Electronic Supplementary Information

P/N-Heteroleptic Cu(I)-photosensitizer-catalyzed domino radical relay annulation of 1,6-enynes with aryldiazonium salts

Qian Liu, a Qibo Ni, a Yan Zhou, a Lang Chen, Siwei Xiang, Limeng Zheng and Yunkui Liu*a,b

^aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
 ^bKey Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.

E-mail: ykuiliu@zjut.edu.cn.

Contents

1.	General Information	S2
2.	General procedure for the preparation of the starting material 1	S2
3.	Preparation of the starting material aryldiazonium tetrafluoroborates 2 and	S3
	safety notice of handling 2	
4.	Preparation of the photosensitizers (PS 1-PS 5)	S3
5.	General procedure for the synthesis of products 3 and characterization	S3
6.	Scale-up experiment	S10
7.	Mechanistic experiments	S12
8.	References	S15
9.	NMR Spectra of products	S16

1. General information

All glassware was thoroughly oven-dried. Solvents were dried according to standard methods prior to use. All commercially available reagents were obtained from chemical suppliers and used after proper purification if necessary. Thin-layer chromatography (TLC) plates were visualized by exposure to ultraviolet light. Flash chromatography was carried out using silica gel (100-200 mesh). Melting points are uncorrected. NMR spectra were recorded with tetramethylsilane as the internal standard. 1 H NMR and 13 C NMR spectra of CDCl₃ solutions were recorded at 500 and 125 MHz (Bruker Avance), respectively and resonances (δ) are given in parts per million relatives to tetramethylsilane. Data for 1 H NMR are reported as follows: chemical shift (δ ppm), mul-tiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for 13 C NMR are reported as chemical shift. GC-MS experiments were performed with an Agilent 6890N GC system equipped with a 5973N mass-selective detector with EI source; High resolution mass spectra (HRMS) were obtained on a TOF MS instrument with EI or ESI source.

2. General procedure for the preparation of the starting material $1^{1,2}$

$$R^{1} \stackrel{\text{II}}{=} O + MgBr$$

$$R^{1} \stackrel{\text{II}}{=} O + R^{1} \stackrel{\text{II}}{=} O$$

$$R^{1} \stackrel{\text{II}}{=} O + R^{2}$$

$$R^{1} \stackrel{\text{II}}{=} O + R^{2}$$

$$R^{1} \stackrel{\text{II}}{=} O + R^{2}$$

$$R^{2} \stackrel{\text{Dess-Martin}}{=} R^{2}$$

$$R^{2} \stackrel{\text{Dess-Martin}}{=} R^{2}$$

General procedure: Vinyl magnesium bromide (1.2 mmol, 1.2 equiv.) was added dropwise to a solution of *ortho*-phenylethynylbenzaldehyde 11^1 (1.0 mmol, 1 equiv.) in anhydrous THF (0.35 M) at 0 °C for 30 min and then stirred at rt for 6 h. The reaction was quenched with aq. NH₄Cl and the organic layers was separated. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (3 × 10 mL), dried over MgSO₄, and concentrated under reduced pressure to give crude $12.^2$ Crude $12.^2$ was used for the next step without further purification.

To a solution of compound 12 (1.0 mmol, 1 equiv.) in DCM was added Dess-Martin

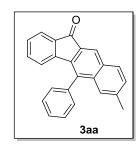
reagent (1.2 mmol, 1.2 equiv.) at 0 °C while stirring. The resulting mixture was then stirred at rt. Upon complete consumption of the starting material as monitored by TLC, the reaction mixture was quenched with saturated aqueous $Na_2S_2O_3$ and extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine, and dried over anhydrous Na_2SO_4 . The solvent was evaporated under vacuum and the crude product were purified by column chromatography on silica gel (100-200 mesh), eluting with the indicated mixture of EA/PE (1:10 (v/v)) to give compound 1.

3. Preparation of the starting material aryldiazonium tetrafluoroborates 2 and safety notice of handling 2

All aryldiazonium tetrafluoroborates (2) were synthesized from the corresponding anilines according to the literature procedure and their analytical data are consistent with the reported ones.³

Safety notice of handling 2. Some aryldiazonium tetrafluoroborates could be explosive and should be handled carefully. Face shields, leather gloves, and protective leather clothing are highly recommended when handling these compounds.

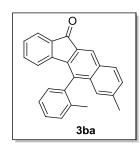
4. Preparation of the photosensitizers (PS 1-PS 5)


The photosensitizers **PS 1-PS5** were synthesized according to the literature procedure and their analytical data are consistent with the reported ones.⁴

5. General procedure for the synthesis of products 3 and characterization

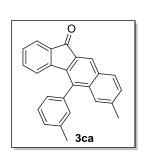
Typical procedure: 4-methylphenyldiazonium tetrafluorborate **2a** (1.2 mmol, 247.1 mg, 3 equiv. based on **1a**), *PS I* (23.0 mg, 5 mol % based on **1a**) and CuSO₄ • 5H₂O (10.0 mg, 10 mol % based on **1a**) were placed in a 25 mL Schlenk tube. The tube was evacuated and refilled with N₂ three times. 1-(2-(phenylethynyl)phenyl)prop-2-en-1-one **1a** (92.9 mg, 0.4 mmol) and EtOH (4 mL) were added, and the resulting mixture was irradiated with a blue LED lamp (15 W) at 40 °C under N₂ atmosphere for 4 h. Upon completion, the reaction mixture was evaporated and purified by column chromatography on silica gel (100-200 mesh), eluting with the indicated mixture of EA/PE (1:20 (v/v)) to give the pure product **3aa**.

