction mixture was stirred for 2.5 h while slowly warming up to room temperature. Saturated aqueous Na₂SO₃ solution (30 mL) and saturated aqueous Na₂CO₃ (30 mL) were added and the suspension was filtered. The filtrate was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layers were washed with aqueous Na₂CO₃ solution, water and brine and dried (Na₂SO₄). The organic layer was concentrated *in vacuo* and the residue was purified by DCVC (\emptyset = 6 cm, h = 5 cm, cHex/EtOAc: 100:0 \rightarrow 60:40).

Colorless oil, R_f =0.41 (cHex/EtOAc 75:25), yield 3.90 g (79%).

Analytical data in accordance with literature.⁵

¹**H NMR** (600 MHz, CDCl₃): δ (ppm) = 2.44 (ddt, J = 14.8/2.9/1.6 Hz, 1H, 5-C $H_{2(eq)}$), 2.63 – 2.68 (m, 2H, 3-CH₂), 2.73 (ddd, J = 14.7/12.3/7.4 Hz, 1H, 5-C $H_{2(ax)}$), 3.85 (ddd, J = 12.4/11.6/2.9 Hz, 1H, 6-C $H_{2(ax)}$), 4.44 (ddd, J = 11.6/7.4/1.6 Hz, 1H, 6-C $H_{2(eq)}$), 4.65 (dd, J = 8.8/5.4 Hz, 1H, 2-CH), 7.29 – 7.34 (m, 1H, 4- $H_{(Ph)}$), 7.35 – 7.41 (m, 4H, 2- $H_{(Ph)}$, 3- $H_{(Ph)}$, 5- $H_{(Ph)}$, 6- $H_{(Ph)}$).

¹³**C NMR** (151 MHz, CDCl₃): δ (ppm) = 42.3 (C-5), 50.1 (C-3), 66.9 (C-6), 80.0 (C-2), 125.8 (C-2_(Ph), C-6_(Ph)), 128.3 (C-4_(Ph)), 128.8 (C-3_(Ph), C-5_(Ph)), 140.7 (C-1_(Ph)), 206.5 (C-4).

HRMS: m/z = 177.0910, calcd. 177.0910 for $C_{11}H_{13}O_2^+$ [M+H]⁺.

IR (neat): \tilde{v} [cm⁻¹] = 3024 (C-H_{aryl}), 2968 (CH_{alkyl}), 1717 (C=O).

Purity (HPLC): 96.0% (*t*_R = 14.9 min).

1-Oxaspiro[5.5]undecan-4-one (10)

At 0 °C under N₂, Dess-Martin periodinane (DMP, 7.81 g, 18.4 mmol, 1.10 eq.) was added portionwise to a solution of (*RS*)-1-oxaspiro[5.5]undecan-4-ol (2.85 g, 16.7 mmol, 1.00 eq.) in CH₂Cl₂ (40 mL). The reaction mixture was stirred for 3 h while slowly warming up to room temperature. A few drops of water were added and the suspension was filtered off. The filtrate was washed with water (3 x 30 mL), brine and dried (Na₂SO₄). The organic layer was concentrated *in vacuo* and the residue was purified by DCVC (\emptyset = 4 cm, h = 5 cm, cHex/EtoAc: 100:0 \rightarrow 60:40).

Colorless oil, $R_{\rm f}$ = 0.50 (cHex/EtOAc 75:25), yield 2.50 g (89%).

C₁₀H₁₆O₂ (168.2 g/mol).

Analytical data in accordance with literature.⁶

¹**H NMR** (400 MHz, CDCl₃): δ (ppm) = 1.20 – 1.29 (m, 1H, 9-CH_{2(ax)}), 1.30 – 1.39 (m, 2H, 7-CH_{2(ax)}, 11-CH_{2(ax)}), 1.39 – 1.49 (m, 2H, 8-CH_{2(ax)}, 10-CH_{2(ax)}), 1.49 – 1.65 (m, 3H, 8-CH_{2(eq)}, 9-CH_{2(eq)}, 10-CH_{2(eq)}), 1.69 – 1.78 (m, 2H, 7-CH_{2(eq)}, 11-CH_{2(eq)}), 2.30 – 2.33 (m, 2H, 5-CH₂), 2.37 – 2.45 (m, 2H, 3-CH₂), 3.96 (t, *J* = 6.1 Hz, 2H, 2-CH₂).

¹³**C NMR** (101 MHz, CDCl₃): δ (ppm) = 21.4 (C-8, C-10), 25.5 (C-9), 35.3 (C-7, C-11), 42.0 (C-3), 53.2 (C-5), 60.1 (C-2), 76.8 (C-6), 208.0 (C-4).

HRMS: m/z = 169.1223, calcd. 169.1223 for $C_{10}H_{17}O_2^+$ [M+H]⁺.

IR (neat): \tilde{v} [cm⁻¹] = 2930 (CH_{alkyl}), 1715 (C=O).

Purity (qNMR): 99.6%.

N-Benzyl-2-chloroacetamide

At 0 °C under N₂, chloroacetyl chloride (7.65 mL, 96.1 mmol, 1.05 eq.) was added slowly to solution of benzylamine (10.0 mL, 91.6 mmol, 1.00 eq.) and pyridine (14.7 mL, 183 mmol, 2.00 eq.) in THF (350 mL). The reaction mixture was stirred for 5 h while slowly warming up to room temperature. Water was added and the aqueous layer was extracted with EtOAc (3 x 200 mL). The combined organic layers were washed with water, brine, dried (Na₂SO₄) and concentrated *in vacuo*.

Colorless solid, $R_f = 0.10$ (cHex/EtOAc 90:10), yield 14.4 g (86%).

C₉H₁₀CINO (183.6 g/mol).

Analytical data in accordance with literature.7

HRMS: m/z = 184.0510, calcd. 184.0524 for C₉H₁₁CINO⁺ [M+H]⁺.

Purity (HPLC): 95.5% (*t*_R = 14.0 min).

Diphenyl 1 [(benzylamino)carbonyl]methanephosphonate

Synthesis procedure was adapted from Kojima et al.8

At 0 °C under N₂, NaH (60% dispersion in mineral oil, 7,07 g, 177 mmol, 3.00 eq.) was suspended in THF (120 mL). Diphenylphosphite (34.0 mL, 177 mmol, 3.00 eq.) was added dropwise and the solution was stirred for 1 h at 0 °C. *N*-Benzyl-2-chloroacetamide (10.0 g, 59.0 mmol, 1.00 eq.) dissolved in THF (10 mL) was added dropwise to the reaction mixture and the mixture was stirred for 16 h while slowly warming up to room temperature. Aqueous NH₄Cl solution (1/2 conc., 100 mL) was added and the precipitate was filtered off. The solid was washed with water (3 x 50 mL) and cHex (3 x 50 mL) and dried *in vacuo*. The product was used without further purification.

Colorless solid, mp 145 – 147 °C, *R*_f = 0.25 (cHex/EtOAc 75:25), yield 16.9 g (78%).

C₂₁H₂₀NO₄P (381.4 g/mol).

Analytical data in accordance with literature.8

HRMS: m/z = 382.1211, calcd. 382.1203 for C₂₁H₂₁NO₄P [M+H]⁺.

Purity (HPLC): 91.7% (*t*_R = 18.9 min).

X-ray crystal structure analysis of 8b (dan10126)

A colorless plate-like specimen of $C_{25}H_{29}NO_3$, approximate dimensions 0.030 mm x 0.120 mm x 0.200 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Kappa CCD Bruker APEXII Diffractometer system equipped with a fine-focus sealed tube Cu sealed tube (CuK α , λ = 1.54178 Å) and a graphite monochromator. A total of 1740 frames were collected. The total exposure time was 22.74 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 38113 reflections to a maximum θ angle of 66.90° (0.84 Å resolution), of which 4226 were independent (average redundancy 9.019, completeness = 99.8%, $R_{int} = 13.27\%$, $R_{sig} = 7.31\%$) and 3057 (72.34%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 27.6191(12) Å, <u>b</u> = 9.9208(5) Å, <u>c</u> = 20.1969(8) Å, β = 120.649(2)°, volume = 4761.0(4) Å³, are based upon the refinement of the XYZ-centroids of 4740 reflections above 20 $\sigma(I)$ with 7.441° < 2 θ < 132.7°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.857. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8960 and 0.9830. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group C2/c, with Z = 8 for the formula unit, $C_{25}H_{29}NO_3$. The final anisotropic full-matrix leastsquares refinement on F^2 with 263 variables converged at R1 = 5.00%, for the observed data and wR2 = 12.57% for all data. The goodness-of-fit was 1.033. The largest peak in the final difference electron density synthesis was 0.244 e⁻/Å³ and the largest hole was -0.272 e⁻/Å³ with an RMS deviation of 0.052 e⁻/Å³. On the basis of the final model, the calculated density was 1.092 g/cm³ and F(000), 1680 e⁻. CCDC Nr.: 2279510.

Figure S1: Crystal structure of compound 8b. Thermal ellipsoids are set at 50% probability.

Table 1. Sample and crystal data for dan10126.

I V			
Identification code	dan10126		
Chemical formula	$C_{25}H_{29}NO_3$		
Formula weight	391.49 g/mol		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal size	0.030 x 0.120 x 0.200 mm	n	
Crystal habit	colorless plate		
Crystal system	monoclinic		
Space group	C 1 2/c 1		
Unit cell dimensions	a = 27.6191(12) Å	$\alpha = 90^{\circ}$	
	b = 9.9208(5) Å	$\beta = 120.649(2)^{\circ}$	
	c = 20.1969(8) Å	$\gamma = 90^{\circ}$	
Volume	4761.0(4) Å ³		
Z	8		
Density (calculated)	1.092 g/cm ³		
Absorption coefficient	0.563 mm ⁻¹		
F(000)	1680		

Table 2. Data collection	and structure	refinement for	dan10126.
--------------------------	---------------	----------------	-----------

Tuble 11 Duta concetton una stre	cecui e i ciincinente ioi	aunioizot		
Diffractometer	Kappa CCD Bruker APEXII Diffractometer			
Radiation source	fine-focus sealed tube Cu sealed tube (CuK α , $\lambda = 1.54178$ Å)			
Theta range for data collection	3.72 to 66.90°			
Index ranges	-32<=h<=32, -11<=k<=	=11, - 24<=l<=24		
Reflections collected	38113			
Independent reflections	4226 [R(int) = 0.1327]			
Coverage of independent reflections	99.8%			
Absorption correction	Multi-Scan			
Max. and min. transmission	0.9830 and 0.8960			
Structure solution technique	direct methods			
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)			
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$			
Data / restraints / parameters	4226 / 0 / 263			
Goodness-of-fit on F ²	1.033			
Final R indices	3057 data; I>2σ(I)	R1 = 0.0500, wR2 = 0.1130		
	all data	R1 = 0.0750, wR2 = 0.1257		
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0335P)^2+4.6723P]$ where $P=(F_o^2+2F_c^2)/3$			
Largest diff. peak and hole	0.244 and -0.272 eÅ ⁻³			
R.M.S. deviation from mean	0.052 eÅ ⁻³			

Table 3. Bond lengths (Å) for dan10126.

N1-C1	1.351(3)	N1-C13	1.458(3)	
N1-C5	1.460(3)	O1-C1	1.239(2)	
O2-C11	1.209(2)	O3-C11	1.340(2)	
O3-C12	1.455(3)	C1-C2	1.509(3)	
C2-C3	1.541(3)	C2-H2A	0.99	
C2-H2B	0.99	C3-C10	1.536(3)	
C3-C6	1.543(3)	C3-C4	1.551(3)	
C4-C11	1.516(3)	C4-C5	1.520(3)	
C4-H4	1.0	C5-H5A	0.99	
C5-H5B	0.99	C6-C7	1.544(3)	
C6-H6A	0.99	C6-H6B	0.99	
C7-C21	1.516(3)	C7-C8	1.526(3)	
С7-Н7	1.0	C8-C9	1.531(3)	
C8-H8A	0.99	C8-H8B	0.99	
C9-C10	1.532(3)	С9-Н9А	0.99	
С9-Н9В	0.99	C10-H10A	0.99	
C10-H10B	0.99	C12-H12A	0.98	
C12-H12B	0.98	C12-H12C	0.98	
C13-C31	1.518(3)	C13-H13A	0.99	
C13-H13B	0.99	C21-C26	1.392(3)	
C21-C22	1.394(3)	C22-C23	1.386(3)	
C22-H22	0.95	C23-C24	1.386(3)	
С23-Н23	0.95	C24-C25	1.380(3)	
C24-H24	0.95	C25-C26	1.390(3)	
С25-Н25	0.95	C26-H26	0.95	
C31-C32	1.388(3)	C31-C36	1.398(3)	
C32-C33	1.392(3)	C32-H32	0.95	
C33-C34	1.373(4)	С33-Н33	0.95	
C34-C35	1.375(4)	C34-H34	0.95	
C35-C36	1.403(4)	С35-Н35	0.95	
C36-H36	0.95			

Table 4. Bond angles (°) for dan10126.

0 、/			
C1-N1-C13	120.17(17)	C1-N1-C5	125.17(17)
C13-N1-C5	114.66(16)	C11-O3-C12	115.93(18)
O1-C1-N1	121.96(19)	O1-C1-C2	120.40(19)
N1-C1-C2	117.61(17)	C1-C2-C3	114.83(16)
С1-С2-Н2А	108.6	С3-С2-Н2А	108.6
C1-C2-H2B	108.6	С3-С2-Н2В	108.6
H2A-C2-H2B	107.5	C10-C3-C2	110.57(16)
C10-C3-C6	109.11(16)	C2-C3-C6	110.50(16)
C10-C3-C4	110.68(16)	C2-C3-C4	103.54(15)
C6-C3-C4	112.36(16)	C11-C4-C5	108.24(16)

C11-C4-C3	113.13(16)	C5-C4-C3	111.53(16)
C11-C4-H4	107.9	С5-С4-Н4	107.9
C3-C4-H4	107.9	N1-C5-C4	113.66(16)
N1-C5-H5A	108.8	C4-C5-H5A	108.8
N1-C5-H5B	108.8	С4-С5-Н5В	108.8
H5A-C5-H5B	107.7	C3-C6-C7	112.65(16)
С3-С6-Н6А	109.1	С7-С6-Н6А	109.1
С3-С6-Н6В	109.1	С7-С6-Н6В	109.1
H6A-C6-H6B	107.8	C21-C7-C8	115.28(17)
C21-C7-C6	109.69(16)	C8-C7-C6	110.19(16)
С21-С7-Н7	107.1	С8-С7-Н7	107.1
С6-С7-Н7	107.1	C7-C8-C9	110.27(17)
С7-С8-Н8А	109.6	С9-С8-Н8А	109.6
C7-C8-H8B	109.6	С9-С8-Н8В	109.6
H8A-C8-H8B	108.1	C8-C9-C10	111.29(17)
С8-С9-Н9А	109.4	С10-С9-Н9А	109.4
C8-C9-H9B	109.4	С10-С9-Н9В	109.4
Н9А-С9-Н9В	108.0	C9-C10-C3	113.33(17)
С9-С10-Н10А	108.9	C3-C10-H10A	108.9
C9-C10-H10B	108.9	C3-C10-H10B	108.9
H10A-C10-H10B	107.7	O2-C11-O3	124.01(19)
O2-C11-C4	125.05(18)	O3-C11-C4	110.94(17)
O3-C12-H12A	109.5	O3-C12-H12B	109.5
H12A-C12-H12B	109.5	O3-C12-H12C	109.5
H12A-C12-H12C	109.5	H12B-C12-H12C	109.5
N1-C13-C31	112.45(16)	N1-C13-H13A	109.1
С31-С13-Н13А	109.1	N1-C13-H13B	109.1
С31-С13-Н13В	109.1	H13A-C13-H13B	107.8
C26-C21-C22	118.29(18)	C26-C21-C7	123.05(19)
C22-C21-C7	118.65(18)	C23-C22-C21	121.36(19)
С23-С22-Н22	119.3	C21-C22-H22	119.3
C24-C23-C22	119.7(2)	С24-С23-Н23	120.2
С22-С23-Н23	120.2	C25-C24-C23	119.6(2)
С25-С24-Н24	120.2	C23-C24-H24	120.2
C24-C25-C26	120.7(2)	C24-C25-H25	119.6
С26-С25-Н25	119.6	C25-C26-C21	120.3(2)
С25-С26-Н26	119.8	С21-С26-Н26	119.8
C32-C31-C36	118.3(2)	C32-C31-C13	122.00(18)
C36-C31-C13	119.7(2)	C31-C32-C33	121.0(2)
С31-С32-Н32	119.5	С33-С32-Н32	119.5
C34-C33-C32	120.3(2)	С34-С33-Н33	119.8
С32-С33-Н33	119.8	C33-C34-C35	119.9(2)
С33-С34-Н34	120.0	С35-С34-Н34	120.0
C34-C35-C36	120.3(2)	С34-С35-Н35	119.9
С36-С35-Н35	119.9	C31-C36-C35	120.2(2)

С31-С36-Н36

119.9

С35-С36-Н36

119.9

Table 5.	Torsion	angles (°) for	dan10126.
			,	

C13-N1-C1-O1	3.7(3)	C5-N1-C1-O1	-175.87(19)
C13-N1-C1-C2	-174.13(17)	C5-N1-C1-C2	6.3(3)
01-C1-C2-C3	152.38(19)	N1-C1-C2-C3	-29.7(3)
C1-C2-C3-C10	174.56(17)	C1-C2-C3-C6	-64.5(2)
C1-C2-C3-C4	56.0(2)	C10-C3-C4-C11	56.5(2)
C2-C3-C4-C11	175.02(16)	C6-C3-C4-C11	-65.7(2)
C10-C3-C4-C5	178.82(16)	C2-C3-C4-C5	-62.67(19)
C6-C3-C4-C5	56.6(2)	C1-N1-C5-C4	-13.5(3)
C13-N1-C5-C4	166.90(16)	C11-C4-C5-N1	168.46(16)
C3-C4-C5-N1	43.4(2)	C10-C3-C6-C7	54.0(2)
C2-C3-C6-C7	-67.8(2)	C4-C3-C6-C7	177.12(15)
C3-C6-C7-C21	174.46(16)	C3-C6-C7-C8	-57.6(2)
C21-C7-C8-C9	-177.63(17)	C6-C7-C8-C9	57.6(2)
C7-C8-C9-C10	-56.6(2)	C8-C9-C10-C3	55.2(2)
C2-C3-C10-C9	69.0(2)	C6-C3-C10-C9	-52.8(2)
C4-C3-C10-C9	-176.89(16)	C12-O3-C11-O2	0.3(3)
C12-O3-C11-C4	179.63(18)	C5-C4-C11-O2	-46.5(3)
C3-C4-C11-O2	77.6(3)	C5-C4-C11-O3	134.24(17)
C3-C4-C11-O3	-101.63(19)	C1-N1-C13-C31	98.4(2)
C5-N1-C13-C31	-82.0(2)	C8-C7-C21-C26	-31.8(3)
C6-C7-C21-C26	93.2(2)	C8-C7-C21-C22	149.38(19)
C6-C7-C21-C22	-85.6(2)	C26-C21-C22-C23	-0.1(3)
C7-C21-C22-C23	178.7(2)	C21-C22-C23-C24	0.3(3)
C22-C23-C24-C25	-0.3(3)	C23-C24-C25-C26	0.1(3)
C24-C25-C26-C21	0.1(3)	C22-C21-C26-C25	-0.1(3)
C7-C21-C26-C25	-178.90(19)	N1-C13-C31-C32	-27.3(3)
N1-C13-C31-C36	154.79(19)	C36-C31-C32-C33	0.4(3)
C13-C31-C32-C33	-177.54(19)	C31-C32-C33-C34	-0.3(3)
C32-C33-C34-C35	-0.1(4)	C33-C34-C35-C36	0.4(4)
C32-C31-C36-C35	-0.2(3)	C13-C31-C36-C35	177.8(2)
C34-C35-C36-C31	-0.2(3)		

Receptor binding studies

Materials

Guinea pig brains, rat brains and rat livers were commercially available (Harlan-Winkelmann, Borchen, Germany). The recombinant L(tk-) cells stably expressing the GluN2B receptor were obtained from Prof. Dr. Dieter Steinhilber (Frankfurt, Germany). Homogenizers: Elvehjem Potter (B. Braun Biotech International, Melsungen, Germany) and Soniprep[®] 150 (MSE, London, UK). Centrifuges: Cooling centrifuge model Eppendorf 5427R (Eppendorf, Hamburg, Germany) and High-speed cooling centrifuge model Sorvall[®] RC-5C plus (Thermo Fisher Scientific, Langenselbold, Germany). Multiplates: standard 96 well multiplates (Diagonal, Muenster, Germany). Shaker: self-made device with adjustable temperature and tumbling speed (scientific workshop of the institute). Harvester: MicroBeta[®] FilterMate 96 Harvester. Filter: Printed Filtermat Typ A and B. Scintillator: Meltilex[®] (Typ A or B) solid state scintillator. Scintillation analyzer: MicroBeta[®] Trilux (all Perkin Elmer LAS, Rodgau-Jügesheim, Germany).