Characterization of the products


7-methyl-5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3aa)

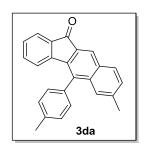
Yellow solid (66.5 mg, 52%). m.p. 159–161 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.18 (s, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.75–7.70 (m, 1H), 7.66–7.59 (m, 3H), 7.44–7.38 (m, 2H), 7.33–7.28 (m, 1H), 7.24–7.15 (m, 3H), 6.29 (d, J = 7.3 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.2, 145.1, 139.3, 137.6, 137.1, 136.6, 135.48, 134.53,

134.1, 131.8, 131.5, 130.6, 129.7, 129.2, 128.9, 128.5, 128.2, 126.4, 125.1, 124.1, 123.7, 22.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₇O 321.1279; Found 321.1277.


7-methyl-5-(o-tolyl)-11*H*-benzo[b]fluoren-11-one (3ba)

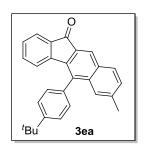
Yellow solid (70.9 mg, 53%). m.p. 146–147 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.22 (s, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.76–7.72 (m, 1H), 7.55–7.46 (m, 2H), 7.46–7.40 (m, 1H), 7.33 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.4$ Hz, 1H), 7.27–7.17 (m, 3H), 7.13 (d, J = 0.6 Hz, 1H), 6.21 (d, J = 7.1 Hz, 1H), 2.40 (s, 3H), 2.03 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ

193.3, 145.2, 139.5, 137.0, 136.8, 136.7, 136.54, 135.51, 134.9, 133.4, 131.9, 131.7, 130.8, 130.6, 129.8, 129.0, 128.6, 128.6, 126.8, 125.9, 125.0, 124.1, 123.2, 22.1, 19.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₁₈ONa 357.1255; Found 357.1263.


7-methyl-5-(m-tolyl)-11H-benzo[b]fluoren-11-one (3ca)

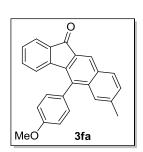
Yellow solid (64.2 mg, 48%). m.p. 142–144 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.19 (s, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.76–7.71 (m, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.31 (dd, J₁ = 8.2 Hz, J₂ = 1.4 Hz, 1H), 7.26–7.18 (m, 5H), 6.33 (dd, J₁ = 6.4 Hz, J₂ = 1.4 Hz, 1H), 2.49 (s, 3H), 2.41 (s, 3H). I³C NMR (125 MHz, CDCl₃): δ 193.3,

145.2, 139.3, 138.9, 137.5, 137.1, 136.6, 135.4, 134.6, 134.3, 131.8, 131.5, 130.6, 130.3, 129.1, 128.9, 128.9, 128.4, 126.7, 126.5, 125.0, 124.0, 123.8, 22.1, 21.6. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{25}H_{19}O$ 335.1436; Found 335.1439.


7-methyl-5-(p-tolyl)-11*H*-benzo[b]fluoren-11-one (3da)

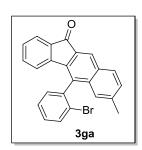
Yellow solid (68.2 mg, 51%). m.p. 179–180 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.19 (s, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.76–7.70 (m, 1H), 7.43 (d, J = 7.7 Hz, 2H), 7.33–7.28 (m, 3H), 7.24 (s, 1H), 7.23–7.18 (m, 2H), 6.38 (d, J = 6.5 Hz, 1H), 2.57 (s, 3H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.4, 145.3, 139.3, 137.9, 137.3, 136.6, 135.6,

134.6, 134.4, 134.3, 131.8, 131.6, 130.6, 130.0, 129.6, 128.9, 128.5, 126.5, 125.0, 124.1, 123.8, 22.1, 21.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₁₉O 335.1436; Found 335.1440.


5-(4-(*tert*-butyl)phenyl)-7-methyl-11*H*-benzo[*b*]fluoren-11-one (3ea)

Yellow solid (64.8 mg, 43%). m.p. 224–226 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.20 (s, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.74–7.71 (m, 1H), 7.65–7.61 (m, 2H), 7.35–7.30 (m, 3H), 7.27 (d, J = 0.6 Hz, 1H), 7.24–7.15 (m, 2H), 6.26 (d, J = 7.5 Hz, 1H), 2.41 (s, 3H), 1.50 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 193.4, 151.3, 145.3, 139.3, 137.3, 136.6,

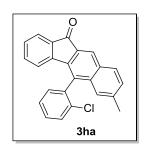
135.7, 134.6, 134.4, 131.8, 131.5, 130.6, 129.3, 128.9, 128.4, 126.5, 126.1, 125.0, 124.1, 123.8, 34.9, 31.5, 22.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₅O 377.1905; Found 377.1903.