Preparation of membrane homogenates from guinea pig brain

5 guinea pig brains were homogenized with the potter (500-800 rpm, 10 up and down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 23,500 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 7.4) and centrifuged again at 23,500 x g (20 min, 4 °C). This procedure was repeated twice. The final pellet was resuspended in 5-6 volumes of buffer and frozen (-80 °C) in 1.5 mL portions containing about 1.5 mg protein/mL.

Preparation of membrane homogenates from rat brain

5 rat brains (species: Sprague Dawley rats) were homogenized with the potter (500-800 rpm, 10 up and down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 23,500 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 7.4) and centrifuged again at 23,500 x g (20 min, 4 °C). This procedure was repeated twice. The final pellet was resuspended in 5-6 volumes of buffer and frozen (-80 °C) in 1.5 mL portions containing about 1.5 mg protein/mL.

Preparation of membrane homogenates from rat liver

Two rat livers were cut into small pieces and homogenized with the potter (500-800 rpm, 10 up and down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at $1,200 \times g$ for 10 min at 4 °C. The supernatant was separated and centrifuged at $31,000 \times g$ for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 8.0) and incubated at rt for 30 min. After the incubation, the suspension was centrifuged again at $31,000 \times g$ for 20 min at 4 °C. The pellet $4 \circ C$. The final pellet was resuspended in 5-6 volumes of buffer (50 mM Centrifuged again at $31,000 \times g$ for 20 min at 4 °C. The pellet $4 \circ C$. The final pellet was resuspended in 5-6 volumes of buffer and stored at -80 °C in 1.5 mL portions containing about 2 mg protein/mL.

Cell culture and preparation of membrane homogenates from GluN2B cells

Mouse L(tk-) cells stably transfected with the dexamethasone-inducible eukaryotic expression vectors pMSG GluN1a, pMSG GluN2B (1:5 ratio) were grown in Modified Earl's Medium (MEM) containing 10 % of standardized FBS Superior (Biochrom AG, Berlin, Germany). The expression of the NMDA receptor at the cell surface was induced after the cell density of the adherent growing cells had reached approximately 90 % of confluency. For the induction, the original growth medium was replaced by growth medium containing 4 μ M dexamethasone and 4 μ M ketamine (final concentration). After 24 h, the cells were rinsed with phosphate buffered saline solution (PBS, Biochrom AG, Berlin, Germany), harvested by mechanical detachment and pelleted (10 min, 1,200 x g).

For the binding assay, the cell pellet was resuspended in PBS solution and the number of cells was determined using a Scepter[®] cell counter (MERCK Millipore, Darmstadt, Germany). Subsequently, the cells were lysed by sonication (4 °C, 6 x 10 s cycles with breaks of 10 s). The resulting cell fragments were centrifuged with a high performance cool centrifuge (23,500 x g, 4 °C). The supernatant was discarded and the pellet was resuspended in a defined volume of PBS yielding cell fragments of approximately 500,000 cells/mL. The suspension of membrane homogenates was sonicated again (4 °C, 2 x 10 s cycles with a break of 10 s) and stored at -80 °C.

Protein determination

The protein concentration was determined by the method of Bradford,⁹ modified by Stoscheck.¹⁰ The Bradford solution was prepared by dissolving 5 mg of Coomassie Brilliant Blue G 250 in 2.5 mL of EtOH (95 %, v/v). 10 mL deionized H₂O and 5 mL phosphoric acid (85 %, m/v) were added to this solution, the mixture was stirred and filled to a total volume of 50 mL with deionized water. The calibration was carried out using bovine serum albumin

as a standard in 9 concentrations (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0 and 4.0 mg /mL). In a 96 well standard multiplate, 10 μ L of the calibration solution or 10 μ L of the membrane receptor preparation were mixed with 190 μ L of the Bradford solution, respectively. After 5 min, the UV absorption of the protein-dye complex at λ = 595 nm was measured with a plate reader (Tecan Genios[®], Tecan, Crailsheim, Germany).

General procedures for the binding assays

The test compound solutions were prepared by dissolving approximately 10 µmol (usually 2-4 mg) of test compound in DMSO so that a 10 mM stock solution was obtained. To obtain the required test solutions for the assay, the DMSO stock solution was diluted with the respective assay buffer. The filtermats were presoaked in 0.5 % aqueous polyethylenimine solution for 2 h at rt before use. All binding experiments were carried out in duplicates in the 96 well multiplates. The concentrations given are the final concentration in the assay. Generally, the assays were performed by addition of 50 µL of the respective assay buffer, 50 μ L of test compound solution in various concentrations (10⁻⁵, 10⁻⁶, 10⁻⁷, 10⁻⁸, 10⁻⁹ and 10⁻¹ ¹⁰ mol/L), 50 µL of the corresponding radioligand solution and 50 µL of the respective receptor preparation into each well of the multiplate (total volume 200 µL). The receptor preparation was always added last. During the incubation, the multiplates were shaken at a speed of 500-600 rpm at the specified temperature. Unless otherwise noted, the assays were terminated after 120 min by rapid filtration using the harvester. During the filtration, each well was washed five times with 300 µL of water. Subsequently, the filtermats were dried at 95 °C. The solid scintillator was melted on the dried filtermats at a temperature of 95 °C for 5 min. After solidifying of the scintillator at rt, the trapped radioactivity in the filtermats was measured with the scintillation analyzer. Each position on the filtermat corresponding to one well of the multiplate was measured for 5 min with the [³H]-counting protocol. The overall counting efficiency was 20 %. The IC_{50} values were calculated with the program GraphPad Prism[®] 3.0 (GraphPad Software, San Diego, CA, USA) by non-linear regression analysis. Subsequently, the IC_{50} values were transformed into K_i values using the equation of Cheng and Prusoff.¹¹ The K_i values are given as mean value ± SEM from three independent experiments. For test compounds showing low affinity ($K_i > 100$ nM), only a single experiment was performed.

Performance of the binding assays

σ_2 receptor assay

The assays were performed with the radioligand [³H]di-*o*-tolylguanidine (specific activity 50 Ci/mmol; ARC, St. Louis, MO, USA). The thawed rat liver membrane preparation (about 100 µg protein) was incubated with various concentrations of the test compound, 3 nM [³H]di-*o*-tolylguanidine and buffer containing (+)-pentazocine (500 nM (+)-pentazocine in TRIS buffer (50 mM TRIS, pH 8.0)) at rt. The non-specific binding was determined with 10 µM non-labeled di-*o*-tolylguanidine. The K_d value of di-*o*-tolylguanidine is 17.9 nM.¹²

Ifenprodil binding site of GluN2B subunit containing NMDA receptors

The competitive binding assay was performed with the radioligand [³H]ifenprodil (60 Ci/mmol; BIOTREND, Cologne, Germany). The thawed cell membrane preparation from the transfected L(tk-) cells (about 20 μ g protein) was incubated with various concentrations of test compounds, 5 nM [³H]ifenprodil, and TRIS/EDTA-buffer (5 mM TRIS/1 mM EDTA, pH 7.5) at 37 °C. The non-specific binding was determined with 10 μ M unlabeled ifenprodil. The *K*_d value of ifenprodil is 7.6 nM.¹³

KOR assay

The assay was performed with the radioligand [3 H]U-69,593 (55 Ci/mmol, BIOTREND). The thawed guinea pig brain membrane preparation (about 100 µg of the protein) was incubated with various concentrations of test compounds, 1 nM [3 H]U-69,593, and TRIS-MgCl₂-buffer (50 mM TRIS, 8 mM MgCl₂, pH 7.4) at 37 °C. The non-specific binding was determined with 10 µM unlabeled U-69,593. The K_{d} value of U-69,593 is 0.69 nM.

MOR assay

The assay was performed with the radioligand [³H]DAMGO (51 Ci/mmol, Perkin Elmer). The thawed guinea pig brain membrane preparation (about 100 μ g of the protein) was incubated with various concentrations of test compounds, 3 nM [³H]DAMGO, and TRIS-MgCl₂-buffer (50 mM TRIS, 8 mM MgCl₂, pH 7.4) at 37 °C. The non-specific binding was determined with 10 μ M unlabeled naloxone. The K_d value of DAMGO is 0.57 nM.

DOR assay

The assay was performed with the radioligand [³H]DPDPE (69 Ci/mmol, BIOTREND). The thawed rat brain membrane preparation (about 75 μ g of the protein) was incubated with various concentrations of test compounds, 3 nM [³H]DPDPE, and TRIS-MgCl₂-buffer (50 mM TRIS, 8 mM MgCl₂, pH 7.4) supplemented with SIGMAFAST[®] protease inhibitor mix (Sigma Aldrich Biochemicals, Hamburg, Germany; 1 tablet dissolved in 100 mL of buffer) at 37 °C. The non-specific binding was determined with 10 μ M unlabeled morphine. The *K*_d value of DPDPE is 0.65 nM.

Quantum chemical Calculations

All calculations were performed using the GAUSSIAN 16, B.01 package of programs.¹⁴ The structures were fully optimized first using the B3LYP/6-31G(d)^{15,16} +GD3BJ^{17,18} method, then the TPSSTPSS/def2tzvp¹⁹ + GD3BJ, then the PBE1PBE/def2tzvp²⁰⁻²⁴ +GD3BJ methods and finally the wB97X-D/def2tzvp functional²⁵ all including the PCM-solvent sphere for dichloroethane.²⁶ Zeropoint vibrational energies and free enthalpy contributions were determined analytically.

Table 6: Total energies (E_{tot}) and Gibbs free energies (G_{298}) [a.u.], of the cycloadducts, respectively, the respective transition states and the relative energies with respect to the sum of the two educts **G** and methylacrylate (last column) [kcal/mol].

Species	E _{tot} [a.u.]	E _{rel}	G ₂₉₈ [a.u.]	E _{rel}
		[kcal/mol]		[kcal/mol]
B3LYP				
1-Azabutadiene G	-890,77207		-890,49023	
Methylacrylate	-306,49495		-306,43000	
Sum	-1197,26702	0.00	-1196,92023	0.00
vdW-Complex	-1197,27933	-7,72	-1196,91210	5,10
TS_Diels-Alder	-1197,25047	10,39	-1196,87774	26,66
Min H	-1197,31187	-28,14	-1196,93240	-7,64
TPSSTPSS				
1-Azabutadiene G	-891,07243		-890,79747	
Methylacrylate	-306,65378		-306,59087	
Sum	-1197,72621	0,00	-1197,38834	0,00
vdW-Complex	-1197,73283	-4,16	-1197,37728	6,94
TS-Diels-Alder	-1197,70974	10,33	-1197,34634	26,35
Min-H	-1197,76003	-21,22	-1197,39077	-1,52
PBE1PBE				
1-Azabutadiene G	-890,09425		-889,81289	
Methylacrylate	-306,25109		-306,18608	
Sum	-1.196,34534	0,00	-1.195,99897	0,00
vdW-Complex	-1.196,35286	-4,72	-1.195,98836	6,66
TS-CN	-1.196,32884	10,36	-1.196,32884	25,88
Dipolar Interm.	-1.196,34153	2,39	-1.195,96832	19,23
TS-CC	-1.196,33480	6,61	-1.195,96110	23,76
Min-H	-1.196,39806	-33,08	-1.196,01899	-12,56

wB97X-D				
1-Azabutadiene G	-890,72202		-890,43765	
Methylacrylate	-306,49442		-306,42899	
Sum	-1.197,21644	0,00	-1.196,86664	0,00
vdW-Complex	-1.197,22267	-3,91	-1.196,85295	8,59
TS-CN	-1.197,19509	13,14	-1.196,82024	29,12
Dipolar-Interm	-1.197,20674	6,09	-1.196,83114	22,28
TS-CC	-1.197,19628	12.65	-1.196,81951	29,57
Min-H	-1.197,26300	-29,22	-1.196,88153	-9,34

Gaussian Archive Entries

(Total energies (a.u.), number of imaginary frequencies (for transition states: imaginary frequencies), coordinates)

B3LYP

2-Silyloxy-1-azabutadiene G

HF=-890.772072 a.u. (0)

1\1\GINC-R03N37\FOpt\RB3LYP\6-31G(d,p)\C12H23N1O1Si1\WURTHWE\27-Apr-2023\0\\# b3lyp/6-31G(d,p)opt=readfc geom=check guess=read freq pop=nbo emp=gd3bj $scrf=(solvent=dichloroethane) \ 2-Silyloxy-1-azabutadiene G \ 0,1)$ C,-0.35345846,-0.0776504467,-0.0972121299\C,-0.1447082285,0.0826411484,1.3861496218\ C,1.2913696466,0.3382276772,1.7698981928\C,2.1 935686583.-0.7953344801.1.2374128303 C,2.00936621,-0.9924206544,-0.272641556\C,0.5356655108,-1.2180628473,-0.6338610988\ C,-1.1008743936,-0.0354039187,2.323856141\C,-2.531688712,-0.3170043677,2.1001001404\ O,-3.3898562216,0.3917357332,2.9012447422\N,-2.9514603609,-1.1921532534,1.2722964553\ C,-4.3961061371,-1.3434306882,1.1340527506\H,1.3946240128,0.4376766707,2.8550390423\ $H, 1.6207346959, 1.2859519939, 1.3197084612 \ H, 1.9352796216, -1.7251710424, 1.7603510858 \ here is a straight of the strai$ H.3.2408924161,-0.5758391894,1.472589327\H.2.6187866317,-1.8346318346,-0.6196408934 H.2.3753699845,-0.1000209018,-0.7992170984\H.0.1891470366,-2.1643014053,-0.1991982353\ H,0.4150071262,-1.300806495,-1.7196729192\H,-1.4014542898,-0.2664053259,-0.3265562192\ $H, -0.0508096813, 0.8582717939, -0.5901333703 \ H, -0.8323129553, 0.1309057389, 3.3649586004 \ h, -0.8323129553, 0.1309057389, -0.5901333703 \ H, -0.8323129553, -0.1309057389, -0.590133703 \ H, -0.8323129553, -0.1309057389, -0.590139 \ H, -0.590139, -0.590139 \ H, -0.590139, -0.590139, -0.590139 \ H, -0.590139, -0.590139, -0.590139, -0.590139 \ H, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590139, -0.590140$ Si,-3.3907651473,2.0846732236,3.1208556017\H,-4.6060112685,-2.047967444,0.3252916482\ H,-4.8956552517,-0.3924819027,0.9080876886\H,-4.8525319767,-1.7311022766,2.0537391165\ C,-5.1087437088,2.4428806392,3.7744898599\C,-2.0876399592,2.601518729,4.3701956973\ C.-3.0853026071,2.8851627928,1.451486051\H.-3.1238428756,3.9767120463,1.5326909176\ H,-2.1009050582,2.6098735951,1.0606205997\H,-3.8401615788,2.5728039071,0.7226674416\ $H.-5.2349505613,3.51498823,3.9593576427 \setminus H.-5.8754875589,2.1290791028,3.0594489839 \setminus H.-5.8754875589,2.1290791028,3.0594489839 \setminus H.-5.8754875589,2.1290791028,3.0594489839 \setminus H.-5.8754875589,2.1290791028,3.0594489839 \setminus H.-5.8754875589,2.1290791028,3.0594489839 \setminus H.-5.8754875589,2.1290791028,3.0594489839$ H,-5.2875866579,1.9164169188,4.7175440301\H,-2.2203382366,3.6577926711,4.6302167466\ H,-2.1711492253,2.0172439912,5.2923858289\H,-1.075181278,2.4765138505,3.9766659879 $\label{eq:constant} $$ Version=ES64L-G16RevB.01\State=1-A\HF=-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-A\HF=-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-A\HF=-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-A\HF=-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-A\HF=-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-890.772072\RMSD=3.590e-09\RMSF=9.584e-1646BerlevB.01\State=1-8000BerlevB.01\State=1-8000BerlevB.01\State=1-8000BerlevB.01\State=1-8000BerlevB.01\State=1-800BerlevB$ 07\Dipole=0.4004485.1.2152371.0.2081827\Ouadrupole=2.7699243.-2.2723725.-0.4975518.-2.7239098,-0.8458587,0.8952872\PG=C01 [X(C12H23N1O1Si1)]\\@

Methyl acrylate

HF=-306.4949522 a.u. (0)

 $\label{eq:solution} $$ 1\1\GINC-R02N47\FOpt\RB3LYP\6-31G(d,p)\C4H6O2\WURTHWE\21-Jun-2023\\ b3lyp\6-31G(d,p)\Opt\emp=gd3bj\Pop=NBO\Freq\scrf=(solvent=dichloroethane)\methyl\acrylate)\0,1\C,0.0196121855,0.,0.0136187591\O,0.0222798579,0.,1.2322464022\C,1.219862861,0.,-0.8559471521\C,2.4452411674,0.,-0.3277052889\O,-1.1075038187,0.,-0.7281250474\C,-2.3390321404,0.,0.0156991164\H,1.050161181,0.,-1.9274724541\H,2.5798469904,0.,0.7494919818\H,3.3333648508,0.,-0.9500935663\H,-3.1328885273,0.,-0.7293823096\H,-2.4046346693,-0.8898233073,0.6456113863\H,-2.4046346693,0.8898233073,0.6456113863\H,-2.4046346693,0.8898233073,0.6456113863\Version=ES64L-G16RevB.01\State=1-A'\HF=-306.4949522\RMSD=4.427e-09\RMSF=6.082e-05\Dipole=-0.1003371,0.,-0.7231601\Quadrupole=6.0688336,-2.0498695,-4.0189642,0.,-1.5104814,0.\PG=CS\[SG(C4H4O2),X(H2)]\@$

Van der Waals Complex

HF=-1197.2793286 a.u. (0)

 $\label{eq:linear} $$11GINC-R02N31FOpt\B3LYP\6-31G(d,p)\C16H29N1O3Si1\WURTHWE\27-Apr-2023\0\# b3lyp\6-31G(d,p) opt=readfc geom=check guess=read Pop=NBO Freq emp=gd3bj scrf=(solvent=dichloroethane)\Van der Waals Complex \0.1 \$