5-(4-methoxyphenyl)-7-methyl-11*H*-benzo[*b*]fluoren-11-one (3fa)

Yellow solid (42.3 mg, 37%). m.p. 174–176 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.16 (s, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.75–7.69 (m, 1H), 7.32–7.28 (m, 3H), 7.25 (s, 1H), 7.23–7.20 (m, 2H), 7.17–7.13 (m, 2H), 6.43–6.39 (m, 1H), 3.98 (s, 3H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.3, 159.5, 145.3, 139.3, 137.5, 136.6, 135.8, 134.5, 133.9,

131.8, 131.5, 130.9, 130.6, 129.5, 128.8, 128.4, 126.4, 124.9, 124.0, 123.8, 114.6, 55.4, 22.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₁₉O₂ 351.1385; Found 351.1391.

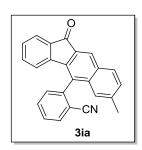
5-(2-bromophenyl)-7-methyl-11*H*-benzo[*b*]fluoren-11-one (3ga)



Yellow solid (103.7 mg, 65%). m.p. 232–234 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.25 (s, 1H), 7.91–7.86 (m, 2H), 7.77–7.74 (m, 1H), 7.58 (m, 1H), 7.50 (m, 1H), 7.40 (dd, J_1 = 7.5, J_2 = 1.7 Hz, 1H), 7.34 (dd, J_1 = 8.2 Hz, J_2 = 1.4 Hz, 1H), 7.2757.21 (m, 2H), 7.09 (d, J_1 = 0.6 Hz, 1H), 6.27 (dd, J_1 = 6.6 Hz, J_2 = 1.0 Hz, 1H), 2.42 (s, 3H). ¹³C NMR

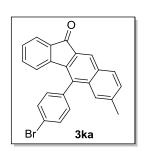
(125 MHz, CDCl₃): δ 193.0, 144.7, 139.7, 138.4, 136.6, 136.2, 135.9, 134.9, 133.5, 132.6,

131.8, 131.61, 131.60, 130.8, 130.1, 129.1, 128.8, 128.3, 125.7, 125.54, 124.45, 124.2, 123.1, 22.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₆OBr 399.0385; Found 399.0377.


5-(2-chlorophenyl)-7-methyl-11*H*-benzo[*b*]fluoren-11-one (3ha)

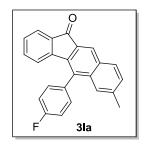
Yellow solid (76.6 mg, 54%). m.p. 224–226 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.25 (s, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 7.1 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.61–7.56 (m, 1H), 7.55–7.50 (m, 1H), 7.41 (d, J = 7.4 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.28–7.21 (m, 2H), 7.10 (s, 1H), 6.28 (d, J = 7.0 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (125 MHz,

CDCl₃): δ 193.0, 144.7, 139.7, 136.6, 136.31, 136.29, 136.1, 134.9, 134.4, 131.8, 131.7, 131.6, 130.8, 130.3, 130.0, 129.1, 128.8, 127.7, 125.7, 125.6, 124.2, 123.0, 22.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₆OCl 355.0890; Found 355.0890.


2-(7-methyl-11-oxo-11*H*-benzo[*b*]fluoren-5-yl)benzonitrile (3ia)

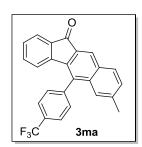
Yellow solid (77.4 mg, 56%). m.p. 273–274 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.28 (s, 1H), 8.00 (dd, J_1 = 7.8 Hz, J_2 = 0.8 Hz, 1H), 7.91–7.85 (m, 2H), 7.81–7.71 (m, 2H), 7.58 (dd, J_1 = 7.7 Hz, J_2 = 0.6 Hz, 1H), 7.36 (dd, J_1 = 8.2 Hz, J_2 = 1.3 Hz, 1H), 7.31–7.24 (m, 1H), 7.24–7.17 (m, 1H), 7.00 (d, J = 0.7 Hz, 1H), 6.12 (d, J = 7.6 Hz, 1H), 2.41

(s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 192.6, 144.2, 141.8, 140.1, 136.7, 136.5, 136.2, 134.7, 133.8, 133.6, 131.7, 131.7, 131.3, 131.0, 129.4, 129.3, 129.2, 129.1, 126.3, 125.3, 124.5, 122.8, 117.1, 114.1, 22.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₁₅NO 368.1051; Found 368.1050.


5-(4-bromophenyl)-7-methyl-11*H*-benzo[*b*]fluoren-11-one (3ka)

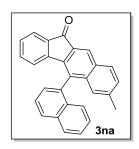
Yellow solid (100.6 mg, 63%). m.p. 229–230 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.19 (s, 1H), 7.87–7.70 (m, 4H), 7.34–7.29 (m, 3H), 7.27–7.23 (m, 2H), 7.15 (s, 1H), 6.42–6.36 (m, 1H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.0, 144.8, 139.6, 136.8, 136.6, 135.6, 134.7, 132.6, 131.8, 131.63, 131.5, 130.7, 129.1, 128.8, 126.1, 125.4, 124.3,

123.6, 122.5, 22.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₅ONaBr 421.0206; Found 421.0204.


5-(4-fluorophenyl)-7-methyl-11*H*-benzo[*b*]fluoren-11-one (3la)

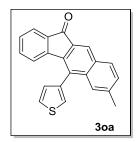
Yellow solid (81.2 mg, 60%). m.p. 209–211 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.18 (s, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.75–7.71 (m, 1H), 7.41–7.30 (m, 5H), 7.26–7.20 (m, 2H), 7.17 (s, 1H), 6.33 (dd, J₁ = 6.1 Hz, J₂ = 2.3 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 193.0, 162.8 (d, J = 247.5 Hz), 144.9, 139.5, 137.1, 136.6, 135.8, 134.6,

133.4 (d, J = 3.5 Hz), 132.9, 131.7, 131.5 (d, J = 7.7 Hz), 131.5, 130.7, 129.0, 128.7, 126.2, 125.3, 124.2, 123.6, 116.4 (d, J = 21.3 Hz), 22.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₆OF 339.1185; Found 339.1180.


7-methyl-5-(4-(trifluoromethyl)phenyl)-11*H*-benzo[*b*]fluoren-11-one (3ma)

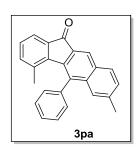
Yellow solid (105.6 mg, 68%). m.p. 209–211 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.17 (d, J = 3.5 Hz, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.82 (dd, J = 8.2 Hz, J₂ = 2.6 Hz, 1H), 7.74–7.69 (m, 1H), 7.57 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 8.2 Hz, 1H), 7.26–7.19 (m, 2H), 7.09 (s, 1H), 6.28–6.23 (m, 1H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 192.7, 144.5,

141.7, 139.8, 136.6, 136.5, 135.5, 134.7, 132.2, 131.7, 131.5, 130.8, 130.6 (q, J = 32.5 Hz), 130.4, 129.1, 128.9, 126.3 (q, J = 3.7 Hz), 125.9, 125.5, 124.3, 124.2 (q, J = 272.3 Hz), 123.4, 22.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₁₆OF₃ 389.1159; Found 389.1153.


7-methyl-5-(naphthalen-1-yl)-11*H*-benzo[*b*]fluoren-11-one (3na)

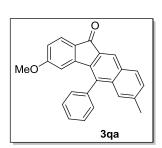
Yellow solid (69.6 mg, 47%). m.p. 215–217 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.31 (s, 1H), 8.13 (d, J = 8.3 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.75–7.69 (m, 2H), 7.57–7.50 (m, 2H), 7.43 (d, J = 8.4 Hz, 1H), 7.35–7.29 (m, 2H), 7.17–7.12 (m, 1H), 7.03 (s, 1H), 7.01–6.95 (m, 1H), 5.84 (d, J = 7.7 Hz, 1H), 2.28 (s, 3H). ¹³C NMR

(125 MHz, CDCl₃): δ 193.3, 144.8, 139.6, 137.6, 136.7, 136.6, 135.1, 134.7, 133.9, 132.3, 131.6, 130.7, 129.1, 128.7, 128.5, 128.4, 127.7, 126.7, 126.48, 126.46, 126.1, 125.7, 125.4, 124.0, 123.6, 22.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₁₉O 371.1436; Found 371.1430.


7-methyl-5-(thiophen-3-yl)-11*H*-benzo[b]fluoren-11-one (3oa)

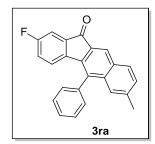
Yellow solid (57.4 mg, 44%). m.p. 201–202 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.19 (s, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.76–7.71 (m, 1H), 7.69–7.64 (m, 1H), 7.38–7.35 (m, 1H), 7.34–7.29 (m, 2H), 7.29–7.23 (m, 2H), 7.16 (dd, J_1 = 4.8 Hz, J_2 = 1.2 Hz, 1H), 6.47–6.41 (m, 1H), 2.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.2, 145.0, 139.5, 137.5,

137.2, 136.51, 136.46, 134.7, 131.8, 131.4, 130.6, 129.1, 128.99, 128.95, 128.7, 126.9, 126.2, 125.3, 124.2, 124.1, 123.5, 22.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₄ONaS 349.0663; Found 349.0660.