C,-0.3598564188,0.1849346213,-0.185889427\C,-0.3481110073,0.2095948813,1.3471273238\ C,1.0584727971,-0.0606317715,1.8937826395\C,2.0872218777,0.9217689217,1.3005406127\ $C, 2.0344110334, 0.9172368728, -0.2077607735 \backslash C, 0.6629341713, 1.1787102336, -0.7724189905 \backslash C, 0.6629341713, 0.9172368728, -0.2077607735 \backslash C, 0.6629341713, 0.9172368728, -0.207724189905 \backslash C, 0.9172368728, -0.2077607735 \backslash C, 0.9172368728, -0.207760735 \backslash C, 0.9172368728, -0.20776077607735 \backslash C, 0.9172368728, -0.20776077724189905 \backslash C, 0.9172368728, -0.207760776077607735 \backslash C, 0.9172368728, -0.20776077607735 \backslash C, 0.9172368728, -0.207760776077607735 \backslash C, 0.9172368728, -0.20776077607760776077607760777478728, -0.207760777478728, -0.207760777478728, -0.207760777478728, -0.2077760777478728, -0.207777478728, -0.207777478728, -0.20777607785 \backslash C, 0.91728, -0.207760728, -0.2077607785 \backslash C, 0.91728, -0.2077607785 \backslash C, 0.91728, -0.20777607785 \backslash C, 0.91728, -0.20777785 \backslash C, 0.91728, -0.2077785 \backslash C, 0.91728, -0.207785 \backslash C, 0.91728, -0.207785 \backslash C, 0.91728, -0.207785 \backslash C, 0.91728, -0.207785 \backslash C, 0.91728, -0.2077785 \backslash C, 0.91728, -0.207785 \backslash C, 0.91728, -0.20786,$ C,3.1539362657,0.679234036,-0.9164617191\C,3.3280732006,0.6569321392,-2.3784471112\ N.2.3863660216.0.3996693806,-3.2028217057\C.2.7055588549.0.4591289302,-4.6223062951\ O,4.5839433028,0.9492815648,-2.8325445396\Si,6.1199375461,1.0894739614,-2.1112500331\ C,6.5329739463,-0.481402711,-1.1656913624\C,7.2583918845,1.2730555248,-3.5872759787\ C.6.2078613651,2.6120545236,-1.0167901737\C,1.9014143672,3.9428830987,-2.8326414405\ C,2.7916698502,3.9124290862,-1.838804331\C,2.4807712797,4.22689618,-0.4286665933\ O,1.2062267482,4.6328921453,-0.2435992991\C,0.8401365368,4.9533717753,1.1095612132\ O.3.2858309123.4.1308742014.0.4836604722\H.3.8194551984.3.6175955173.-2.0084237741\ $H, 0.8671599645, 4.2188965374, -2.6607422989 \ H, 2.1880355648, 3.6787186963, -3.8447898475 \ here is a straightforward in the straight$ $H, 1.8538931313, 1.935279581, 1.6554743139 \ H, 0.6827224406, 1.12761465, -1.8592255417 \ here is a straightforward in the straightforw$ $H, 0.3642918978, 2.1946277441, -0.4785302478 \ H, -1.3595918364, 0.4221062594, -0.5664548957 \ h, -0.56645$ $H, -0.1164651369, -0.8261686381, -0.5375420342 \ H, -1.0567052557, -0.5250475638, 1.7464746318 \ H, -1.0567052557, -0.5250475638, -0.52504,$ H,-0.6861859585,1.1964901122,1.6933977013\H,1.3573395304,-1.0850231264,1.6357496948\ $H, 1.0691375772, 0.0092823953, 2.9871603452 \ H, 6.343874126, -1.3650937052, -1.7838158863 \ here is a straight of the strai$ H,5.9660003176,-0.5903910456,-0.2370990497\H,7.5973401114,-0.4779832049,-0.9049839312\ $H, 7.2233193422, 0.3855564647, -4.2267896324 \\ H, 8.2937711834, 1.4125155711, -3.2582313624 \\ H, 8.2937711834, -4.2257896324 \\ H, 8.2937711834, -4.22578964 \\ H, 8.2937711844 \\ H, 8.293771184 \\ H, 8.29377114 \\ H, 8.2937714 \\ H, 8.2937714 \\ H, 8.293774 \\ H, 8.29774 \\ H$ H,6.9783315799,2.1404463057,-4.1933496629\H,5.3807650091,2.6829496795,-0.3052723446\ $H, 6.2004914926, 3.5229022574, -1.6250449721 \setminus H, 7.1463200619, 2.6038667649, -0.4507294799 \setminus 1.6250449721 \setminus H, 7.1463200619, 2.6038667649, -0.4507294799 \setminus 1.625049721 \setminus H, 7.1463200619, 2.6038667649, -0.4507294799 \setminus 1.625049721 \setminus 1.6250499$ H,1.8159616588,0.1979790368,-5.2013155276\H,3.0342256599,1.4618463355,-4.9276281753\ H,3.5135975547,-0.232146842,-4.8955711394\H,-0.1715192152,5.3517962019,1.0523067136\ H,0.8574661624,4.0567756101,1.7335278108\H,1.5237429156,5.6950902109,1.5266617776 \\Version=ES64L-G16RevB.01\State=1-A\HF=-1197.2793286\RMSD=4.961e-09\RMSF=6.496e-06\Dipole=0.0889427,0.4396522,0.366197\Quadrupole=4.9938586,-3.849892,-1.1439666,-7.29847,-6.1634322,-2.5222166\PG=C01 [X(C16H29N1O3Si1)]\\@

TS-Diels-Alder

HF=-1197.250468 a.u. (1, -207.8175 cm⁻¹)

 $\label{eq:linear} $$11GINC-R01N40\FTS\B3LYP\6-31G(d,p)\C16H29N1O3Si1\WURTHWE\27-Apr-2023\0\# b3lyp\6-31G(d,p)\Opt=(ts,noeigentest,readfc)\geom=check\guess=read\Pop=NBO\Freq\emp=gd3bj\scrf=(solvent=dichloroethane)\TS-Diels-Alder\0,1\$

C.0.1582692492,-0.2089956442,0.9860296644\C,0.6000170578,0.194332683,2.395978923\ C,2.1329002585,0.3186360436,2.4884295488\C,2.8445294437,-0.8925297444,1.9522026271\ C.2.3960187683.-1.3441323522.0.5855463556\C.0.8607405997.-1.497479169.0.5493932917\ C,3.6887307828,-1.596709715,2.7490874934\C,4.5803272301,-2.6264225667,2.2915555672\ O.4.852766217,-3.6709919738,3.0876483875\Si,3.7474257995,-4.4905705078,4.1360308813\ $C, 4.6341214573, -6.1035045787, 4.4620230088 \ N, 5.2033689213, -2.5561145175, 1.1381198588 \ N, 5.2038688, N, 5.2038688, N, 5.208888, N, 5.20888, N, 5.2088, N, 5.2088, N, 5.2088, N, 5.2088, N, 5.2088, N, 5.2088, N, 5.20888, N, 5.20888, N, 5.2088, N, 5.20888, N, 5.20888, N, 5.20888, N, 5.2088, N, 5.20888, N, 5.20888, N, 5.20888, N, 5.2088, N, 5.208, N, 5.2088, N, 5.2088, N, 5.208, N$ C,5.995036647,-3.7068281305,0.7048436201\C,3.5135710228,-3.5096596383,5.7152014125\ C,2.1430419653,-4.7272284587,3.1989658968\C,5.8382220003,-1.1355243026,0.4847184622\ C.5.3814282919.0.1387397828.0.948307971\C.4.622502859.1.0508557332.0.1910898151\ 0,4.2057251352,2.1644857791,0.5565115672\0,4.3398058846,0.6112829569,-1.1074137024 C.3.5668279029.1.5140124984.-1.8930165412\H.5.6498919096.0.4764930735.1.9421286696\ H.3.7882028569.-1.3232706577.3.7958243104\H.2.4448640687.0.5187485909.3.5181671008\ H,2.4692883294,1.1701541998,1.8784032752\H,2.8817625505,-2.2798680595,0.3061348392\ H.2.6928123799.-0.6019846601.-0.1599085248\H.0.5572648638.-1.7815104693.-0.4640615084\ H,0.5588189246,-2.3192984023,1.2125030032\H,-0.9295970979,-0.3360855582,0.9509415885\ H,0.4083979473,0.5958724744,0.2812793094\H,0.258468295,-0.5647274455,3.1121790889\ $H, 0.1391142331, 1.1424405806, 2.6927573181 \\ H, 2.3160771745, -5.2426506239, 2.2488504738 \\ h, 2.3160724, 2.3160724 \\ h, 2.3160724, 2.3160724, 2.3160724 \\ h, 2.3160724, 2.3160724 \\ h, 2.3160724, 2.3160724 \\ h, 2.3160724, 2.3160724 \\ h, 2.3160724, 2.3160724, 2.3160724 \\ h, 2.316724, 2.316724, 2.316724 \\ h, 2.316724, 2.316724, 2.316724, 2.316724 \\ h, 2.316724, 2.316724, 2.316724, 2.316724 \\ h, 2.316724, 2.316724, 2.316724, 2.316724, 2.316724 \\ h, 2.316724, 2.316724, 2.316724, 2.316724, 2.316724, 2.316724, 2.316744, 2.316724, 2.317244, 2.31724, 2.31724, 2.317244, 2.317244, 2.317244, 2.31724, 2.317244, 2.317244, 2.31744, 2.31744, 2.31744, 2.31744, 2.31744, 2.31744, 2.317$ H.1.6640208809.-3.7679024524.2.9862532524\H.1.4474119171.-5.3326659831.3.789643956\ H.5.6038517448,-5.9298398583,4.9388913553\H.2.904205882,-2.6155468506,5.5585241954\

Product H

HF=-1197.3118706 a.u. (0)

 $\label{eq:linear} 1\label{eq:linear} 1\label{eq:l$

C,1.7289118105,0.0757086183,-0.641946636\C,1.3338695846,-1.2637584069,0.0661858562\ $C, 0.1103085728, -1.9057922998, -0.596899556 \\ N, -1.0492975034, -1.0332445386, -0.4673483101 \\ N, -1.0492975034, -1.0332445386, -0.467348310 \\ N, -1.0492975034, -1.0332445386, -0.467348310 \\ N, -1.0492975034, -1.0332445386, -0.467348310 \\ N, -1.049286, -0.467$ C,-0.7920383867,0.3041863678,-0.7721639526\C,0.441784042,0.8373355412,-0.8752267997\ C,2.6559197176,0.8972658272,0.2922731778\C,2.4880640574,-0.1845165625,-1.9705635117\ C,2.9561019672,1.1154172011,-2.6348897356\C,3.8628491524,1.9167936146,-1.6928435462\ C,3.1675934782,2.1915481515,-0.3536905138\O,-1.9196666645,1.0647964811,-0.9273478539\ Si,-2.4566119985,2.1045355778,0.3110226361\C,-1.3686334703,3.632566443,0.3883774909\ C,-4.2048003874,2.5423518306,-0.1992859737\C,-2.401391427,1.1672627409,1.9357945863\ $C, -2.2887850313, -1.6315649793, -0.9489202984 \\ C, 2.5032592241, -2.2187739707, 0.1737984848 \\ (C, 2.5032592241, -2.2187739707, 0.1737984848) \\ (C, 2.503259241, -2.2187739707, 0.1737984848) \\ (C, 2.5032592, -2.5032592241, -2.2187739707, 0.1737984848) \\ (C, 2.5032592, -2.503259241, -2.503259241) \\ (C, 2.5032592, -2.503259241, -2.503259241) \\ (C, 2.503259, -2.503259241, -2.503259241) \\ (C, 2.503259, -2.503259241, -2.503259241) \\ (C, 2.503259, -2.503259, -2.503259) \\ (C, 2.503259$ O,3.3760628169,-2.1518947996,1.019344886\O,2.4952771973,-3.1572585744,-0.7940746546\ $C, 3.6015923926, -4.078767678, -0.7812138757 \setminus H, 1.0641569574, -1.0085724631, 1.0965429499 \setminus 1.0085724631, -1.0085724, -1.008576666, -1.0085766, -1.0085766, -1.0085766, -1.0085766, -1.0085766, -1$ $H, 0.3230625722, -2.126522981, -1.6536363596 \ H, -0.1238584284, -2.857442364, -0.1114177432 \ here is a structure of the s$ H,0.496999552,1.8988654214,-1.0739442792\H,2.1148365892,1.1238830565,1.2187434502\ $H, 3.5138184885, 0.2747179558, 0.5696206679 \ H, 1.8519416185, -0.754246551, -2.6551588375 \ here is a structure of the str$ H,2.0841196943,1.7205267025,-2.9127585574\H,4.1696510794,2.858042613,-2.1634193014\ H.4.7810899771,1.3414591757,-1.5085431754\H.2.3343995887,2.8876976773,-0.5127764063\ $H.3.8565163089.2.6932658988, 0.3356369324 \ H.-1.3247856587, 4.1359759041, -0.5828606956 \ here a statement of the statemen$ $H, -0.3474336407, 3.3756164213, 0.6848516787 \\ H, -1.764538716, 4.3449426104, 1.1207502316 \\ h, -1.764538716, -1.76666, -1.76666, -1.76666, -1.766$ H,-4.2182349902,3.0264082578,-1.1811077776\H,-4.6565330091,3.232168424,0.5214490637\ $H, -4.8345137678, 1.6485763767, -0.2521745566 \ H, -1.3872242744, 0.8113168458, 2.1421171638 \ h, -1.3872242744, 0.8113168458, -1.421171638 \ h, -1.48145164, -1.481458, -1.421171638 \ h, -1.481458, -1.421171638 \ h, -1.481458, -1.481$ $H, -3.0659090653, 0.2980966301, 1.9156200158 \ H, -2.7084369441, 1.8134906496, 2.7649976476 \ here is a straightforward in the straight$ H,-2.4451455643,-2.5779961504,-0.4245688538\H,-3.128653673,-0.9719545626,-0.7407397594 H,4.5435211754,-3.5425387362,-0.9139350016\H,3.6303572625,-4.6274645335,0.1622132739 \\Version=ES64L-G16RevB.01\State=1-A\HF=-1197.3118706\RMSD=3.929e-09\RMSF=1.314e-06\Dipole=-0.7070982,-0.3899719,-0.2618372\Quadrupole=-0.9209574,7.6502282,-6.7292708,-2.9390958,-7.8907882,5.3182845\PG=C01[X(C16H29N1O3Si1)]\\@

TPSS

2-Silyloxy-1-azabutadiene G

HF=-891.0724298 a.u. (0)

 $\label{eq:linear} $$ 11GINC-R01N44FOpt\RTPSSTPSS\def2TZVP\C12H23N1O1Si1\WURTHWE\26-May-2023\0\# tpsstpss/def2tzvp opt=readfc geom=check guess=read freq pop=nbo emp=gd3bj scrf=(solvent=dichloroethane)\2-Silyloxy-1-azabutadiene G(0,1) $$ 0,1 $$ 0,$

C,3.2667166283,-6.7831019384,3.0799519039\N,4.8387919082,-2.726453695,0.7751966819\ C,5.6945720686,-3.8388200403,0.3597416412\C,1.8072800754,-4.4080111259,4.3785169539\ C,1.3378780688,-5.0320379547,1.3907057777\H,2.8703543096,-2.0086662601,3.2889402694 H,1.3498048028,-0.3304487574,3.274265658\H,1.6752147581,0.9026753557,2.0450826556\ H,3.0597165753,-1.6344435853,-0.4311122143\H,2.7564365144,0.0928010769,-0.2367084388\ $H, -1.0446273772, -0.2388260153, -0.3313337152 \\ H, 0.2490712494, 0.9455103001, -0.1353900351 \\ h, 0.2490712494, 0.9457124 \\ h, 0.2490712494, 0.945724 \\ h, 0.249071244 \\ h, 0.2490744 \\ h, 0.249074 \\ h, 0.249074 \\ h, 0.2490744 \\ h,$ H.-0.4287036646,-1.3095883631,1.8288805439\H.-0.7423092447,0.4105651641,2.0816707499\ $H, 1.790433465, -5.3871745524, 0.4576294866 \\ H, 0.9630099149, -4.0163589982, 1.2235070224 \\ h, 0.9630099149, -4.01699149, -4.01699149, -4.01699149, -4.01699140, -4$ H,0.4786838785,-5.6753171515,1.6168546607\H,3.7307252771,-7.175776649,2.1681070682\ H.1.2773397021.-3.4631949617.4.2186672055\H.2.5670218007.-4.2499859556.5.1529192859\ $H, 1.0822649765, -5.1354291524, 4.765618534 \\ H, 6.2591297865, -3.5347155289, -0.5252781238 \\ h, 6.2591297865, -3.538786 \\ h, 6.2591297865, -3.558786 \\ h, 6.25912986, -3.57886, -3.57886 \\ h, 6.25912986, -3.57886, -3.57886 \\ h, 6.25912986, -3.57886, -3.57886 \\ h, 6.25912986, -3.57886, -3.57886, -3.57886 \\ h, 6.25912986, -3.57886,$ Version=ES64L-G16RevB.01\State=1-A\HF=-891.0724298\RMSD=3.520e-09\RMSF=6.060e-07\Dipole=-1.3163522,-0.3381819,0.358951\Quadrupole=-4.0099491,3.5521958,0.4577532,-2.8569322,0.4455642,-0.5801726\PG=C01 [X(C12H23N1O1Si1)]\\@

Methyl acrylate

HF=-306.6537768 a.u. (0)

 $\label{eq:linear} $$ 11GINC-R03N46\FOpt\RTPSSTPSS\def2TZVP\C4H6O2\WURTHWE\21-Jun-2023\0\# tpsstpss/def2tzvp Opt=readfc geom=check guess=read emp=gd3bj Pop=NBO Freq scrf=(solvent=dichloroethane)\Methylacrylate)\0,1\$

C,0.0208563135,0.,0.0176628318\O,0.0131585819,0.,1.2387732425\

 $C, 1.2209913413, 0., -0.8494799771 \\ C, 2.4504036988, 0., -0.3282068993 \\ \\ \\$

H,3.3332765139,0.,-0.95920783\H,-3.1368933765,0.,-0.7334150994\

H,-2.4040813296,-0.8933737659,0.6437420224\H,-2.4040813296,0.8933737659,0.6437420224 \\Version=ES64L-G16RevB.01\State=1-A'\HF=-306.6537768\RMSD=8.896e-09\RMSF=4.510e-06\Dipole=-0.116835,0.,-0.782647\Quadrupole=6.3118942,-2.1864667,-4.1254274,0., -1.4847024,0.\PG=CS [SG(C4H4O2),X(H2)]\\@

Van der Waals Complex

HF=-1197.7328322 a.u. (0)

1\1\GINC-R03N34\FOpt\RTPSSTPSS\def2TZVP\C16H29N1O3Si1\WURTHWE\27-Apr-2023\0\\# tpsstpss/def2tzvp opt=readfc geom=check guess=read Pop=NBO Freq emp=gd3bj scrf=(solvent=dichloroethane)\\\ Van der Waals Complex \\0,1\ C.-0.301440291,0.0202061935,-0.2299023724\C,-0.2961554507,0.0137499089,1.3038419691\ C,1.1290892971,-0.1167421957,1.8544049348\C,2.0468644562,0.9874712762,1.2843056775\ C,2.0021543001,0.9761251834,-0.2213359877\C,0.6193313631,1.1295096233,-0.7867017942\ C,3.1362127287,0.7882299794,-0.9272317617\C,3.3180105899,0.7248626384,-2.3821050848\ N.2.3801327225.0.4791345754.-3.219367055\C.2.7339052494.0.4775354891.-4.6367811614 O,4.595167842,0.9610442559,-2.82983105\Si,6.1214507996,1.0127042041,-2.1043473315\ C,6.4391744865,-0.5758527328,-1.1574367927\C,7.2728924336,1.140283359,-3.5731834474\ $C, 6.2924282379, 2.5216418729, -1.0056335548 \ C, 1.8292442914, 3.994889758, -2.7802964816 \ C, 6.2924282379, -2.5216418729, -1.0056335548 \ C, 1.8292442914, -2.594889758, -2.7802964816 \ C, 0.56335548 \ C, 0.5634889758 \ C, 0.5644889758 \ C, 0.564488978 \ C, 0.5644889758 \ C,$ C.2.7530185263,4.1293450628,-1.8248171432\C,2.4686969451,4.5146290024,-0.428636419\ O,1.151506713,4.7278394154,-0.1897662257\C,0.8268280089,5.1268574251,1.1650670273\ O.3.3291401579.4.634994872.0.433018045\H.3.8034452402.3.9457188667.-2.0233740463\ $H, 0.7764919997, 4.1659874409, -2.5813085773 \ H, 2.1067283463, 3.6979923956, -3.7864831428 \ here is a straight of the stra$ H,1.681063726,1.9592146047,1.6467778079\H,0.6444451361,1.1091526493,-1.8758831739\ H.0.2231066933.2.1011928137,-0.4564551407\H.-1.3190763634.0.1684782005,-0.6096716605\ H,0.0459072777,-0.9520693047,-0.6037843531\H,-0.9216308386,-0.8039746485,1.6819639412\