4,7-dimethyl-5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3pa)

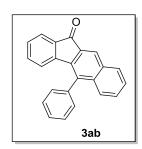
Yellow solid (82.8 mg, 62%). m.p. 218–219 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.25 (s, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.67 (dd, J₁ = 7.2 Hz, J₂ = 0.6 Hz, 1H), 7.56–7.50 (m, 3H), 7.48–7.43 (m, 2H), 7.36 (d, J = 0.7 Hz, 1H), 7.31 (dd, J₁ = 8.2 Hz, J₂ = 1.3 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 7.11 (dd, J₁ = 7.5, J₂ = 0.5 Hz, 1H), 2.39 (s, 3H), 1.38 (s, 3H). ¹³C

NMR (125 MHz, CDCl₃): δ 193.2, 144.6, 140.1, 139.2, 139.0, 138.2, 137.9, 137.4, 135.6, 134.7, 133.1, 131.8, 131.1, 130.4, 128.9, 128.64, 128.4, 128.0, 127.1, 125.2, 121.9, 22.3, 21.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₁₉O 335.1436; Found 335.1431.


3-methoxy-7-methyl-5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3qa)

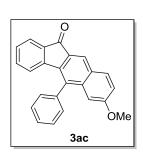
Yellow solid (72.8 mg, 52%). m.p. 169–170 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.15 (s, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.68–7.57 (m, 4H), 7.46–7.41 (m, 2H), 7.34–7.30 (m, 1H), 7.24 (s, 1H), 6.70 (dd, J₁ = 8.3 Hz, J₂ = 2.2 Hz, 1H), 5.77 (d, J = 2.2 Hz, 1H), 3.53 (s, 3H), 2.40 (s, 3H). 13 C NMR (125 MHz, CDCl₃): δ 191.8, 164.8, 147.7, 139.0,

137.5, 136.7, 134.8, 133.9, 132.8, 131.7, 130.5, 129.9, 129.8, 129.2, 128.9, 128.2, 126.4, 125.8, 124.3, 114.7, 108.6, 55.1, 22.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₁₉O₂ 351.1385; Found 351.1388.


2-fluoro-7-methyl-5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3ra)

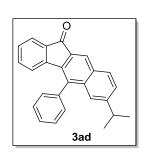
Yellow solid (78.4 mg, 58%). m.p. 206–208 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.18 (s, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.66–7.59 (m, 3H), 7.43–7.36 (m, 3H), 7.32 (dd, J₁ = 8.2 Hz, J₂ = 1.3 Hz, 1H), 7.20 (s, 1H), 6.86 (td, J₁ = 8.7, J₂ = 2.6 Hz, 1H), 6.23–6.19 (m, 1H), 2.40 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 192.0 (d, J = 2.2 Hz), 163.1 (d,

J = 250.4 Hz), 141.0 (d, J = 2.7 Hz), 139.7, 138.7 (d, J = 7.2 Hz), 137.4, 137.2, 134.8, 133.7 (d, J = 1.4 Hz), 131.9 (d, J = 1.7 Hz), 131.2, 130.7, 129.7, 129.4, 129.0, 128.4, 126.4, 125.5, 125.1 (d, J = 7.7 Hz), 121.1 (d, J = 22.9 Hz), 111.1 (d, J = 23.0 Hz), 22.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₆OF 339.1185; Found 339.1180.


5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3ab)

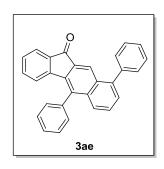
Yellow solid (84.2 mg, 55%). m.p. 230–232 °C (lit.⁵ m.p. 232 °C). ¹H NMR (500 MHz, CDCl₃): δ 8.24 (s, 1H), 7.94 (d, J = 7.3 Hz, 1H), 7.74 (d, J = 7.0 Hz, 1H), 7.65–7.59 (m, 3H), 7.50–7.40 (m, 5H), 7.25–7.17 (m, 2H), 6.35 (d, J = 7.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 193.2, 145.1, 137.4, 136.9, 136.5, 135.3, 134.7, 134.6, 133.4, 132.5, 130.8,

129.7, 129.3, 128.9, 128.6, 128.3, 127.1, 126.8, 125.2, 124.2, 123.8.


7-methoxy-5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3ac)

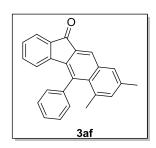
Yellow solid (65.8 mg, 49%). m.p. 126–127 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.16 (s, 1H), 7.84 (d, J = 8.9 Hz, 1H), 7.74–7.70 (m, 1H), 7.65–7.58 (m, 3H), 7.45–7.39 (m, 2H), 7.25–7.10 (m, 3H), 6.77 (d, J = 2.4 Hz, 1H), 6.30 (d, J = 7.5 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.1, 160.2, 145.0, 138.7, 137.6, 136.7, 136.2, 134.4, 133.5,

132.3, 130.6, 129.7, 129.4, 128.6, 128.4, 128.3, 125.1, 124.0, 123.7, 118.1, 107.1, 55.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₇O₂ 337.1229; Found 337.1223.


7-isopropyl-5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3ad)

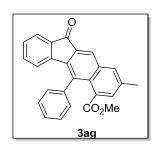
Yellow solid (71.2 mg, 51%). m.p. 166–167 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.21 (s, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.7 –7.71 (m, 1H), 7.67–7.57 (m, 3H), 7.45–7.38 (m, 3H), 7.26–7.15 (m, 3H), 6.31 (d, J = 7.3 Hz, 1H), 2.98–2.89 (m, 1H), 1.23 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 150.1, 145.2, 137.6, 137.1, 136.6, 135.4, 134.6,

134.4, 131.9, 131.9, 130.8, 129.7, 129.2, 128.5, 128.2, 126.1, 125.0, 124.08, 124.06, 123.7, 34.5, 23.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₁O 349.1592; Found 349.1597.


5,9-diphenyl-11*H*-benzo[*b*]fluoren-11-one (3ae)

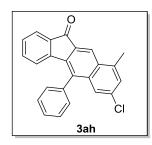
Yellow solid (67.2 mg, 44%). m.p. 208–209 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.34 (s, 1H), 7.76–7.71 (m, 1H), 7.67–7.61 (m, 3H), 7.58–7.42 (m, 10H), 7.26–7.18 (m, 2H), 6.34 (d, J = 7.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 193.2, 144.9, 143.4, 134.0, 137.7, 137.3, 136.6, 135.2, 134.8, 134.6, 132.4, 131.7, 130.0, 129.7, 129.3, 128.7, 128.6, 128.3, 128.25, 128.1, 127.7, 126.6, 124.2, 123.8, 123.6. HRMS

(ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₁₈ONa 405.1249; Found 405.1255.


6,8-dimethyl-5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3af)

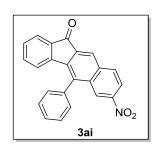
Yellow solid (88.2 mg, 66%). m.p. 193–194 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, J = 4.6 Hz, 1H), 7.70 (d, J = 7.3 Hz, 1H), 7.59–7.50 (m, 4H), 7.44–7.39 (m, 2H), 7.17 (td, J₁ = 7.4 Hz, J₂ = 1.6 Hz, 1H), 7.09 (dd, J₁ = 10.6, J₂ = 4.5 Hz, 2H), 5.82 (d, J = 7.8 Hz, 1H), 2.43 (s, 3H), 1.97 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.2,

145.8, 141.5, 136.9, 136.4, 136.4, 136.1, 135.7, 135.4, 135.2, 134.6, 132.8, 131.6, 129.8, 129.7, 128.8, 128.2, 128.1, 125.8, 123.9, 123.86, 25.0, 20.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₁₉O 335.1436; Found 335.1444.


methyl 9-methyl-11-oxo-5-phenyl-11*H*-benzo[*b*]fluorene-6-carboxylate (3ag)

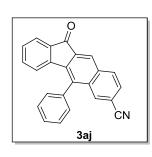
Yellow solid (81.7 mg, 54%). m.p. 216–217 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.49 (s, 1H), 7.74 (d, J = 7.3 Hz, 1H), 7.57–7.53 (m, 3H), 7.44–7.38 (m, 3H), 7.35–7.32 (m, 1H), 7.25–7.20 (m, 1H), 7.18–7.11 (m, 1H), 6.00 (d, J = 7.8 Hz, 1H), 3.23 (s, 3H), 2.80 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.1, 170.2, 145.0, 140.1, 137.7, 137.4, 136.5,

134.8, 134.5, 133.5, 132.8, 132.5, 131.9, 131.2, 129.9, 128.9, 128.6, 128.5, 126.9, 124.2, 124.1, 121.6, 51.9, 20.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₁₉O₃ 379.1329; Found 379.1323.


7-chloro-9-methyl-5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3ah)

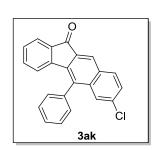
Yellow solid (70.9 mg, 50%). m.p. 203–205 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.39 (s, 1H), 7.74 (d, J = 7.1 Hz, 1H), 7.65–7.60 (m, 3H), 7.40–7.36 (m, 2H), 7.29 (d, J = 5.1 Hz, 2H), 7.27–7.18 (m, 2H), 6.28 (d, J = 7.5 Hz, 1H), 2.75 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 193.1, 144.7, 139.5, 138.2, 137.0, 136.5, 136.3, 134.8, 134.7, 134.3,

132.3, 131.0, 129.6, 129.4, 128.9, 128.6, 128.4, 124.4, 124.3, 123.9, 121.2, 19.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₆OCl 355.0890; Found 355.0889.