TS-Diels-Alder

HF=-1197.7097369 a.u. (1, -239.6004 cm⁻¹) 1\1\GINC-R03N14\FTS\RTPSSTPSS\def2TZVP\C16H29N1O3Si1\WURTHWE\28-Apr-2023\0\\# tpsstpss/def2tzvp Opt=(ts,noeigentest,readfc) geom=check guess=read Pop=NBO Freq emp=gd3bj scrf=(solvent=dichloroethane)\\ TS-Diels-Alder\\0,1\ C,0.0785990887,-0.3095893806,0.971145048\C,0.512161076,0.056672224,2.3941962532\ C,2.0385986386,0.2803145212,2.4717540638\C,2.7969011081,-0.8787109475,1.8907664289\ $C, 3.5707399016, -1.6572251669, 2.6991838626 \setminus C, 4.4804928261, -2.66088481, 2.2454333208 \setminus C, -2.66088481, -2.66088481, -2.454333208 \setminus C, -2.66088481, -2.66088481, -2.66088481, -2.454333208 \setminus C, -2.66088481, -2.66088481, -2.454333208 \setminus C, -2.66088481, -2.66088481, -2.454333208 \setminus C, -2.66088481, -2.66088481, -2.66088481, -2.454333208 \setminus C, -2.66088481, -2.660886881, -2.6608888861, -2.6$ O,4.7685847817,-3.7209524315,3.0291870721\Si,3.7630607003,-4.4918713343,4.1824631658\ C.4.5670216345,-6.1690898297,4.349489581\N,5.1249500764,-2.5503010621,1.1028458848\ C,5.9723633882,-3.663590348,0.6694659172\C,3.823502804,-3.5543964157,5.8015518822\ C,2.0262971133,-4.6068484149,3.4967121658\C,5.832962903,-1.0649910699,0.5919687231\ O.4.1503297448,2.2051607151,0.4767657722\O.4.4899523257,0.6453070824,-1.158207909\ C,3.8216878534,1.5609426758,-2.0413686266\H,5.4204756376,0.5203570029,2.0336384503\ $H.5.8188677056, -1.219259813, -0.4840614353 \ H.6.8151307694, -1.2914931446, 1.0142356194 \ H.5.8188677056, -1.2914931446, -1.291493146, -1.291493146, -1.291493146, -1.291493146, -1.291493146, -1.291493146, -1.29149346, -1.29149346, -1.29149346, -1.29149346, -1.2914946, -1.2914946, -1.2914946, -1.2914946, -1.2914946, -1.2914946, -1.2914946, -1.2914946, -1.2914946, -1.2914666, -1.2914666, -1.291466, -1.291466, -1.291466, -1.2914666, -1.291466, -1.$ H.3.5852947129.-1.4527666984.3.7680377869\H.2.3503919708.0.4621966473.3.5054259255\ $H, 2.3021370255, 1.1710688328, 1.8824569927 \ H, 2.9443876544, -2.1183406071, 0.1348435488 \ here is a structure of the str$ H,2.6048086428,-0.4217765141,-0.1916333793\H,0.5741222759,-1.7661185368,-0.5675844044\ H,0.639147362,-2.3963144706,1.0807575953\H,-0.9978407089,-0.5177707575,0.9468727986\ H,-0.0044556848,0.9596389342,2.7387667008\H,2.0268570301,-5.0619348803,2.4995265747\ H.1.5521187795,-3.6232374799,3.4235399897\H.1.4103604227,-5.2338860642,4.1531573582\ H.5.6075118813,-6.0754751137,4.6809765514\H.3.2951678438,-2.5966714238,5.7507489306\ $H, 6.284435135, -3.4684237937, -0.3592536701 \setminus H, 6.8625767979, -3.7741046393, 1.2993344174 \setminus 1.2993344174$ $H, 5.4021384504, -4.5936971547, 0.7092497661 \\ H, 3.8083269665, 1.0661875796, -3.0141803259 \\ h, 5.4021384504, -4.5936971547, 0.7092497661 \\ h, 3.8083269665, 1.0661875796, -3.0141803259 \\ h, 5.4021384504, -4.5936971547, 0.7092497661 \\ h, 3.8083269665, 1.0661875796, -3.0141803259 \\ h, 5.4021384504, -4.5936971547, 0.7092497661 \\ h, 3.8083269665, 1.0661875796, -3.0141803259 \\ h, 5.4021384504, -4.5936971547, 0.7092497661 \\ h, 5.402144, -4.5936971547, 0.7092497661 \\ h, 5.40214, -4.502259 \\ h, 5.40214, -4.502259 \\ h, 5.40214, -4.502259 \\ h, 5.4024, -4.5024, -4.502259 \\ h, 5.4024, -4.5024, -$ H.2.7998004706.1.7587123573.-1.7026993005 H.4.3635136979.2.5094066029.-2.1047994708 H.2.7998004706.1.7587123573.-1.7026993005 H.4.3635136979.2.5094066029.-2.1047994708 H.2.7998004706.1.7587123573.-1.7026993005 H.4.3635136979.2.5094066029.-2.1047994708 H.2.7998004706.1.7587123573.-1.7026993005 H.4.3635136979.2.5094066029.-2.1047994708 H.2.7998004706.1.7587123573.-1.7026993005 H.4.3635136979.2.5094066029.-2.1047994708 H.2.7998005 H.4.3635136979.2.5094066029.-2.1047994708 H.2.7998005 H.4.7998708 H.2.7998004708 H.2.7998005 H.4.7998708 H.2.7998005 H.4.7998708 H.2.7998005 H.4.7998708 H.2.7998708 H.2.799708 H.2.7998708 H.2.7998788 H.2.7998788 H.2.7998788 H.2.7998788 H.2.7988788 H.2.79888 H.2.7988788 H.2.79888 H.2.798888 H.2.79888 H.2.79888 H.2.79888 H.2.79888 H.2.79888 H.2.79888 HVersion=ES64L-G16RevB.01\State=1-A\HF=-1197.7097369\RMSD=3.469e-09\RMSF=1.313e-06\Dipole=-0.725525,-3.7050695,1.2057848\Ouadrupole=4.3810385,-13.2950406,8.9140021,-7.6742818,0.7097126,0.8384025\PG=C01 [X(C16H29N1O3Si1)]\\@

Product H

HF=-1197.7600269 a.u. (0)

 $\label{eq:linear} $$11GINC-R03N44\FOpt\RTPSSTPSS\def2TZVP\C16H29N1O3Si1\WURTHWE\27-Apr-2023\0\# tpsstpss/def2tzvp opt=readfc geom=check guess=read Pop=NBO Freq emp=gd3bj scrf=(solvent=dichloroethane)\Product H\0,1\$

 $\label{eq:constraint} \begin{array}{l} C, 0.404027183, -0.1939585215, 0.2621011915 \\ C, 0.9111253219, -0.3133294472, 1.7049364655 \\ C, 2.372122717, 0.1419505691, 1.8134724276 \\ C, 2.5619852408, 1.5562048709, 1.2483784629 \\ C, 2.0622154374, 1.6903620703, -0.2134572017 \\ C, 0.5799890033, 1.2379108676, -0.2568694735 \\ \end{array}$

C,2.9366472421,0.8562327342,-1.1224541559\C,3.4775960538,1.2978059567,-2.2790636198\ C,2.2232481277,3.1768643682,-0.6818883554\C,1.2511487223,4.1058673244,0.0118602462\ O.0.1519644033,4.3578034078,-0.738402368\C,-0.839416942,5.2173616437,-0.1172950549\ O,4.3332537814,0.525698252,-3.0259277162\Si,5.8948971295,0.1434043187,-2.4946507188\ C,5.8517711626,-1.2380319398,-1.2266274525\C,6.760940948,-0.4201695601,-4.0541874641\ C,6.6666572992,1.6859741835,-1.7631444834\C,3.3876468708,2.7562193774,-4.257511738\ H,1.1819166792,2.886311231,-2.5701372916\H,2.2095325129,4.3288131583,-2.5218212128\ $H, 3.226650168, -0.1337149099, -0.7927107826 \\ H, 3.6197735199, 1.8451276823, 1.2899339074 \\ \\ h, 3.6197735199, 1.8451276823, 1.2899339074 \\ h, 3.6197735199, 1.289739, 1.289739, 1.2899339074 \\ h, 3.619773519, 1.299739, 1.299799, 1.299799, 1.299799, 1.299799, 1.299799, 1.299799, 1.29979$ $H, 2.0069602158, 2.2665481173, 1.8738085206 \ H, 0.1960761041, 1.325767917, -1.2791984397 \ here is a straightforward in the straightfo$ H.-0.0171799375.1.9106872388.0.3761976801\H.-0.653401839.-0.478830708.0.2055693854\ $H, 0.9570870153, -0.8889005679, -0.3837459562 \ H, 0.8063263491, -1.3441049263, 2.0646317936 \ H, 0.9570870153, -0.8889005679, -0.3837459562 \ H, 0.8063263491, -1.3441049263, -0.646317936 \ H, 0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063263491, -0.8063491, -0.8063491, -0.8063491, -0.8063491, -0.8063491, -0.8063263491, -0.8063491, -0.8063491, -0.8063491, -0.8063491, -0.8063491, -0.8063491, -0.8063491, -0.8063263491, -0.8063491, -0.8063491, -0.8063491, -0.8063491, -0.8064491, -0$ $H, 0.288355558, 0.3185880289, 2.3547740999 \ H, 3.0148634059, -0.5677218097, 1.2759099873 \ here is a straight of the straig$ H,2.6986509957,0.1239215226,2.8603435115\H,5.2733825508,-2.0945294842,-1.5922804587\ H,5.4119885652,-0.9063299498,-0.2798229672\H,6.8715535703,-1.5857625688,-1.0176165816\ H,6.2506067953,-1.2837626184,-4.4966250853\H,7.7943792711,-0.7163184253,-3.8376932466\ $H, 6.7877846683, 0.379714257, -4.8029731198 \ H, 6.0686510121, 2.0566400946, -0.9223717817 \ here is a structure of the str$ H,6.7397441152,2.4866354726,-2.507702806\H,7.6760906009,1.473960033,-1.390354452\ H,2.5366460876,2.3245254218,-4.8094276465\H,3.422938695,3.8309770378,-4.4555673312\ H,-1.2010472536,4.7601297337,0.806206399\H,-0.4018467645,6.1938991545,0.100191663 \\Version=ES64L-G16RevB.01\State=1-A\HF=-1197.7600269\RMSD=4.695e-09\RMSF=1.289e-06\Dipole=-0.0549439.0.0874132.-0.8802475\Quadrupole=8.1848902.-1.5235736.-6.6613166.-6.5980134,-1.121396,-7.2677308\PG=C01 [X(C16H29N1O3Si1)]\\@

PBE1PBE

2-Silyloxy-1-azabutadiene G

HF=-890.094248 a.u. (0)

1\1\GINC-R04N05\FOpt\RPBE1PBE\def2TZVP\C12H23N1O1Si1\WURTHWE\27-Apr-2023\0\\# pbe1pbe/def2tzvp opt=readfc geom=check guess=read freq pop=nbo emp=gd3bj $scrf=(solvent=dichloroethane) \ 2-Silvloxy-1-azabutadiene G \ 0,1)$ C,-0.3693523978,-0.0595752295,-0.0482294658\C,-0.1627198288,0.0379093113,1.4295190715\ C,1.2608420904,0.2817191654,1.8248303705\C,2.171407603,-0.7981065558,1.2357987981\ C,1.9917779935,-0.9106008161,-0.2709923198\C,0.5339499403,-1.1434108842,-0.6401365283\ C,-1.1186333295,-0.1005270309,2.3532085429\C,-2.5478025119,-0.3456049572,2.1163228778\ O,-3.3852947188,0.400722865,2.8769886388\N,-2.9793741244,-1.2224385471,1.3102514665\ C.-4.4131893789,-1.3445867244,1.1618269405\H,1.3582263186,0.323087836,2.9122188829\ H,1.5758869091,1.2563078301,1.4286951242\H, 1.9295557783,-1.7591291534,1.7039922067 $H, 3.2132790316, -0.5768576367, 1.4836805567 \\ H, 2.6157739829, -1.717922928, -0.6652166184 \\ h, 3.2132790316, -0.5768576367, 1.4836805567 \\ h, 2.6157739829, -1.717922928, -0.6652166184 \\ h, 3.2132790316, -0.5768576367, 1.4836805567 \\ h, 3.2132796, -0.5768576367, 1.4836805567 \\ h, 3.2132796, -0.5768576367, 1.4836805567 \\ h, 3.2132796, -0.5768766, -0.576876, -0.5768676 \\ h, 3.2132796, -0.576876, -0.576876, -0.576867, -0.5768676 \\ h, 3.2132796, -0.576876, -0.576867, -0.576867, -0.576867, -0.576867, -0.576867, -0.57686$ H,2.3391275239,0.0158277723,-0.7451009101\H,0.2099529723,-2.1189089612,-0.2603456156\ H.0.4130760591.-1.168913086.-1.7266603849\H.-1.4138783353.-0.2542977525.-0.2836748598\ Si.-3.3639472028,2.0731178091,3.0840546581\H.-4.632578613,-2.0723276661,0.3798305312\ H,-4.8856403641,-0.3926592606,0.8944182543\H,-4.8873122858,-1.6852259666,2.0890236031\ C.-5.0582323783.2.4489212398.3.750207287\C.-2.0509284331.2.5848616802.4.3037882723\ C,-3.0727406667,2.854897221,1.4186332501\H,-3.0993499266,3.9450495834,1.4981016556\ H,-2.096468951,2.5692999496,1.0186711897\H,-3.8396977496,2.5474334233,0.7032259558\ H,-5.171594068,3.5222778609,3.9239662096\H,-5.8332724167,2.1329488675,3.047901592\ H.-5.2254975945.1.9336653274.4.699456631\H.-2.181435589.3.6408078665.4.5585708745\ \\Version=ES64L-G16RevB.01\State=1-A\HF=-890.094248\RMSD=3.376e-09\RMSF=3.229e-06\Dipole=0.4331303,1.261236,0.1991315\Quadrupole=2.9213238,-2.7432324,-0.1780914,-2.6257249,-0.9950367,0.6755765\PG=C01 [X(C12H23N1O1Si1)]\\@

Methyl acrylate

HF=-306.2510928 a.u. (0)

1\1\GINC-R02N20\FOpt\RPBE1PBE\def2TZVP\C4H6O2\WURTHWE\21-Jun-2023\0\\# pbe1pbe/def2tzvp Opt=readfc geom=check guess=read emp=gd3bj Pop=NBO Freq scrf=(solvent=dichloroethane)\\methyl acrylate)\\0,1\

C,0.0158423186,0.,0.0153163324\O,0.0189374757,0.,1.2232311363

C,1.2129643671,0.,-0.8497799473\C,2.4318531345,0.,-0.3269507625\

O,-1.1001135621,0.,-0.7184585218\C,-2.3241536347,0.,0.0134733878\

 $H, 1.0437861289, 0., -1.9200766967 \land H, 2.5694356872, 0., 0.7486770503 \land$

H,3.3152599836,0.,-0.9533532746\H,-3.1158090914,0.,-0.7313353605\

Van der Waals Complex

HF=-1196.3528604 a.u. (0)

1\1\GINC-R03N34\FOpt\RPBE1PBE\def2TZVP\C16H29N1O3Si1\WURTHWE\28-May-2023\0\\# pbe1pbe/def2tzvp opt=readfc geom=check guess=read freq pop=nbo emp=gd3bj $scrf=(solvent=dichloroethane) \setminus Van der Waals Complex \setminus 0,1 \setminus 0,1$ H,-3.9266130606,0.9497163069,-2.5277426913\C,-3.2555702465,1.3168984631,-1.7462729858\ C,-4.0350382079,2.0573448854,-0.6708505504\C,-3.1135255654,2.5207209374,0.4459561484\ C,-2.4727285978,0.1486631751,-1.1491180755\C,-0.2902177974,0.3189694511,-0.0351536886\ C.0.7434355656,0.6438299451,0.9515851094\O,2.0117373153,0.6086084328,0.4858070036\ Si,2.6776217664,0.8855594297,-1.0317276357\C,1.9290618027,2.4329042096,-1.7495291145\ H,1.2814499686,1.4271528096,4.025974113\C,4.4874399534,1.0989141537,-0.6632442591\ C,2.4178218738,-0.5808676494,-2.1583064184\C,-0.468287104,-2.2032086155,2.890469594\ C.-1.1244935172.-2.5497632318.1.7916320671\C.-0.3991064847.-2.8953255548.0.5565047343\ O,0.8015880369,-2.957993068,0.4337033025\O,-1.2518328997,-3.1403123682,-0.4446460912\ C,-0.6587118206,-3.4619953935,-1.6985854083\H,0.0852204013,-0.2200233856,-0.8992613062\ $H, -2.2068152465, -2.5680677642, 1.7455729532 \setminus H, -0.9903081386, -1.9274871948, 3.7980542913 \setminus H, -0.9903081386, -1.9274871948, -1.92848, -1.92$ H,0.6150266135,-2.176728077,2.899297266\H,-3.1889736383,-0.5888578136,-0.762476009\ $H, -1.8772531804, -0.3546260296, -1.9143023978 \ H, -2.5539428284, 2.0082052172, -2.2278272143 \ h, -2.5539428284, -2.0082052172, -2.2278272143 \ h, -2.5539428284, -2.55394284, -2.55394284, -2.55394284, -2.55394284, -2.55394284, -2.55394284, -2.55394284, -2.55394284, -2.55394284, -2.553944, -2.553944, -2.553944, -2.553944, -2.553944, -2.553944, -2.55394, -2.554$ $H.-4.8003595554, 1.3896565723, -0.255853255 \\ H.-4.5638479163, 2.9105820009, -1.1055406699 \\ h.-4.800359554, 1.3896565723, -0.255853255 \\ H.-4.800359554, -0.255853255 \\ H.-4.800359554, -0.255853255 \\ H.-4.800359554, -0.255853255 \\ H.-4.8003595554, -0.255853255 \\ H.-4.800359554, -0.255853255 \\ H.-4.800359555, -0.255853255 \\ H.-4.800359555, -0.255853255 \\ H.-4.80035955, -0.255853255 \\ H.-4.800359555, -0.2558552 \\ H.-4.80035555, -0.2558552 \\ H.-4.8003555, -0.2558552 \\ H.-4.80035555, -0.2558552 \\ H.-4.80035555, -0.2558552 \\ H.-4.800355555, -0.2558552 \\ H.-4.80035555, -0.2558552 \\ H.-4.800355555, -0.2558552 \\ H.-4.80035555, -0.2558552 \\ H.-4.800355555, -0.2558552 \\ H.-4.80035555, -0.2558552 \\ H.-4.80035555, -0.2558552 \\ H.-4.80035555, -0.2558552 \\ H.-4.80035555, -0.2558552 \\ H.-4.8003555, -0.2558552 \\ H.-4.8003555, -0.2558552 \\ H.-4.8003555, -0.255852 \\ H.-4.800355, -0.255852 \\ H.-4.80055, -0.255852 \\ H.$ $H, -3.6848063508, 3.0164711586, 1.2356686909 \ H, -2.4120162352, 3.2646464649, 0.0501777505 \ here a statement of the state$ H.-3.0152050591,0.6755616725,1.5461708454\H,-1.6145039935,1.7052457394,1.805825284 9\ $H, -0.0716162744, -4.3778702452, -1.6217363786 \ H, 2.2346144029, 2.0222084851, 2.6522333817 \ here is a structure of the s$ H,2.3161275897,0.3240245026,3.1029172423\H,3.1720454726,-0.5679586653,-2.9504159583\ H.2.5216878093.-1.5180332186.-1.6057550727\H.1.4368246908.-0.5710368306.-2.6385502229\ H,5.0443015813,1.3032522525,-1.58153777\H,4.649845369,1.9300755293,0.0271144983\ H.4.8999486029.0.193186647.-0.2115442302\H.2.3936803632.2.665331301.-2.7118726349\ H,0.854985993,2.3145512493,-1.911379649\H,2.0832403934,3.2854804542,-1.0832681354 \\Version=ES64L-G16RevB.01\State=1-A\HF=-1196.3528604\RMSD=5.511e-09\RMSF=2.785e-06\Dipole=-0.6788242,0.2941757,-1.2858491\Quadrupole=1.9891441,-4.5526107,2.5634667,4.6643817,-2.2136789,1.4766129\PG=C01 [X(C16H29N1O3Si1)]\\@

TS-C..N

HF=-1196.3288379 a.u. (1, -292.4280cm⁻¹)

 $\label{eq:linear} $$11\GINC-R03N04\FTS\RPBE1PBE\def2TZVP\C16H29N1O3Si1\WURTHWE\29-Apr-202 $$3\0\# pbe1pbe/def2tzvp Opt=(ts,noeigentest,readfc,maxstep=2) geom=check guess=read Pop=NBO Freq emp=gd3bj scrf=(solvent=dichloroethane)\TS-C..N\0,1\$

C,0.0794176924,-0.3894365128,1.0377786857\C,0.5052006452,-0.0407955543,2.4546556041\ $C, 2.0123200793, 0.1923051238, 2.5344503536 \\ (C, 2.7945894242, -0.9393338848, 1.9487643609) \\$ $C, 2.3615336128, -1.3655819256, 0.5833328848 \setminus C, 0.8500456898, -1.5948127977, 0.5254311443 \setminus C, 0.8500456898, -1.5948129, -1.59489849, -1.594809, -1.5948989, -1.5$ O.4.7463406327.-3.68194277.2.9501654343\Si.3.6713844567.-4.3850769102.4.072749997\ C,6.0274087689,-3.709993214,0.6589841606\C,3.5513463857,-3.3358753529,5.6037528112\ C.2.0234583548,-4.6044661728,3.2427365172\C.6.0355448826,-1.0926470742,0.4319392574\ C,5.6600994459,0.1734893492,0.9125198283\C,4.8120996553,1.0693462033,0.2327431302\ O,4.4238288324,2.166968225,0.6369722306\O,4.4317331264,0.6422161103,-1.020483671\ C,3.5967187993,1.5263682461,-1.739113624\H,5.9896135984,0.5015048981,1.8905062064\ H.5.8312910944.-1.2768656117.-0.6182334721\H.7.0309953425.-1.4331703609.0.7167178365\ $H, 2.2676243208, 1.0870746948, 1.950665256 \ H, 2.9019029422, -2.2550025658, 0.2599486491 \ here is a straightforward in the straightfo$ H,2.6260142292,-0.5696735875,-0.1193058133\H,0.5647939222,-1.8268778821,-0.5040972663\ $H, 0.2684796083, 0.4684430737, 0.3807919611 \\ H, 0.2310936309, -0.8611855101, 3.1283681401 \\ h, 0.2684796083, 0.4684430737, 0.3807919611 \\ H, 0.2310936309, -0.8611855101, 3.1283681401 \\ h, 0.2684796083, 0.4684430737, 0.3807919611 \\ h, 0.2310936309, -0.8611855101, 3.1283681401 \\ h, 0.2684796083, 0.4684430737, 0.3807919611 \\ h, 0.2310936309, -0.8611855101, 3.1283681401 \\ h, 0.2684796083, 0.4684430737, 0.3807919611 \\ h, 0.2310936309, -0.8611855101, 3.1283681401 \\ h, 0.2684796083, 0.4684430737, 0.3807919611 \\ h, 0.2684796083, 0.4684430737, 0.3807919611 \\ h, 0.2310936309, -0.8611855101, 3.1283681401 \\ h, 0.2684796083, 0.4684430737, 0.3807919611 \\ h, 0.2310936309, -0.8611855101, 3.1283681401 \\ h, 0.2684796083, 0.4684430737, 0.3807919611 \\ h, 0.2684796083, 0.4684430737, 0.380791961 \\ h, 0.268479608, 0.2684799, 0.268479, 0.268479, 0.2684799, 0.268479, 0.2$ H.-0.0203578842,0.8493874655,2.809904934\H.2.129530273,-5.1334045584,2.2924714479\ $H, 1.5429172098, -3.6430626393, 3.0535755358 \ H, 1.3633275374, -5.1927913795, 3.8861622912 \ here is a straight of the stra$ $H, 4.6093542428, -6.5991737849, 3.5196919624 \ H, 3.9076852104, -6.5840333598, 5.1447322604 \ H, 4.6093542428, -6.5991737849, -6.59917478, -6.59917478, -6.59917478, -6.59917478, -6.59917478, -6.5991748, -6.599186, -6.59918, -6.599186, -6.59918, -6.59918, -6.59918, -6.59918, -6.59918, -6.59918, -6.59918, -6.59918, -6.59918, -6.59918, -6.59918, -6.59918, -6.59916, -6.59914, -6.599144, -6.59918, -6$ $H, 5.4925088377, -5.8508053968, 4.8611895548 \ H, 2.9480019873, -2.4404119426, 5.4448575046 \ here is a straightforward in the straight$ H,4.5418591825,-3.0323436655,5.9516461362\H,3.0812674692,-3.92016819,6.4003447729\ H,6.3766570749,-3.5374135443,-0.3594127984\H,6.8935001369,-3.9000046722,1.2989226095\ H,2.6505992604,1.6982333497,-1.2188491123\H,4.079468198,2.4924756458,-1.9004128392 \\Version=ES64L-G16RevB.01\State=1-A\HF=-1196.3288379\RMSD=4.245e-09\RMSF=9.297e-07\Dipole=-1.1968298,-4.1934475,1.321979\Quadrupole=4.0371358,-13.5396897,9.5025539,-11.1288994,1.9173503,1.2126521\PG=C01[X(C16H29N1O3Si1)]\\@

Dipolar Intermediate

HF=-1196.3415293 a.u. (0)

1\1\GINC-R10N27\FOpt\RPBE1PBE\def2TZVP\C16H29N1O3Si1\WURTHWE\31-May-2023\0\\# pbe1pbe/def2tzvp opt=(maxstep=3) geom=check guess=read Pop=NBO Freq emp=gd3bj scrf=(solvent=dichloroethane)\\ Dipolar Intermediate \\0,1\

H,-1.932864647,3.1729792616,2.3981674418\C,-2.2419698457,2.6521109779,1.4887457553\ C.-0.9940134728,2.1873784542,0.7334214631\C.-1.3582054757,1.5677385399,-0.5773222953\ C,-0.1687018595,-0.5954191214,-0.214758135\O,-0.6387757481,-1.7982623947,0.0018852521\ Si,-2.2320919338,-2.4323055464,0.0172224678\C,-1.9397445421,-4.1397650848,0.6743105869\ N,1.0236963422,-0.3451647453,0.2283217817\C,1.8549805347,0.850165746,-0.1838735221\ C.3.1156968763.0.4669961464.-0.8233247839\C.4.2845645393.0.3963087894.-0.0803701701\ O,4.4361752108,0.5938481859,1.1405100374\C,1.7073770477,-1.335368141,1.048950368\ H.1.911272133,-2.2409677432,0.4776757725\0,5.3947782803,0.0619314405,-0.8438689248\ C,6.6079331122,-0.0537611213,-0.1358316029\C,-3.2573042445,-1.3909816741,1.1620346858\ C.-2.9105259918,-2.4686339152,-1.7120627155\H,-1.3689757905,-0.0540050291,-1.9078992735\ H,3.1298991778,0.2183394779,-1.8766855417\H,2.038844067,1.4006242998,0.7417479361\ H.-4.0213190912.3.8291728765.1.1829539332\H.-2.5853954584.4.4724218037.0.3996114653\ $H, -4.099871734, 3.5090910331, -1.3011613286 \ H, -4.1245864413, 1.9741938722, -0.4463126609 \ here is a straight of the str$ $H, -1.6987879476, 3.2905983729, -1.743257944 \\ H, -2.5309415247, 1.8558035083, -2.3422976227 \\ h, -2.5309415247, -2.53094147, -2.53094147, -2.530947, -2.5307, -2.5947, -2.5$ H,7.3697501015,-0.2990242232,-0.8767030063\H,6.5662771579,-0.8468719834,0.6163160752\

TS-C..C

HF=-1196.3348037 a.u (1, -52.2241cm⁻¹)

1\1\GINC-R03N28\FTS\RPBE1PBE\def2TZVP\C16H29N1O3Si1\WURTHWE\08-Jun-2023\0\\# geom=check pbe1pbe/def2tzvp Opt=(ts,noeigentest,readfc,maxstep=4) guess=read nosym emp=gd3bj freq pop=nbo scrf=(solvent=dichloroethane)\\TS-C..C\\0,1\ H,0.002167473,-0.0026576373,-0.0065547751\C,0.0001232439,-0.0005849808,1.0867427682\ C,1.4500023842,0.0019013524,1.5866150407\C,1.4584114892,-0.0357302402,3.0825700708\ C,0.6981208614,-1.1830443855,3.6666454856\C,-0.7396768335,-1.2220092288,3.1444552388\ C,2.7047445185,2.0587062037,3.5019438102\O,2.5537218257,3.2305349751,4.0881778755\ Si,1.2006928985,3.9097480708,4.8736387214\C,1.6765306576,5.7001488087,4.9746818826\ C,4.2372167234,-0.5354673777,2.9204877689\C,4.3720152199,-0.6205902625,4.2972440979\ O.4.6360580436.0.3156968248,5.0699346763\C.4.3114997394.3.202566194,2.1818554309\ $H, 3.5818418107, 3.9960458305, 2.0376918161 \setminus 0, 4.1272869772, -1.8799344856, 4.8120684188 \setminus 0, 4.1272869772, -1.8799344856, 4.8120684188 \setminus 0, 4.1272869772, -1.8799344856, -1.8799346, -1.8799346, -1.879936, -1.879936, -1.879936, -1.879936, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.87996, -1.89996, -1.89996, -1.89996, -1.87996, -1.87996, -1.87996, -1.89996, -1.89996, -1.879966, -1.87996, -1.87996, -1.87996, -1.87996, -1.$ C,4.1691984986,-1.9772349679,6.2182260679\C,-0.3003702107,3.6397003885,3.8109408619\ $C, 1.0190263015, 3.1667229473, 6.5686784806 \ H, 1.6166812233, 0.9341349767, 4.9385270506 \ here is a straightforward in the straightfo$ $H, 1.9524355653, -0.8894505291, 1.1991180366 \ H, -0.4901979843, 0.9276711719, 1.4018815256 \ H, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.4901979843, -0.9276711719, -0.9276711719, -0.9276711719, -0.9276711719, -0.9276711719, -0.9276711719, -0.9276711719, -0.927671, -0.927671, -0.927676, -0.927676, -0.92767, -0.927676, -0.927676, -0.92767, -0.92767676, -0.92767$ H.-1.8084670644,-1.1637506664,1.2712317445\H,-0.3315925792,-2.1166468936,1.2338339068\ H,1.2093644243,-2.1067284117,3.3702373929\H,0.7177524737,-1.138460748,4.7572315585\ H,5.1554157689,-1.7211488504,6.6143912543\H,4.8233333647,3.0044128755,1.2402415461\ H,5.0465638217,3.5308467333,2.9210855305\H,1.9840465758,3.1251960551,7.0795324387\ $H, 0.5964007219.2.1606754911.6.5443018731 \\ H, 0.3499240183.3.7947317738, 7.1641361985 \\ h, 0.5964007219.2.1606754911.6.5443018731 \\ h, 0.3499240183, 3.7947317738, 7.1641361985 \\ h, 0.5964007219, 0.5964007219, 0.596400 \\ h, 0.5964007219, 0.5964000 \\ h, 0.5964007219, 0.5964000 \\ h, 0.5964007219, 0.5964000 \\ h, 0.59640007219, 0.596400 \\ h, 0.59640007219, 0.596400 \\ h, 0.59640000 \\ h, 0.5964000 \\ h, 0.596400 \\ h, 0.5$ $H, -0.5679835822, 2.5833107833, 3.75095933 \ H, -0.1326207143, 4.0124552196, 2.7973805372 \ here a statement of the stateme$ $H.-1.1492127798, 4.1837548998, 4.2348122469 \\ H.2.5994607908, 5.8250944517, 5.5460891547 \\ hard here is a straight of the st$ H,0.8897554185,6.2739605121,5.4711768481\H,1.8288486278,6.1216299471,3.9783023549 \\Version=ES64L-G16RevB.01\HF=-1196.3348037\RMSD=3.409e-09\RMSF=2.266e-06\Dipole=-2.8863773,2.1873467,-1.1733159\Quadrupole=-21.5467343,23.463972,-1.9172377,10.5842777,-32.2769596,13.7449679\PG=C01 [X(C16H29N1O3Si1)]\\@

Product H

HF=-1196.3980578 a.u. (0)

 $\label{eq:solution} $$ 11GINC-R01N25\FOpt\RPBE1PBE\def2TZVP\C16H29N1O3Si1\WURTHWE\28-Apr-2023\0\# pbe1pbe/def2tzvp opt=readfc geom=check guess=read Pop=NBO Freq emp=gd3bj scrf=(solvent=dichloroethane)\Product H\0,1\$

 $\label{eq:constraint} C, 0.3943028959, -0.1880994083, 0.2529938062 \\ C, 0.8926338063, -0.3145589769, 1.6851438171 \\ C, 2.3441041587, 0.1277357423, 1.8012760879 \\ C, 2.5479646954, 1.5287193048, 1.2410238301 \\ C, 2.0570996449, 1.6764545432, -0.210356308 \\ C, 0.5852985763, 1.2298011594, -0.2638575549 \\ C, 2.9272995369, 0.8496548806, -1.1172040716 \\ C, 3.4806479978, 1.2925143603, -2.2578571917 \\ N, 3.278040743, 2.55756271, -2.7760499805 \\ C, 2.1743190211, 3.2721004245, -2.1799140732 \\ C, 2.2244795057, 3.1514249052, -0.6643784582 \\ C, 1.2519266864, 4.076759899, 0.0167787294 \\ \end{tabular}$

O.0.1835302386,4.3487604744,-0.7350383142\C,-0.7980959757,5.1967640216,-0.1424173703\ O,4.3221873779,0.5272707149,-2.9921143349\Si,5.888085446,0.1644780727,-2.4979905642\ C,5.8744141186,-1.1645788359,-1.190790965\C,6.7110913354,-0.4460809485,-4.049811072\ C,6.6718130114,1.7219173427,-1.8428109079\C,3.4068783969,2.7594195659,-4.201355428\ O,1.4023550148,4.5301637141,1.1256886311\H,3.2167335918,3.4708078038,-0.331383809 \ H.1.2130653232,2.898021805,-2.5601567424\H.2.249812134,4.3210662577,-2.4748701182\ H.2.0046492635,2.2428108089,1.8681538506\H.0.2080516605,1.3181354046,-1.285841278\ H,-0.0163550288,1.9032528278,0.3602091325\H,-0.6632177784,-0.4611968006,0.1930476257\ $H, 0.9354852184, -0.8906368247, -0.3904966066 \ H, 0.7779083025, -1.3422136325, 2.0423496862 \$ H,0.2723498184,0.3163672005,2.334378491\H,2.9848605727,-0.5872159523,1.2733602334\ H.2.664290647.0.1068417441.2.8471874393 H,5.2955296745,-2.0319032984,-1.518412579 H,5.4497351612,-0.8005212906,-0.2526718406\H,6.8972297805,-1.4971642213,-0.9906309386\ H,6.1941622247,-1.3248714906,-4.4436655965\H,7.7481231188,-0.7270288612,-3.847975565\ H,6.7188659633,2.4952103087,-2.6132106822\H,7.689326583,1.5206414713,-1.4970008686\ H,2.5553054646,2.3455562403,-4.7618754863\H,3.4557333714,3.8317463888,-4.397763765\ $H,4.3188553825,2.2967024675,-4.5692596217 \ H,-1.5835523691,5.3053958229,-0.8859866709 \ here is a straightforward in the straightforwa$ H,-1.1950101414,4.7429594148,0.766217711\H,-0.3673363819,6.1683306436,0.1006975068 \\Version=ES64L-G16 RevB.01\State=1-A\\HF=-1196.3980578\RMSD=6.949e-09\RMSF=1.030e-06\Dipole=0.0241349,0.0692151,-0.9170283\Quadrupole=8.3336504,-1.3688935,-6.9647569,-6.5677954,-1.1686811,-7.2370345\PG=C01 [X(C16H29N1O3Si1)]\\@

wB97X-D

2-Silyloxy-1-azabutadiene G

HF=-890.7220245 a.u. (0)

C,-0.1157432857,-0.1548591947,0.3152843718\C,0.0414112552,-0.1932844074,1.8315098607\ C,1.5099272659,-0.0364291842,2.2362538814\C,2.3828006171,-1.0504247892,1.547519768\ C,2.2297282935,-1.0821110125,0.0533481016\C,0.7558649805,-1.214243087,-0.3496813106 $C, 3.1676144103, -1.861277837, 2.258387504 \setminus C, 4.0482368873, -2.9275137199, 1.7448892846 \setminus C, 1.0482368873, -2.9275137199, 1.744892846 \setminus C, 1.048236873, -2.94826 \setminus C, 1.048236873, -2.94820$ $O, 3.9715581622, -4.0941678034, 2.4328030384 \\ Si, 2.5951591918, -5.033104276, 2.6760585224 \\ \\ O, 3.9715581622, -4.0941678034, 2.4328030384 \\ \\ Si, 2.5951591918, -5.033104276, 2.6760585224 \\ \\ O, 3.9715581622, -4.0941678034, 2.4328030384 \\ \\ Si, 2.5951591918, -5.033104276, 2.6760585224 \\ \\ Si, 2.5951591918, -5.03510918, -5.0560862 \\ \\ Si, 2.5951591918, -5.0560862, -5.0560862 \\ \\ Si, 2.59518, -5.05608,$ C,5.649302715,-3.905638802,0.3693373676\C,1.5045773993,-4.2882524694,3.9905007763\ C.1.6951052806,-5.1315871542,1.0482535956\H,3.1363646322,-1.7979330194,3.3421881521\ $H, 1.6227433146, -0.1077134005, 3.3191576106 \ H, 1.8461098893, 0.9643700372, 1.9395116576 \ H, 1.8461098893, 0.9643700372, 1.9395116576 \ H, 1.8461098893, 0.9643700372, 0.9395116576 \ H, 1.8461098893, 0.9643700372, 0.9395116576 \ H, 1.8461098893, 0.9643700372, 0.9395116576 \ H, 0.939511657676 \ H, 0.9395116576 \ H, 0.9395116576 \ H, 0.9395116576 \ H$ H,2.8257682208,-1.8814220559,-0.3813619043\H,2.6196310063,-0.1397058942,-0.3489787409\ H,0.671723571,-1.1530024235,-1.4365286875\H,0.3934427428,-2.206512362,-0.061030966\ H.-1.1623915517,-0.3009249397.0.0396486862\H.0.1745014315.0.8357057487,-0.0520208728\ H,-0.3338956648,-1.1494861887,2.2113501228\H,-0.5548837334,0.5922429796,2.300012886\ H.2.3269182479,-5.5744311779,0.2754663977\H.1.3966468663,-4.1351202147,0.7141055482\ $H, 0.7918418023, -5.7388875366, 1.1399921599 \ H, 3.9167555965, -7.1072333064, 2.4562240779 \ here is a straightforward in the straight$ H.2.444611156,-7.3814391208,3.3981042311\H.3.8329568263,-6.5832988633,4.144773916\ H,1.0577041347,-3.3512699359,3.6540455581\H,2.0690044606,-4.0912531741,4.9044728631\ H,0.6960832714,-4.9816784207,4.2361671696\H,6.21959093,-3.6380884908,-0.5193905441\ H,6.3530802464,-4.2085597202,1.1504883763\H,5.0302388411,-4.7777182987,0.1360934573 \\Version=ES64L-G16RevB.01\State=1-A\HF=-890.7220245\RMSD=3.906e-09\RMSF=1.294e-06\Dipole=-1.3396005,-0.4397197,0.3511487\Quadrupole=-4.3128949,4.1179929,0.194902,-3.081276,0.7088866,-0.0351551\PG=C01 [X(C12H23N1O1Si1)]\\@