7-nitro-5-phenyl-11*H*-benzo[*b*]fluoren-11-one (3ai)

Yellow solid (26.3 mg, 25%). m.p. 236–237 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.36 (d, J = 2.0 Hz, 1H), 8.27–8.21 (m, 2H), 8.07 (d, J = 11.0 Hz, 1H), 7.76 (d, J = 9.0 Hz, 1H), 7.67 (d, J = 4.5 Hz, 1H), 7.66–7.65 (m, 3H), 7.43–7.34 (m, 3H), 6.38 (d, J = 9.5 Hz, 1H), I °C NMR (125 MHz, CDCl₃): δ 193.2, 147.6, 144.5, 137.2, 136.3, 136.2, 136.1,

135.7, 135.6, 135.3, 132.0, 129.8, 129.7, 129.6, 129.5, 129.2, 124.6, 124.3, 124.2, 123.1, 120.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₄NO₃ 352.0974; Found 352.0971.


11-oxo-5-phenyl-11*H*-benzo[*b*]fluorene-7-carbonitrile (3aj)

Yellow solid (16.9 mg, 17%). m.p. 235–236 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.23 (s, 1H), 8.02 (d, J = 10.5 Hz, 1H), 7.81 (s, 1H), 7.66 (d, J = 4.5 Hz, 1H), 7.65–7.63 (m, 4H), 7.39–7.37 (m, 2H), 7.26–7.23 (m, 2H), 6.37 (d, J = 9.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 192.4, 144.5, 137.0, 136.3, 136.2, 135.9, 135.3, 135.1, 135.0, 134.8,

132.7, 131.6, 129.7, 129.5, 129.1, 127.5, 124.6, 124.5, 124.2, 118.8, 112.1. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{24}H_{14}NO$ 332.1075; Found 332.1077.

7-chloro-5-phenyl-11H-benzo[b]fluoren-11-one (3ak)

Yellow solid (30.6 mg, 30%). m.p. 184–185 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.15 (s, 1H), 7.84 (d, J = 11.0 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.62–7.61 (m, 3H), 7.40–7.36 (m, 4H), 7.23–7.18 (m, 2H), 6.30 (d, J = 9.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 192.9, 144.7, 137.8, 136.6, 136.5, 135.3, 134.9, 133.8, 132.8, 132.0, 131.7, 129.6,

129.5, 129.0, 128.7, 127.7, 126.2, 124.8, 124.3, 124.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for

C₂₃H₁₄ClO 341.0733; Found 341.0729.

6. Scale-up experiment

4-Methylphenyldiazonium tetrafluorborate **2a** (6.0 mmol, 1.23 g, 3 equiv. based on **1a**), **PS 1** (0.12 g, 5 mol % based on **1a**) and CuSO₄ • 5H₂O (50.0 mg, 10 mol % based on **1a**) were placed in a 50 mL Schlenk tube. The tube was evacuated and refilled with N₂ three times. 1-(2-(phenylethynyl)phenyl)prop-2-en-1-one **1a** (0.46 g, 2.0 mmol) and EtOH (20 mL) were added, and the resulting mixture was irradiated with a blue LED lamp (15 W) at 40 °C under N₂ atmosphere for 8 h. Upon completion, the reaction mixture was evaporated and purified by column chromatography on silica gel (100-200 mesh), eluting with the indicated mixture of EA/PE (1:20 (v/v)) to give the pure product **3aa** (0.32 g, 50% yield).

7. Mechanistic experiments.

7.1 Radical scavenging experiment

To a 25 mL Schlenk tube were added **1a** (92.9 mg, 0.4 mmol), **2b** (229.2 mg, 1.2 mmol), TEMPO (375.0 mg, 2.4 mmol, 6.0 equiv. based on **1a**), *PS 1* (23.0 mg, 5 mol % based on **1a**) and CuSO₄ • 5H₂O (10.0 mg, 10 mol % based on **1a**), the tube was evacuated and refilled with N₂ for three times. Then 4 mL EtOH was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 15 W blue LED light. The reaction mixture was stirred at 40 °C for 4 h. Upon completion, the reaction mixture was sent for GC analysis

and none of the desired product 3ab was detected.

7.2 Subjection of 4 to the standard reaction conditions.

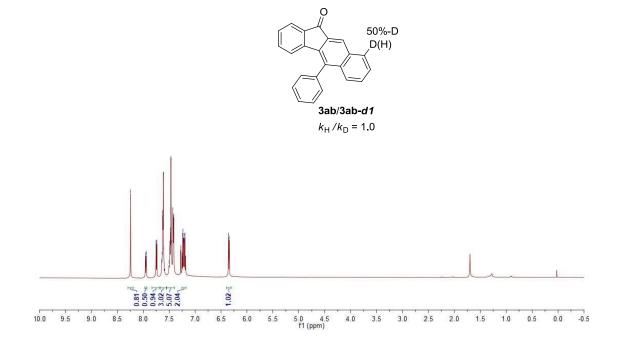
To a 25 mL Schlenk tube were added 4⁶ (123.2 mg, 0.4 mmol), **2b** (229.2 mg, 1.2 mmol), **PS 1** (23.0 mg, 5 mol % based on **4**) and CuSO₄ • 5H₂O (10.0 mg, 10 mol % based on **4**), the tube was evacuated and refilled with N₂ for three times. Then 4 mL EtOH was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 15 W blue LED light. The reaction mixture was stirred at 40 °C for 4 h. Upon completion, the reaction mixture was sent for GC analysis and none of the desired product **3ab** was detected. The starting material **4** was almost quantitatively recovered.