Methyl acrylate

HF=-306.4944189 a.u. (0) 1\1\GINC-R08N43\FOpt\RwB97XD\def2TZVP\C4H6O2\WURTHWE\21-Jun-2023\0\\#wb97xd/def2tzvp Opt=readfc geom=check guess=read Pop=NBO Freq scrf=(solvent=dichloroethane)Fehler! Linkreferenz ungültig.)\\0,1\ C,0.0165653325,0.,0.0214305452\O,0.0236183004,0.,1.2284791057\ C,1.217857821,0.,-0.8470321165\C,2.436895482,0.,-0.3295563239\ O,-1.0998708906,0.,-0.7090655033\C,-2.3316482913,0.,0.0135928355\ H,1.0474295604,0.,-1.9158856531\H,2.5839570506,0.,0.7438279535\ H,3.3152289678,0.,-0.9614746723\H,-3.1151988969,0.,-0.7383153555\ H,-2.4065795838,-0.8890989716,0.6387761977\H,-2.4065795838,0.8890989716,0.6387761977 \\Version=ES64L-G16RevB.01\State=1-A'\HF=-306.4944189\RMSD=6.181e-09\RMSF=1.450e-05\Dipole=-0.1240524,0.,-0.8118965\Quadrupole=6.395939,-2.2346709,-4.1612681,0.,-1.4490501,0.\PG=CS [SG(C4H4O2),X(H2)]\\@

Van der Waals Complex

HF=-1197.2226717 a.u (0)

1\1\GINC-R01N27\FOpt\RwB97XD\def2TZVP\C16H29N1O3Si1\WURTHWE\02-Jun-2023\0\\# geom=check wb97xd/def2tzvp opt=readfc guess=read Pop=NBO Freq $scrf=(solvent=dichloroethane) \setminus Van der Waals Complex \setminus 0,1$ $C, -0.347088653, 0.2109510344, -0.2249448731 \\ C, -0.3694547697, 0.2320736546, 1.3006000481 \\ (0.2249448731) \\ (0.224948731) \\ (0.22494731) \\ (0.22494731) \\ (0.22494731) \\ (0.22494731) \\ (0.22494731) \\ (0.22494731) \\ (0.22494731) \\ (0.2249731) \\ (0.224974731) \\ (0.$ C,1.0187405474,-0.0257189349,1.8782371654\C,2.0508714349,0.9544479153,1.3090007431\ $C, 2.0356192029, 0.9338890361, -0.1945156259 \\ C, 0.6815845486, 1.2024541291, -0.7816866207 \\ (0.1045156259) \\ (0.104515629) \\ (0.10451$ C,3.1554771429,0.6750577007,-0.87421627\C,3.3465512485,0.6275745297,-2.3351947563\ N,2.4484786598,0.2526003063,-3.1467830767\C,2.7664675316,0.2785314946,-4.5601647845\ O,4.5575385738,1.0272954334,-2.7798005444\Si,6.1112568453,1.1015701321,-2.1485455861\ C,6.5357678994,-0.5269596329,-1.346348371\C,7.1746379446,1.3952864632,-3.6446170789\ C,6.2634313757,2.5181596544,-0.947841806\C,1.9720216103,3.8702483853,-2.7511147674\ C,2.8391346781,3.9745044382,-1.7554878341\C,2.4855027487,4.3500407649,-0.3701270225\ O.1.1969123766.4.6569627247,-0.2141459172\C.0.7807345573,5.0102058849,1.1036058402\ $O, 3.285689942, 4.3742760482, 0.5356416259 \ H, 3.8882339286, 3.7516261647, -1.8939934733 \ here is a straight of the straig$ H,0.9180011501,4.0711280581,-2.6111469284\H,2.2977508481,3.5645238557,-3.7369763263\ $H, 0.3822521418, 2.2138752848, -0.4831198266 \ H, -1.3351049968, 0.4500919218, -0.6236379224 \ here is a structure of the s$ H.-0.0968895543.-0.7960468585.-0.5738704029\H.-1.0773082485.-0.5085256901.1.6793786983\ H,-0.723230929,1.2122497085,1.6398542683\H,1.3289319589,-1.047033051,1.6347774708\ H.1.0011861085,0.0514477816,2.9673161531\H.6.3400457961,-1.3552530284,-2.0307393453\ $H, 7.0989248722, 0.5651112776, -4.3495789055 \ H, 8.2221247352, 1.4984250128, -3.351697864 \ H, 7.0989248722, 0.5651112776, -4.3495789055 \ H, 8.2221247352, -1.4984250128, -3.351697864 \ H, 7.0989248722, 0.5651112776, -4.3495789055 \ H, 8.2221247352, -1.4984250128, -3.351697864 \ H, 7.0989248722, 0.5651112776, -4.3495789055 \ H, 8.2221247352, -1.4984250128, -3.351697864 \ H, 7.0989248722, -1.4984250128, -3.351697864 \ H, 7.0989248722, -1.4984250128, -3.351697864 \ H, 7.0989248722, -1.4984250128, -3.351697864 \ H, 7.098924872, -1.4984250128, -3.351697864 \ H, 7.098924872, -1.4984250128, -3.351697864 \ H, 7.098924872, -1.4984250128, -3.351697864 \ H, 7.0989248, -3.351644 \ H, 7.09848, -3.3516444 \ H, 7.0984$ H,6.8763852509,2.3108150168,-4.1596084085\H,5.4914107085,2.4984212673,-0.1767532487\ H.6.1971596322.3.4775385321.-1.4656934322\H.7.2379518886.2.4766286757.-0.4545804767\ H.3.6226865086.-0.3607489283.-4.7984596869\H.-0.2813026149.5.224904605.1.0298757767\ H,0.9505362321,4.1837443607,1.7936920364\H,1.3217562425,5.8884851386,1.4538116015 \\Version=ES64L-G16RevB.01\State=1-A\HF=-1197.2226717\RMSD=3.694e-09\RMSF=1.076e-06\Dipole=-0.0320444,0.3072481,0.2299585\Quadrupole=6.5486155,-5.7761647,-0.7724509,-8.3724917,-6.9233109,-2.9780033\PG=C01 [X(C16H29N1O3Si1)]\\@

TS-C..N

HF=-1197.195086 a.u (1, -355.0828 cm⁻¹)

 $\label{eq:scf} $$1^{ONC-R07N15\FTS\RwB97XD\def2TZVP\C16H29N1O3Si1\WURTHWE\04-Jun-2023\0\# wb97xd/def2tzvp Opt=(ts,noeigentest,calcfc,maxstep=2) geom=check guess=read Pop=NBO Freq scrf=(solvent=dichloroethane)\TS-C..N\0,1\$

C,1.3691114641,3.2916793498,-1.4300566565\C,0.9047564426,3.3292564739,0.0218048516\ C.1.2219545289.2.0099555264.0.7311204383\C.0.6473886693.0.8383192535.-0.0116353927\ C,1.01644712,0.7826477393,-1.4654834079\C,0.7456922713,2.115481505,-2.1731050614 C,-0.154429225,-0.0251167887,0.6121730588\C,-0.8770406738,-1.1225553027,-0.0367799334\ O.-2.1984689969,-1.1176598988,0.0546115937\Si.-3.3238120863,0.1396038419,0.2937416892\ C,-4.9414615188,-0.7387914419,0.0622988859\N,-0.298337678,-2.077528878,-0.6610634538\ C,-1.0875012792,-3.0572485533,-1.3796711795\C,-3.1696675874,0.8359133116,2.0113454287\ C,-3.0330871779,1.4380679467,-1.0032917733\C,1.4117284756,-2.6462236584,-0.3379572643\ C,1.8955427851,-2.462778171,0.9615216515\C,2.8397412438,-1.4828258865,1.3484530659\ O,3.2752871767,-1.3041280182,2.4843484241\O,3.318593203,-0.7200082457,0.3140727353 C,4.3854814791,0.1556256074,0.6211695186\H,1.5417980566,-3.103788583,1.7584110779\ $H, 1.9136684933, -2.108591956, -1.1341710006 \ H, 1.1420505658, -3.6598694223, -0.6182778478 \ H, 1.9136684933, -2.108591956, -1.1341710006 \ H, 1.1420505658, -3.6598694223, -0.6182778478 \ H, 1.1420505658, -3.6598694223, -0.6182788 \ H, 1.1420505658, -3.6598694223, -0.6182788 \ H, 1.1420505658, -3.6598694223, -0.61827788 \ H, 1.1420505658, -3.6598694223, -0.6182788 \ H, 1.1420505658, -3.6598694223, -0.6182788 \ H, 1.1420505658, -3.6598694223, -0.61827788 \ H, 1.1420505658, -3.6598694223, -0.6182788 \ H, 1.1420505658, -3.6598694223, -0.6182788 \ H, 1.1420505658, -3.659869423, -0.6182788 \ H, 1.14205688, -3.65888 \ H, 1.1420588, -3.65888 \ H, 1.1420588, -3.65888 \ H, 1.1420588 \ H, 1.1420588, -3.65888 \ H, 1.1420588 \ H, 1.142058 \ H, 1.1420588 \ H, 1.14$ $H, 2.4604690168, 3.1989815381, -1.4552458838 \ H, -0.1752123942, 3.5081066433, 0.0560973057 \ here is a structure of the st$ $H, -2.105129624, 1.9790728088, -0.8143684762 \ H, -3.852974125, 2.1602092481, -0.9936381788 \ here is a straightforward in the straight$ H,-5.0096555021,-1.1798923058,-0.933854048\H,-5.7707422809,-0.0380686478,0.1819395421\ H.-5.0621243417,-1.5348312244,0.7996616079\H.-2.300268617,1.4866795932,2.113146592\ $H, -0.448995267, -3.5359427269, -2.1217903625 \ H, -1.4684151099, -3.8256879398, -0.7030353293 \ h, -0.703035329 \ h, -0.703035329 \ h, -0.703035329 \ h, -0.703035329 \ h, -0.703039 \ h, -0.703939 \ h, -0.703939 \ h, -0.703939 \ h, -0.7039$ $H, -1.9323238827, -2.5914407698, -1.8841567429 \\ H, 4.5401610319, 0.7666798378, -0.2670593931 \\ h, -1.9323238827, -2.5914407698, -1.8841567429 \\ H, -1.932328827, -2.5914407698, -1.8841567429 \\ H, -1.932328827, -2.5914407698, -1.8841567429 \\ H, -1.932328827, -2.5914407698, -1.8841567429 \\ H, -1.932828, -2.591429 \\ H, -1.932828, -2.59129 \\ H, -1.932828, -2.5912828, -2.59129 \\ H, -1.9328428, -2.59129 \\ H, -1.932828,$ H,4.152210727,0.7937042482,1.4740199829\H,5.2990558933,-0.3996798531,0.8453077848 \\Version=ES64L-G16RevB.01\State=1-A\HF=-1197.195086\RMSD=6.129e-09\RMSF=2.032e-06\Dipole=-3.5152456,1.5957861,-2.5166761\Quadrupole=-0.4612931,5.7456345,-5.2843415,11.1257556,-14.1527565,8.8979888\PG=C01 [X(C16H29N1O3Si1)]\\@

Dipolar Intermediate

HF=-1197.2067355 a.u (0)

1\1\GINC-R09N15\FOpt\RwB97XD\def2TZVP\C16H29N1O3Si1\WURTHWE\03-Jun-2023\0\\# opt=(maxstep=3) wb97xd/def2tzvp geom=check guess=read Pop=NBO Freq scrf=(solvent=dichloroethane)\\ Dipolar Intermediate \\0,1\ H.-1.9807880399,3.0984567105,2.4157143132\C,-2.2777779485,2.5854549137,1.4997690843\ $C, -1.0173949938, 2.1391396179, 0.7478520027 \ \ (-1.3580845934, 1.5425607991, -0.5865922975) \ \ (-1.3580845934, -0.586592) \ \ (-1.3580845934, -0.586592) \ \ (-1.586592, -0.586592) \ \ (-1.586592, -0.586592) \ \ (-1.586592, -0.586592) \ \ (-1.586592, -0.586592) \ \ (-1.586592, -0.586592) \ \ (-1.586592, -0.586592) \ \ (-1.586592, -0.586592) \ \ (-1.586592, -0.586592) \ \ \ (-1.586592, -0.586592$ C,-2.2590197378,2.38819605,-1.4391230829\C,-3.5190941313,2.8053300338,-0.6741490239\ C,-3.1621593505,3.4839981825,0.6433801526\C,-0.9513889486,0.344950799,-1.0113544273\ C.-0.1466966551.-0.6117939162.-0.2429864829\O.-0.6475927298.-1.796204026.-0.0112274312\ Si,-2.2570661815,-2.3939886455,0.0279216152\C,-2.0113668403,-4.086920078,0.7375150001\ N,1.050568383,-0.3837468792,0.192487606\C,1.8836146564,0.8274607503,-0.1815788231\ $C, 3.1615298284, 0.4820797869, -0.8206128621 \\ C, 4.3247985513, 0.3941818657, -0.073111911 \\ (0.10, 0.10,$ O,4.4636767881,0.5315176234,1.158339991\C,1.7237276539,-1.3898478486,1.0116926064\ H,1.9518719472,-2.2754301891,0.4205397105\O,5.4481161416,0.1188486935,-0.8420921806\ C,6.6672463105,-0.0053471982,-0.1432060258\C,-3.2498927392,-1.2846700786,1.1368599563\ H,3.1911063085,0.3054452734,-1.8867993789\H,2.0425958467,1.355372923,0.7603819058\ $H, 1.2434599381, 1.4326430704, -0.8175280831 \\ H, -0.4391762502, 1.4497420782, 1.3614419917 \\ (1.2434599381, -0.4391762502, -0.4391762, -0.4391762502, -0.439176$ $H, -0.3839202422, 3.0151787437, 0.5674860024 \ H, -2.8444378934, 1.7001177577, 1.8029422955 \ here is a straightforward in the straight$

 $\label{eq:hold_solution} H,-4.2167907262,-1.7483302205,1.3461599907 \\ H,-1.3629838292,-4.6878311175,0.0971629537 \\ H,-2.9717884809,-4.5996740331,0.8244212764 \\ H,-1.5621675127,-4.0341788179,1.730797853 \\ \\ Version=ES64L-G16RevB.01 \\ State=1-A \\ HF=-1197.2067355 \\ RMSD=8.589e-09 \\ RMSF=4.865e-06 \\ Dipole=-6.7328895,-1.0295256,-0.2377256 \\ Quadrupole=-21.6183469,17.1851749,4.4331721,-5.1942222,-0.8684421,-1.5299357 \\ PG=C01 \\ [X(C16H29N1O3Si1)] \\ \\ \end{tabular}$

TS-C..C

HF=-1197.1962805 a.u (1, -182.3315 cm⁻¹)

 $\label{eq:linear} $$1^{ONC-R03N47}FTS\wB97XD\def2TZVP\C16H29N1O3Si1\WURTHWE\07-Jun-2023\0\# wb97xd/def2tzvp Opt=(ts,noeigentest,readfc,maxstep=4) geom=check guess=read nosym freq pop=nbo scrf=(solvent=dichloroethane)\TS-C..C\0,1\$

H,-0.1094819331,0.0750984546,0.1373962139\C,-0.0236835711,0.0369441489,1.2251868061\ C,1.4657352154,0.0301788975,1.6076211001\C,1.5771041757,-0.0509717261,3.1070371293\ C,0.898477514,-1.2573546331,3.6878742156\C,-0.5833279141,-1.287520828,3.2888303277\ C,-0.7495044549,-1.1850713003,1.7765981119\C,1.8428519215,1.0099146284,3.9128994672\ C.2.6753611018,2.0976803582,3.5530455127\O,2.5472533125,3.2646747273,4.1599954996\ Si,1.1626737066,4.0028516526,4.8206808556\C,1.6686118579,5.7855075854,4.919991682\ N,3.6323008835,2.015294982,2.653363345\C,4.4334639834,0.7675182242,2.2947248862\ C,4.115838272,-0.53249636,2.8993155359\C,4.3019240798,-0.7202582184,4.2641577093\ O,4.5560215356,0.1641462354,5.0941886449\C,4.317781583,3.2335576573,2.2472979764\ H,3.6044397568,4.043980748,2.1255575225\O,4.1086029143,-2.0203292639,4.6821854801\ C,4.1716386254,-2.2408004561,6.0757986583\C,-0.2578646041,3.7368363149,3.6506089123\ C.0.8248231303,3.3016237355,6.5092219078\H,1.5676160191,0.9654075329,4.9587294379\ H,3.9070559403,-1.375013266,2.2595223915\H,5.4425273723,1.0937578405,2.5688118493\ H,4.3925567071,0.7094334861,1.2059244121\H,1.951845402,0.9182347451,1.2114600323\ H,-1.8094035814,-1.14345056,1.5166599557\H,-0.342107802,-2.0867633964,1.306832387\ $H, -1.0437379574, -2.2025817726, 3.6662156103 \\ H, -1.0962438995, -0.4481581882, 3.7694203589 \\ h, -1.0962438995, -0.4481581882, -0.448158182, -0.448158182, -0.448158182, -0.448158182, -0.4481581882, -0.4481581882, -0.448158182, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.4481582, -0.448162, -0.4481582, -0.44882, -0.4481582, -0.4481582, -0.4481582, -0.4481562, -0.448156$ H,1.3948605389,-2.1491949911,3.2957872224\H,1.0099780292,-1.2741023857,4.7721997113\ H,4.0017269061,-3.3064442224,6.2217412593\H,3.4036421912,-1.674160439,6.6072505081\ H.5.1468797298,-1.9681146003,6.4841928227\H.4.8096377202,3.0425685387,1.2946871018\ H,-0.5452064411,2.6853131105,3.6059840275\H,-0.0006625592,4.0668505194,2.6418120179\ H.-1.1235203493.4.3139376895.3.9845300617\H.2.5485420363.5.9056348861.5.5549825296\ H,0.8605413446,6.3855886602,5.3442258848\H,1.9029332675,6.1813798343,3.9299690583\ \Version=ES64L-G16RevB.01\HF=-1197.1962805\RMSD=8.224e-09\RMSF=1.972e-06\Dipole=-2.48163,2.0333934,-1.2065564\Quadrupole=-17.8679285,22.4893226,-4.6213941,9.4554386,-29.6541719,12.0771089\PG=C01 [X(C16H29N1O3Si1)]\\@

Product H

 $\label{eq:HF=-1197.2630028 a.u} HF=-1197.2630028 a.u (0) $$ 1\1GINC-R04N05\FOpt\RwB97XD\def2TZVP\C16H29N1O3Si1\WURTHWE\02-Jun-2023\0\# wb97xd/def2tzvp Opt=readfc geom=check guess=read Pop=NBO Freq scrf=(solvent=dichloroethane)\Product H\0,1\$

C,1.7254074859,0.0627152618,-0.6347953519\C,1.3384956483,-1.279401199,0.0536824108\ C,0.1131155627,-1.9083393899,-0.6023651074\N,-1.0382505127,-1.0444569478,-0.4485680105\ $C, 2.9595272728, 1.1316769242, -2.5955049322 \\ C, 3.8446246328, 1.9270987359, -1.6404841451 \\ hard constraints and constrain$ Si,-2.4384333826,2.1064337147,0.2909439728\C,-1.3737443123,3.6362754686,0.3059588568\ C.-4.1826540762.2.5069195053.-0.2124272165\C.-2.3577154603.1.2412579656.1.9387922751\ C,-2.2825651604,-1.6390355518,-0.8957869675\C,2.4999710913,-2.2416764444,0.1407399103\ O,3.3555616566,-2.2005149778,0.9909301014\O,2.493438376,-3.1529662762,-0.8328481671\ $C, 3.5805378196, -4.0780294407, -0.8487851735 \label{eq:constraint} H, 1.0796532398, -1.0408736478, 1.0881295302 \label{eq:constraint}$ H,0.3098638785,-2.1105252818,-1.6637474524\H,-0.1139635325,-2.8640623843,-0.128107619\ $H, 3.4896062197, 0.2727215949, 0.5926738791 \\ H, 1.875949804, -0.7396605811, -2.6480769669 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ H, 1.875949804, -0.7396605811, -2.6480769669 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ H, 1.875949804, -0.7396605811, -2.6480769669 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ H, 1.875949804, -0.7396605811, -2.6480769669 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ H, 1.875949804, -0.7396605811, -2.6480769669 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ H, 1.875949804, -0.7396605811, -2.6480769669 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ H, 1.875949804, -0.7396605811, -2.6480769669 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ (3.4896062197, 0.2727215949, 0.5926738791 \\ (3.489606219, 0.2727215949, 0.5926738791 \\ (3.489606219, 0.2727215949, 0.5926738791 \\ (3.489606219, 0.2727215949, 0.5926738791 \\ (3.489606219, 0.2727215949, 0.5926738791 \\ (3.489606219, 0.592678791 \\ (3.489606219, 0.592678791 \\ (3.489606219, 0.59267891 \\ (3.489606219, 0.59267891 \\ (3.489606219, 0.59267891 \\ (3.489606219, 0.59267891) \\ (3.489606219, 0.59267891 \\ (3.489606219, 0.592678919891 \\ (3.489$ H,2.0910660765,1.7329995504,-2.8810262821\H,4.1458442824,2.8725361276,-2.097325432\ $H, 4.762705016, 1.3592264755, -1.4513437672 \ H, 2.3021897311, 2.8741757909, -0.4754891919 \ here is a straightforward in the straightf$ H,3.8112746526,2.6779490459,0.386026603\H,-1.3155560391,4.0852081709,-0.6879221315\ $H, -0.3595796642, 3.4082870183, 0.6396808503 \ H, -1.7950789336, 4.3784796253, 0.9887695742 \ here is a straightforward in the straight$ H,-4.2075338108,2.9655765777,-1.2031098172\H,-4.6328466901,3.2072306539,0.4948363715\ $H, -2.9973609009, 0.356578178, 1.9523898542 \ H, -2.6824974536, 1.910744811, 2.738715156 \ here is a structure of the struc$ H,-2.4054103294,-2.601075516,-0.3980271215\H,-3.1240459229,-1.004732176,-0.6326964913\ $H, -2.2980740498, -1.8075157925, -1.9815020734 \\ H, 3.4024825195, -4.7277170137, -1.7006186086 \\ H, -2.2980740498, -1.8075157925, -1.9815020734 \\ H, -2.298074049, -1.80751574 \\ H, -2.2980740, -1.80751574 \\ H, -2.2980740, -1.807514 \\ H, -2.2980740, -1.807540, -1.807540 \\ H, -2.2980740, -1.807540, -1.807540 \\ H, -2.2980740, -1.807540, -1.807540, -1.807540 \\ H, -2.2980740, -1.807540, -1.807$ H,4.5265226414,-3.5502106419,-0.9660182149\H,3.6022467114,-4.6583118207,0.0728401963 \\Version=ES64L-G16RevB.01\State=1-A\HF=-1197.2630028\RMSD=6.779e-09\RMSF=9.853e-07\Dipole=-0.7492169,-0.3851547,-0.3886102\Quadrupole=-1.1788176,7.9574593,-6.7786417,-2.246975,-8.3288225,5.8144106\PG=C01 [X(C16H29N1O3Si1)]\\@
References

(1) Pedersen, D.; Rosenbohm, C. Dry Column Vacuum Chromatography. *Synthesis* **2001**, *2001* (16). DOI: 10.1055/s-2001-18722.

(2) Pauli, G. F. qNMR - a versatile concept for the validation of natural product reference compounds. *Phytochem. Anal.* **2001**, *12* (1), 28–42. DOI: 10.1002/1099-1565(200101/02)12:1<28:AID-PCA549>3.0.CO;2-D.

(3) Zhang, W.-C.; Li, C.-J. Diastereoselective Synthesis of 2,4-Disubstituted Tetrahydropyranols and Ethers via a Prins-Type Cyclization Catalyzed by Scandium Triflate. *Tetrahedron* **2000**, *56* (16), 2403–2411. DOI: 10.1016/S0040-4020(00)00152-6.

(4) Yadav, J.; Subba Reddy, B.; Narayana Kumar, G.; Aravind, S. The 'Aqueous' Prins Cyclization: A Diastereoselective Synthesis of 4-Hydroxytetrahydropyran Derivatives. *Synthesis* **2008**, *2008* (3), 395–400. DOI: 10.1055/s-2007-1000932.

(5) Bora, S. K.; Shit, S.; Sahu, A. K.; Saikia, A. K. Diastereoselective Synthesis of 2,6-Disubstituted Tetrahydropyranones via Prins Cyclization of 3-Bromobut-3-en-1-ols and Aldehydes. *J. Org. Chem.* **2023**, *88* (5), 3012–3021. DOI: 10.1021/acs.joc.2c02715. Published Online: Feb. 22, 2023.

(6) Reddy, B. V. S.; Anjum, S. R.; Sridhar, B. A novel self-terminated Prins strategy for the synthesis of tetrahydropyran-4-one derivatives and their behaviour in Fisher indole synthesis. *RSC Adv.* **2016**, *6* (79), 75133–75137. DOI: 10.1039/C6RA11218H.

(7) Roberti, M.; Schipani, F.; Bagnolini, G.; Milano, D.; Giacomini, E.; Falchi, F.; Balboni, A.; Manerba, M.; Farabegoli, F.; Franco, F. de; Robertson, J.; Minucci, S.; Pallavicini, I.; Di Stefano, G.; Girotto, S.; Pellicciari, R.; Cavalli, A. Rad51/BRCA2 disruptors inhibit homologous recombination and synergize with olaparib in pancreatic cancer cells. *Eur. J. Med. Chem.* **2019**, *165*, 80–92. DOI: 10.1016/j.ejmech.2019.01.008. Published Online: Jan. 10, 2019.

(8) Kojima, S.; Inai, H.; Hidaka, T.; Fukuzaki, T.; Ohkata, K. Z-selective synthesis of alpha,beta-unsaturated amides with triphenylsilylacetamides. *J. Org. Chem.* **2002**, 67 (12), 4093–4099. DOI: 10.1021/jo0161936.

(9) Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **1976**, *72*, 248–254. DOI: 10.1006/abio.1976.9999.

(10) Stoscheck, C. M. Quantitation of protein. *Methods Enzymol.* **1990**, *182*, 50–68. DOI: 10.1016/0076-6879(90)82008-P.

(11) Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22* (23), 3099–3108. DOI: 10.1016/0006-2952(73)90196-2.

(12) Mach, R. H.; Smith, C. R.; Childers, S. R. Ibogaine possesses a selective affinity for sigma 2 receptors. *Life Sci.* **1995**, *57* (4), PL57-62. DOI: 10.1016/0024-3205(95)00301-I.

(13) Schepmann, D.; Frehland, B.; Lehmkuhl, K.; Tewes, B.; Wünsch, B. Development of a selective competitive receptor binding assay for the determination of the affinity to NR2B containing NMDA receptors. *J. Pharm. Biomed. Anal.* **2010**, *53* (3), 603–608. DOI: 10.1016/j.jpba.2010.04.014. Published Online: Apr. 18, 2010.

(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, V.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, V.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16*; Gaussian, Inc., 2016.

(15) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, *98* (7), 5648–5652. DOI: 10.1063/1.464913.

(16) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B Condens. Matter* **1988**, *37* (2), 785–789. DOI: 10.1103/physrevb.37.785.

(17) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **2011**, *32* (7), 1456–1465. DOI: 10.1002/jcc.21759. Published Online: Mar. 1, 2011.

(18) Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. *Chem. Rev.* **2016**, *116* (9), 5105–5154. DOI: 10.1021/acs.chemrev.5b00533. Published Online: Apr. 14, 2016.

(19) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. *Phys. Rev. Lett.* **2003**, *91* (14), 146401. DOI: 10.1103/PhysRevLett.91.146401. Published Online: Sep. 30, 2003.

(20) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.

(21) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. *Phys. Rev. Lett.* **1997**, 78 (7), 1396. DOI: 10.1103/PhysRevLett.78.1396.

(22) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **1999**, *110* (13), 6158–6170. DOI: 10.1063/1.478522.

(23) Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. *J. Chem. Phys.* **1999**, *110* (11), 5029–5036. DOI: 10.1063/1.478401.

(24) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, *10* (44), 6615–6620. DOI: 10.1039/b810189b. Published Online: Sep. 29, 2008.

(25) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, 7 (18), 3297–3305. DOI: 10.1039/b508541a. Published Online: Aug. 4, 2005.

(26) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. *Chem. Rev.* **2005**, *105* (8), 2999–3093. DOI: 10.1021/cr9904009.

NMR Spectra

¹³C NMR spectrum of *cis*-2-Phenyltetrahydro-2H-pyran-4-ol in CDCl₃.

¹³C NMR spectrum of (*RS*)-1-Oxaspiro[5.5]undecan-4-ol in CDCl₃.

¹³C NMR spectrum of **3** in CDCl₃.

¹³C NMR spectrum of **10** in CDCl₃.

¹³C NMR spectrum of (*E*)-4 and (*Z*)-4 in $CDCI_3$.

¹³C NMR spectrum of (*E*)-**6** and (*Z*)-**6** in $CDCI_3$.

¹³C NMR spectrum of (*E*)-**13** and (*Z*)-**13** in $CDCI_3$.

¹³C NMR spectrum of (E)-**15** in CDCl₃.

¹³C NMR spectrum of (E)-**16** in CDCl₃.

¹³C NMR spectrum of (*E*)-**14** and (*Z*)-**14** in $CDCI_3$.

¹³C NMR spectrum of **8a** in CDCl₃.

NOESY spectrum of 8a in CDCl₃.

¹H NMR spectrum of **8b** in CDCl₃.

 ^{13}C NMR spectrum of 17a in CDCl_3.

NOESY spectrum of **17a** in CDCl₃.

¹H NMR spectrum of **17b** in CDCl₃.

NOESY spectrum of **17b** in CDCl₃.

¹³C NMR spectrum of **19a** in CDCl₃.

NOESY spectrum of **19a** in CDCl₃.

¹H NMR spectrum of **19b** in CDCl₃.

NOESY spectrum of **19b** in CDCl₃.

¹³C NMR spectrum of **20a** in CDCl₃.

¹H NMR spectrum of **20b** in CDCl₃.

NOESY spectrum of **20b** in CDCl₃.

¹³C NMR spectrum of **18a** in CDCl₃.

¹H NMR spectrum of **18b** in CDCl₃.

NOESY spectrum of **18b** in CDCl₃.

¹³C NMR spectrum of **21a** in CDCl₃.

¹³C NMR spectrum of **21b** in CDCl₃.

¹³C NMR spectrum of **22a** in CDCl₃.

¹³C NMR spectrum of **22b** in CDCl₃.

¹³C NMR spectrum of **24a** in CDCl₃.

¹³C NMR spectrum of **25a** in CDCl₃.

¹³C NMR spectrum of **25b** in CDCI₃.

¹³C NMR spectrum of **23a** in CDCl₃.

HPLC purity measurements

cis-2-Phenyltetrahydro-2H-pyran-4-ol

Integ	gration Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		12,687	247,505	1786,426	96,25	96,80	n.a.
2		13,192	2,867	24,152	1,11	1,31	n.a.
3		14,397	0,191	0,789	0,07	0,04	n.a.
4		15,710	0,258	0,856	0,10	0,05	n.a.
5		16,252	0,249	1,187	0,10	0,06	n.a.
6		17,883	2,775	16,352	1,08	0,89	n.a.
7		19,272	2,177	9,768	0,85	0,53	n.a.
8		22,353	1,132	6,015	0,44	0,33	n.a.
Total	:		257,155	1845,546	100,00	100,00	

(RS)-3-Phenylcyclohexan-1-one (3)

Integ	ration Results						_
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		11,003	0,271	1,618	0,06	0,06	n.a.
2		18,572	441,004	2740,328	99,62	99,73	n.a.
3		21,727	0,508	2,242	0,11	0,08	n.a.
4		23,773	0,423	3,517	0,10	0,13	n.a.
5		26,240	0,332	0,000	0,07	0,00	n.a.
6		27,953	0,147	0,000	0,03	0,00	n.a.
Total			442,685	2747,705	100,00	100,00	

(RS)-2-Phenyltetrahydropyran-4-one (9)

Integ	ration Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		11,618	0,115	1,006	0,02	0,04	n.a.
2		14,902	577,110	2644,677	96,04	93,65	n.a.
3		18,112	1,965	16,148	0,33	0,57	n.a.
4		18,858	0,539	2,519	0,09	0,09	n.a.
5		19,678	2,745	20,413	0,46	0,72	n.a.
6		21,098	12,340	97,800	2,05	3,46	n.a.
7		21,385	0,914	9,859	0,15	0,35	n.a.
8		21,598	0,332	3,365	0,06	0,12	n.a.
9		22,025	1,582	5,714	0,26	0,20	n.a.
10		24,487	2,859	19,341	0,48	0,68	n.a.
11		25,045	0,432	3,021	0,07	0,11	n.a.
Total:			600,932	2823,865	100,00	100,00	

Ethyl (RS,E)-2-(3-phenylcyclohexyliden)acetate ((E)-4) and ethyl (RS,Z)-2-(3-phenylcyclohexyliden)acetate ((Z)-4)

Chromatogram and Results					
Injection Details					
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN190 GB8 Unknown Chromni Chromni Processing Method 23.Sep.20 21:04	Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000		
Chromatogram					
250 200 200 150 100 -500 -100 -150 -100 -150 -100 -150 -100 -150 -100 -150 -100 -150 -100 -150 -100	Jated] 3 #19 [manipulated] UV_VIS_1 		UV_VIS_1 WVL210 nm		
-200 J	7,5 10,0 12,5 Ti	15,0 17,5 20,0 22,5 me [min]	25,0 27,5 30,0		

Integration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		18,490	4,364	14,056	0,54	0,28	n.a.
2		21,075	0,154	0,000	0,02	0,00	n.a.
3		22,980	0,927	7,800	0,11	0,16	n.a.
4		23,572	806,080	4995,366	99,33	99,56	n.a.
Total:			811,525	5017,221	100,00	100,00	

(RS,E)-*N*-Benzyl-2-(3-phenylcyclohexyliden)acetamide ((*E*)-6) and (*RS*,*Z*)-*N*-benzyl-2-(3-phenylcyclohexyliden)acetamide ((*Z*)-6)

Chromatogram and Results					
Injection Details					
Injection Name: Vial Number: Injection Type:	WIN331 GC5 Unknown	Run Time (min): 30,00 Injection Volume: 5,00 Channel: UV_VIS_1			
Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	Chromni Chromni Processing Method 20.Mai.21 03:03	Wavelength: 210,0 Bandwidth: n.a. Dilution Factor: 1,0000 Sample Weight: 1,0000			
Chromatogram		Campo rogn. 19000			
250 200 200 150 150 150 150 150 150 150 1	#25 [manipulated] WIN331 nni_21_05_19 #25 [manipulated] UV_VIS_1 10,0 20,0 30,0 Time [min]				
-200 J	5,0 7,5 10,0 12,5 15,0 Time [min]	17.5 20.0 22.5 25.0 27.5 30.0			

Integration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		14,260	0,710	5,425	0,06	0,10	n.a.
2		19,293	22,319	200,355	1,94	3,71	n.a.
3		19,452	28,063	268,893	2,44	4,98	n.a.
4		21,608	1098,168	4922,996	95,53	91,16	n.a.
5		22,217	0,292	2,448	0,03	0,05	n.a.
Total:			1149,553	5400,117	100,00	100,00	

(*RS*,*E*)-*N*-Benzyl-2-(2-phenyltetrahydro-4*H*-pyran-4-ylidene)acetamide ((*E*)-13) and (*RS*,*Z*)-*N*-benzyl-2-(2-phenyltetrahydro-4*H*-pyran-4-ylidene)acetamide ((*Z*)-13)

Injection Details Injection Name: WIN- Vial Number: GA2 Injection Type: Unker Calibration Level: Instrument Method: Chroc Processing Method: Chroc Injection Date/Time: 11.M	400 nown	Run Time (min):	20.00
Injection Name: WIN Vial Number: GA2 Injection Type: Unker Calibration Level: Instrument Method: Chroc Processing Method: Chroc Injection Date/Time: 11.M	400 nown	Run Time (min):	20.00
Vial Number: GA2 Injection Type: Unker Calibration Level: Instrument Method: Chro Processing Method: Chro Injection Date/Time: 11.M	nown		30,00
Injection Type: Unkt Calibration Level: Instrument Method: Chro Processing Method: Chro Injection Date/Time: 11.M	nown	Injection Volume:	5,00
Instrument Method: Chro Processing Method: Chro Injection Date/Time: 11.M		Channel:	0V_VIS_1 210.0
Processing Method: Chird Injection Date/Time: 11.M	mai	Randwidth:	210,0
Injection Date/Time: 11.M	omni Processing Method	Dilution Factor	1.0000
	lai.22 18:06	Sample Weight:	1,0000
		, ,	
Chromatogram			
4000 Chromni_22_05_11 #8 [manipulated]	WIN400		UV_VIS_1
3500 3000 2500 1000 1000 500 500 500 100			Ĩ₽ŶŢŢ
200 1 2/5 5/0 7	.5 10,0 12,5 15,0 17,5 Time [min]	20,0 22,5	25.0 27.5 30.0

0							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
2.1		min	mAU*min	mAU	%	%	n.a.
1		17,982	4,108	12,356	0,23	0,18	n.a.
2		19,102	901,219	3316,019	51,14	49,25	n.a.
3		19,357	831,063	3304,252	47,16	49,08	n.a.
4		21,140	1,511	13,739	0,09	0,20	n.a.
5		22,403	24,435	86,555	1,39	1,29	n.a.
Total:			1762,335	6732,921	100,00	100,00	

(E)-N-Benzyl-2-(1-oxaspiro[5.5]undecan-4-ylidene)acetamide ((E)-14) and (Z)-N-benzyl-2-(1-oxaspiro[5.5]undecan-4-ylidene)acetamide ((Z)-14)

	Chi	omatogram	and Resul	ts		
Injection Details						
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN410 GB4 Unknown Chromni Chromni Processi 21.Apr.22 00:52	ng Method		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000	
Chromatogram						
1000 Chromni_22_04_20 #16	[manipulated]	WIN	410	1	U	/_VIS_1
900- 800- 700- 600- 200- 400- 200- 200- 100- -100- 200- 200- 200-			2.000 10 Chrom MAU mAU mAU mAU mAU mAU mAU mAU m	10,0 10,0 10,0 Time [min] 0 0 0 0 0 0 0 0 0 0 0 0 0		
0,0 2,5	5,0 7,5 10,0	12,5 15,0 Time [r) 17,5 min]	20,0 22,5	25,0 27,5	30,0
Integration Results						
No. Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
	min	mAU*min	mAU	%	%	n.a.
1	18,220	6,938	53,841	1,22	1,52	n.a.
2	19,112	274,713	1823,383	48,16	51,39	n.a.
3	19,550	288,774	1670,617	50,62	47,09	n.a.
Total:		570,425	3547,841	100,00	100,00	

8	2
---	---

(E)-N-Benzyl-2-(3,4-dihydronaphthalen-1[2H]-yliden)acetamide (15)

18,123

19,557

Total:

19,105

1077,956

1100,570

148,955

3443,196

3606,851

1,74

97,95

100,00

4,13

95,46

100,00

n.a.

n.a.

8	3
-	-

(E)-N-Benzyl-2-(2,3-dihydro-1-benzopyran-4-yliden)acetamide (16)

	Ch	romatogram	and Resul	ts		
Injection Details						
Injection Details Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN405 GA3 Unknown Chromni Chromni Process 12.Okt.22 18:14	ing Method		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000	
Chromatogram						
2500 2000 2000 1750 1500 1500 250 0 -250 0 -250 0 -250 0 -250 0 -250 0 -250 0 -250 0 -250 0 -50	hipulated] 0_12 #6 [manipulated] U 0_12 #6 [manipulated] U 0_12 #6 [manipulated] U 10,0 U	WIN	405	<u></u>	U	<u>V_VIS_1</u>
-500 1	7,5 10,0	12,5 15,0 Time (1) 17,5 min]	20,0 22,5	25,0 27,5	30,0
Integration Results	- 6M					
No. Peak Name	Retention Time min 18,103 19,215 23,320	Area mAU*min 492,276 5,523 1,792	Height mAU 2258,700 24,029 8,581	Relative Area % 98,54 1,11 0,36	Relative Height % 98,58 1,05 0,37	Amount n.a. n.a. n.a. n.a.
Total:		499,592	2291,310	100,00	100,00	

Methyl (1RS,6SR,8RS)-3-benzyl-4-oxo-8-phenyl-3-azaspiro[5.5]undecane-1carboxylate (8a)

Chromatogram and Results							
Injection Details							
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN340-1 GA4 Unknown Chromni Chromni Processi 23.Feb.22 18:57	ing Method		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000		
Chromatogram							
600 Chromni_22_02_23 #6 [manipul 500 0	ated]		1 !		U	V_VIS_1	
	7,5 10,0	12.5 15.0) 17,5	20.0 22,5	25,0 27,5		
		Time [r	min]	to man a statist			
Integration Results							
No. Peak Name	Retention Time	Area mALI*min	Height	Relative Area	Relative Height	Amount	
1 2 3	15,573 16,590 19,118	0,537 2,686 2,870	3,186 8,615 11,519	0,10 0,49 0,52	0,13 0,35 0,47	n.a. n.a. n.a.	
Total:	21,448	543,416 549,510	2411,539 2434,860	98,89	99,04 100,00	n.a.	

(1SR,6SR,8RS)-3-benzyl-4-oxo-8-phenyl-3-azaspiro[5.5]undecane-1-Methyl carboxylate (8b)

	Chromatogram and Results							
Injection Details								
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	Injection Name: WIN340-2 Vial Number: GA5 Injection Type: Unknown Calibration Level: Instrument Method: Chromni Processing Method: Chromni Processing Method Injection Date/Time: 23.Feb.22 19:38 Chromatogram			Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000			
Chromatogram								
600 Chromni_22_02_23 #7 [manip	ulated]	WIN3	40-2		U	V_VIS_1		
550 500 450 450 450 450 150 150 150 150 150 150 100 500 0 0 150 100 10	23#7 [manipulated] UV			L_1.1.L_1				
0,0 2,0 0,0	7,5 10,0	Time [r	min]	20,0 22,0	20,0 21,0	30,0		
Integration Results								
No. Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount		
1	min 16.218	12.496	mAU 61.365	4.00	3.43	n.a.		
2	19 228	0.910	4 593	0.29	0.26	n.a.		
3	20.257	1.513	3.252	0.48	0.18	n.a.		
4	21,320	297,411	1720,787	95,22	96,13	n.a.		
Total:		312,329	1789,996	100,00	100,00			

Methyl

(2RS,6SR,7RS)-9-benzyl-10-oxo-2-phenyl-3-oxa-9-

azaspiro[5.5]undecane-7-carboxylate (17a)

	Chi	romatogram	and Resul	lte		
	Cili	omatogram	and Kesu	11.5		
Injection Details						
Injection Name: Vial Number: Injection Type: Calibration Level:	WIN401-1 GB2 Unknown			Run Time (min): Injection Volume: Channel: Wavelength: Baadwidth:	30,00 5,00 UV_VIS_1 210,0	
Processing Method:	Chromni Processi	ng Method		Dilution Factor:	1.0000	
Injection Date/Time:	01.lun 22 23.42	ing method		Sample Weight	1,0000	
injection Date nine.	01.0011.22 23.42			Gample Weight.	1,0000	
Chromatogram						
2500 Chromni_22_06_01 #14		WIN4	101-1		U	V_VIS_1
2250 2000 1750 1500 1500 1500 1500 2500 0,0 2,5 5,0	20,0 Time [min] 20,0 Time [min] 20,0 1 11 0 4 5 H ₃ CO ₂ C		>	20.0 22.5	25.0 27.5	30,0
Integration Results	Detertion Time	A	Usinht	Deletine Area	Deletive Heiste	Amount
No. Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
1	19 388	366 780	2123 775	100.00	100.00	n.a.
Total:	10,000	366,780	2123,775	100.00	100,00	11.61.

Methyl

(2RS,6SR,7SR)-9-benzyl-10-oxo-2-phenyl-3-oxa-9-

azaspiro[5.5]undecane-7-carboxylate (17b)

Integ	ration Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		10,735	0,271	1,200	0,06	0,06	n.a.
2		15,573	0,107	0,702	0,03	0,03	n.a.
3		16,232	0,236	1,113	0,06	0,05	n.a.
4		18,095	0,140	1,630	0,03	0,07	n.a.
5		18,298	0,248	2,237	0,06	0,10	n.a.
6		19,380	411,565	2138,073	98,37	98,13	n.a.
7		19,988	0,751	5,925	0,18	0,27	n.a.
8		22,332	5,046	27,890	1,21	1,28	n.a.
Total			418,364	2178,770	100,00	100,00	

Methyl (1*RS*,6*SR*)-3-benzyl-4-oxo-14-oxa-3-azadispiro[5.1.5⁸.3⁶]hexadecane-1-carboxylate (18a)

	Chro	matogram	and Resu	lts		
Injection Details						
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN491 GB8 Unknown Chromni Chromni Processing 21.Apr.22 03:35	Method		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000	
Chromatogram						
1000 1000		win	491	ni_22_04_20 #20 [manipu 10,0 Time [min]	UV_VIS_1	
0,0 2,5 5,0	7,5 10,0	12,5 15,0 Time (n	17,5 nin]	20,0 22,5	25,0 27,5	30,0
Integration Results						
No. Peak Name	Retention Time min 15,717 19,787	Area mAU*min 177,304 1,634	Height mAU 623,903 14,515	Relative Area % 99,09 0,91	Relative Height % 97,73 2,27	Amount n.a. n.a. n.a.
Total:		178,938	638,418	100,00	100,00	

Methyl (1RS,6RS)-3-benzyl-4-oxo-14-oxa-3-azadispiro[5.1.5⁸.3⁶]hexadecane-1-carboxylate (18b)

	Ch	romatogram	and Resul	ts		
Injection Details						
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN492 GC1 Unknown Chromni Chromni Processi 21.Apr.22 04:57	ing Method		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000	
Chromatogram						
1000 1000 100 100 100 100 100 10			1422	10,0 Time [min]	UV_VIS_1	<u></u>
-100 -200 0.0 2,5 5,0	7,5 10,0	12,5 15,0 Time (n	17,5 nin]	20,0 22,5	25,0 27,5	30.0
Integration Results						
No. Peak Name	Retention Time min 15,738	Area mAU*min 587,874	Height mAU 1293,695	Relative Area % 99,27	Relative Height % 97,94	Amount n.a. n.a.
2	19,330	4,340	27,223	0,73	2,06	n.a.
Total:		592,214	1320,918	100,00	100,00	

ი	n
9	υ

Methyl (1SR,5'RS)-1'-benzyl-2'-oxo-3,4-dihydro-2H-spiro(naphthalene-1,4'-

piperidine)-5'-carboxylate (19a)

Chromatogram and Results							
Injection Details							
Injection Name: Vial Number: Injection Type:	WIN-414-1 GA8 Unknown	Run Time (min): Injection Volume: Channel:	30,00 5,00 UV_VIS_1				
Calibration Level: Instrument Method:	Chromni	Wavelength: Bandwidth:	210,0 n.a.				
Processing Method: Injection Date/Time:	Chromni Processing Method 17.Nov.21 18:42	Dilution Factor: Sample Weight:	1,0000 1,0000				
		, ,	,				
Chromatogram	ulated] WIN-414-1		UV VIS 1 WVL:210 nm				
200 150 150 -50 -100 -150	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	4-20,435 15-21,248 10,725 10,755 1	2,522				
-200 3	7,5 10,0 12,5 15,0 17,5 Time [min]	20,0 22,5	25,0 27,5 30,0				

Integ	ration Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		13,957	0,223	0,888	0,05	0,04	n.a.
2		19,052	0,869	5,879	0,21	0,26	n.a.
3		19,725	3,104	20,767	0,74	0,91	n.a.
4		20,435	406,019	2167,551	96,17	95,39	n.a.
5		21,248	9,518	64,468	2,25	2,84	n.a.
6		21,792	1,056	7,015	0,25	0,31	n.a.
7		22,522	1,015	4,121	0,24	0,18	n.a.
8		25,193	0,386	1,640	0,09	0,07	n.a.
Total:			422,190	2272,329	100,00	100,00	

Methyl (1SR,5'SR)-1'-benzyl-2'-oxo-3,4-dihydro-2H-spiro(naphthalene-1,4'-

piperidine)-5'-carboxylate (19b)

	Chromatogram and Results						
Injection Details							
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN414-2 GB3 Unknown Chromni Chromni Process 02.Jun.22 00:22	ing Method		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000		
Chromatogram							
Chromi 22 06 01 #15 (ma 2750 0 2500 0 2250 0 2250 0 2250 0 2250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Di#15[manipulated] UV 01#15[manipulated] UV 20,0 Time [min] 4 3 4 3 2 4 3 4 3 4 3 4 3 4 5' H_3CO_2C b	VIN4	0 17,5 min]	20,0 22,5	25.0 27.5	30.0	
Integration Results	Detention Time	Area	Height	Polativo Area	Polotivo Hoight	Amount	
No. Peak Name	min	mAU*min	mAU	%	%	n.a.	

1	19,883	631,869	2447,296	100,00	100,00	n.a.
Total:		631,869	2447,296	100,00	100,00	

(4RS,5'SR)-1'-benzyl-2'-oxospiro(chromane-4,4'-piperidine)-5'-Methyl

carboxylate (20a)

	Chr	omatogram	and Resul	ts		
Injection Details						
Injection Details Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time: Chromatogram	WIN413-1 GD2 Unknown Chromni Processir 23.Jun.22 11:38	ng Method	13-1	Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000	V_VIS_1
1400- 1200- 1200- 10	100 Time (min) 200 Time (min) 2, 3 4, 5 4, 5 4, 6 H_3CO_2C a					
-200	5,0 7,5 10,0	12,5 15,0	17,5	20,0 22,5	25,0 27,5	30,0
		Time [r	ninj			
Integration Results						
No. Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1	19,028	289,079	1709,917	100,00	100,00	n.a.
Total:		289,079	1709,917	100,00	100,00	

a	Q
9	J

Methyl (4RS,5'RS)-1'-benzyl-2'-oxospiro(chromane-4,4'-piperidine)-5'-

carboxylate (20b)

	Chromatogr	am and Resu	lts		
Injection Details					
Injection Name:	WIN-413-2		Run Time (min):	30,00	
Vial Number:	GA7		Injection Volume:	5,00	
Injection Type:	Unknown		Channel:	UV_VIS_1	
Calibration Level:	ci		Wavelength:	210,0	
Instrument Method:	Chromni Chromni Dressesing Method		Bandwidth:	n.a.	
Processing Method:	17 Nov 21 19:02		Sample Weight:	1,0000	
Injection Date/Time.	17.NOV.21 10:02		Sample Weight.	1,0000	
Chromatogram					
250 Chromni_21_11_17 #9 [manipula	ated]	WIN-413-2	7.40.200	UV_1	/IS_1 WVL:210 nm
200 150 100 50 -50 -100 -150	→ → → → → → → → → → → → → → → → → → →) >	- 8.267 14 - 20,562 13 - 86 9.52 21,120		
0,0 2,5 5,0	7,5 10,0 12,5	15.0 17.5	20,0 22,5	25,0	27,5 30,0

Integ	ntegration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		18,287	1,502	17,278	0,47	0,92	n.a.	
2		18,688	309,512	1820,974	97,82	97,11	n.a.	
3		19,942	0,213	1,865	0,07	0,10	n.a.	
4		20,562	3,279	23,146	1,04	1,23	n.a.	
5		21,120	1,896	11,923	0,60	0,64	n.a.	
Total	:		316,402	1875,185	100,00	100,00		

((1*RS*,6*SR*,8*RS*)-3-Benzyl-8-phenyl-3-azaspiro[5.5]undecan-1-yl)methanol (21a)

Injection Details Injection Name: WIN361F1 Run Vial Number: GC4 Inject Injection Type: Unknown Chai	n Time (min): ction Volume: annel: velength:	30,00
Injection Name: WIN361F1 Run Vial Number: GC4 Injection Injection Type: Unknown Chai	n Time (min): ction Volume: annel: velength:	30,00 5,00
Vial Number: GC4 Inject Injection Type: Unknown Char	ction Volume: annel: velength:	5,00
Injection Type: Unknown Chai	annel: velength:	
	velength:	00_015_1
Calibration Level: Wav		210,0
Instrument Method: Chromni Band	ndwidth:	n.a.
Processing Method: Chromni Processing Method Dilut	tion Factor:	1,0000
Injection Date/Time: 29.Jul.21 02:38 Sam	nple Weight:	1,0000
Chromatogram		
250 Chromni_21_07_28 #23 [manipulated] WIN361F1		UV_VIS_1 WVL:210 nm
200 150 150 150 150 150 150 150 1	15- 20.055 ,592 1,577	

Integration Results							
No.	No. Peak Name Retention Time		Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		6,090	0,138	0,394	0,05	0,03	n.a.
2 14,683		0,281	1,059	0,10	0,09	n.a.	
3	3 18,342		0,081	0,848	0,03	0,07	n.a.
4		18,782	272,161	1192,168	99,73 0,05	99,64 0,09	n.a.
5		20,065	0,126	1,027			n.a.
6		20,692	0,058	0,410	0,02	0,03	n.a.
7		21,577	0,057	0,524	0,02	0,04	n.a.
Total:			272,902	1196,429	100,00	100,00	

((1*RS*,6*RS*,8*SR*)-3-Benzyl-8-phenyl-3-azaspiro[5.5]undecan-1-yl)methanol (21b)

Chromatogram and Results								
Injection Details								
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN369 GA5 Unknown Chromni Chromni Processing Method 11.Aug.21 15:39	Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000					
Chromatogram								
250 200 500 150 500 100 -500 -500 -100 -500	Vilated) Wi		UV_VIS_1 WVL210 nm					

Integration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		4,120	0,092	0,296	0,02	0,02	n.a.
2		4,713	0,064	0,193	0,01	0,01	n.a.
3		6,078	0,007	0,066	0,00	0,00	n.a.
4		6,407	0,126	0,362	0,02	0,02	n.a.
5		13,812	0,351	2,232	0,06	0,12	n.a.
6		14,317	0,165	0,783	0,03	0,04	n.a.
7		14,822	0,234	1,154	0,04	0,06	n.a.
8		15,163	0,099	0,835	0,02	0,04	n.a.
9		15,480	0,080	0,908	0,01	0,05	n.a.
10		15,752	0,664	4,227	0,11	0,22	n.a.
11		16,242	0,136	1,000	0,02	0,05	n.a.
12		17,063	0,133	0,977	0,02	0,05	n.a.
13		18,295	0,399	3,852	0,07	0,20	n.a.
14		18,717	598,422	1894,142	99,28	98,55	n.a.
15	15 19,927	0,707	5,840	0,12	0,30	n.a.	
16 20,360		1,059	5,185	0,18	0,27	n.a.	
Total:			602,737	1922,050	100,00	100,00	

((2RS,6SR,7RS)-9-Benzyl-2-phenyl-3-oxa-9-azaspiro[5.5]undecan-7-

yl)methanol (22a)

	Chromatogram and Results						
Inject	ion Details						
Injectio Vial Nu Injectio Calibra Instrum Proces Injectio	on Name: umber: on Type: ation Level: nent Method: ssing Method: on Date/Time:	WIN472 GA7 Unknown Chromni Chromni Processi 23.Feb.22 20:59	ing Method		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000	
Chron	natogram						
600 550 500 450 450 450 350 350 350 250 150 100 50 50 -100	Chromni 22_02_23 #9 [manipul 1.400] Chromni 22_02_22 T.100] MAU 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ated]	WIN <u>VIS_1</u> min 30,0 12,5 12,5 15,0 Time [r	472 0 4		25.0 27.5	<u>V_VIS_1</u>
Integr	ation Results			11-5-14	D.L.C. A	D. L.C. H.C. LL	
NO.	reak Name	min	mAU*min	mAU	Kelative Area	Relative Height	Amount n.a
1 2 3 4 5 6		12,548 14,373 15,600 17,637 18,610 19,352	0,560 0,374 374,069 5,024 2,177 1,357	2,234 2,630 1157,727 15,503 13,197 11,514	0,14 0,10 96,85 1,30 0,56 0,35	0,18 0,22 95,40 1,28 1,09 0,95	n.a. n.a. n.a. n.a. n.a.
7		20,108	2,665	10,707	0,69	0,88	n.a.
Total:			386,226	1213,512	100,00	100,00	

((2RS,6SR,7SR)-9-Benzyl-2-phenyl-3-oxa-9-azaspiro[5.5]undecan-7-

yl)methanol (22b)

Total:

	Ch	romatogram	and Resul	ts		
Injection Details						
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN-473 GB1 Unknown Chromni Chromni Processi 16.Mrz.22 22:34	ing Method		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000	
Chromatogram						
1.000 1.000 1.000 000 1.000 000 00	ipulated] 5 #12 [manipulated] UV 11 #11 20,0 Time [min] 7,5 10,0	WIN 	-473		U 7_8 DH	<u>win</u> 30.0
Integration Results						
No. Peak Name	Retention Time min 15 777	Area mAU*min 489.622	Height mAU 1458 521	Relative Area % 98.35	Relative Height % 97.63	Amount n.a.
2 3 4	18,493 19,307	1,513 0,820	5,004 4,033	0,30 0,16	0,33 0,27 1,76	n.a. n.a.

497,848

1493,882

100,00

100,00

((1*RS*,6*SR*)-3-Benzyl-14-oxa-3-azadispiro[5.1.5⁸.3⁶]hexadecan-1-yl)methanol (23a)

	the state of the s		
n an the second of the second seco			

((1*RS*,6*RS*)-3-Benzyl-14-oxa-3-azadispiro[5.1.5⁸.3⁶]hexadecan-1-yl)methanol (23b)

((1*RS*,3'*SR*)-1'-Benzyl-3,4-dihydrospiro[naphthalene-1(2*H*),4'-piperidin]-3'yl)methanol (24a)

Chromatogram and Results							
Injection Details							
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN497 GA2 Unknown Chromni Chromni Process 22.Jun.22 17:18	ing Method		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000		
Chromatogram							
1600 Chromni_22_06_22 #5 [mani 1400 ImAU 1200 ImAU 1200 ImAU 1000 ImAU <tr< td=""><td>22 #5 [manipulated] UV</td><td>WIN VIS_1 </td><td>4</td><td></td><td>- - - - - - - - - - - - - - - - - - -</td><td></td></tr<>	22 #5 [manipulated] UV	WIN VIS_1 	4		- - - - - - - - - - - - - - - - - - -		
		Time [min]				
Integration Results	1			1	1		
No. Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.	
1	16,478	372,549	1350,366	96,94 3.06	95,28 4 72	n.a.	
Total:	10,010	384,325	1417,297	100,00	100,00	11.0.	

((1*RS*,3'*RS*)-1'-Benzyl-3,4-dihydrospiro[naphthalene-1(2*H*),4'-piperidin]-3'yl)methanol (24b)

Chromatogram and Results							
Injection Details							
Injection Name: Vial Number: Injection Type: Calibration Level: Instrument Method: Processing Method: Injection Date/Time:	WIN-498 GA8 Unknown Chromni Chromni Processing Method 18.Mai.22 21:18		Run Time (min): Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	30,00 5,00 UV_VIS_1 210,0 n.a. 1,0000 1,0000			
Chromatogram			1 2	i.			
2000 1800 1400 1400 1000 1400 1000 1400 100 1000 1	Dutated]	15.0 17.5 Time (min)	20,0 22,5	25.0 27.5	30.0		
No. Peak Name	Retention Time Area	Height	Relative Area	Relative Height	Amount		

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		17,525	649,308	1750,289	97,32	95,06	n.a.
2		18,535	9,564	27,194	1,43	1,48	n.a.
3		19,842	8,309	63,834	1,25	3,47	n.a.
Total:			667,181	1841,316	100,00	100,00	

((3'RS,4RS)-1'-Benzylspiro[chromane-4,4'-piperidin]-3'-yl)methanol (25a)

((3'RS,4SR)-1'-Benzylspiro[chromane-4,4'-piperidin]-3'-yl)methanol (25b)