7.3 Intramolecular H/D competition experiment

Synthesis of $2b-d_1^7$

In a 100 mL of flask, "BuLi (80 mmol, 32 mL, 2.5 M in hexane) was added to 2-bromoaniline **13** (16 mmol, 2.75 g) in THF (20 mL) under N₂ atmosphere, and the mixture was stirred at -78 °C for 1 h. Then the mixture was warmed to rt and stirred for 1 h. D₂O (0.8 mol, 14.4 mL) was added to the reaction at -78 °C, which was warmed to rt and stirred for 1 h. The reaction mixture was quenched with water (20 mL) and extracted with ethyl acetate (50 mL×2). The organic layer were combined, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by chromatography to give **Benzen-2-d-amine 14** (601 mg, 40%) whose deuterated rate is >99%.

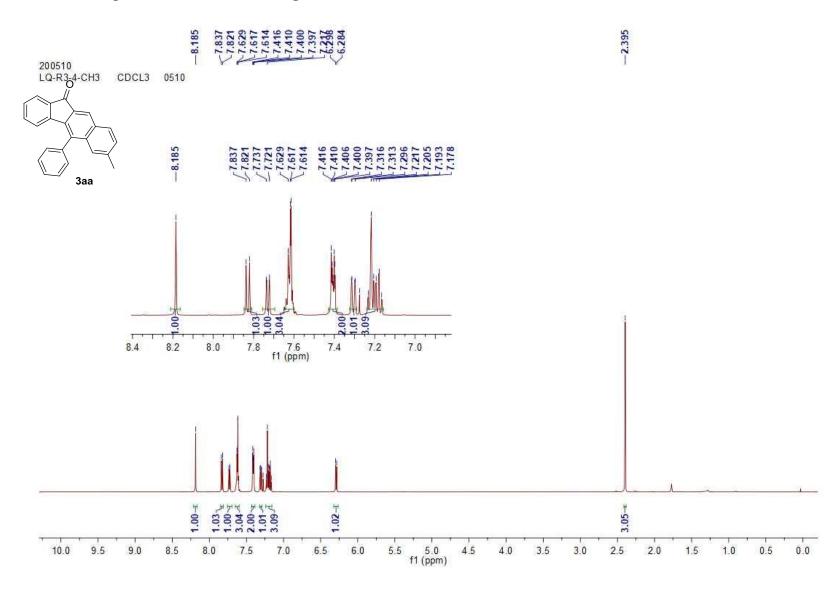
Benzen-2-d-amine 14 (5 mmol, 470 mg) was added to a mixture of 50% HBF₄ (1.5 mL) and distilled water (3 mL) in ice bath. To this solution, an ice-cold solution of sodium nitrite (352 mg, 1.02 equiv.) in distilled water (1.5 mL) was added. After stirring for 30 mins, the

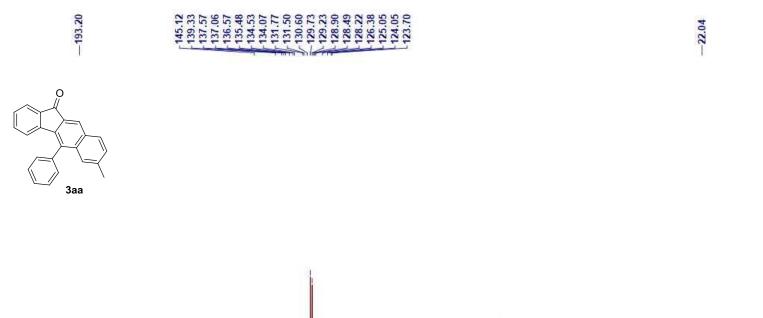

precipitate was collected on a hirch funnel and washed with small amount of ice-cold distilled water. The solid was dissolved in acetone and precipitated with slow addition of ethyl ether. **2b-d1** were obtained after repeat this trituration two to three times. (771 mg, 80%).

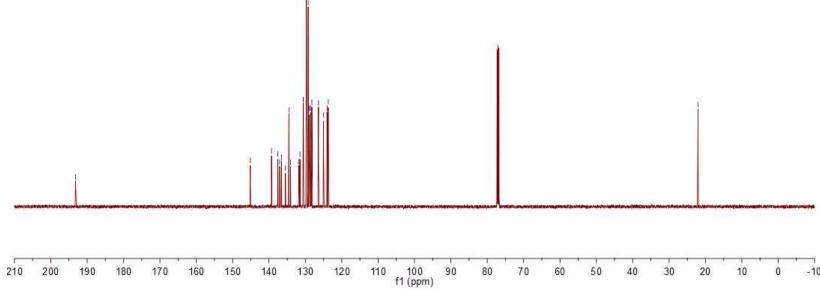
Subjection 2b-d1 to react with 1a under the standard reaction conditions:

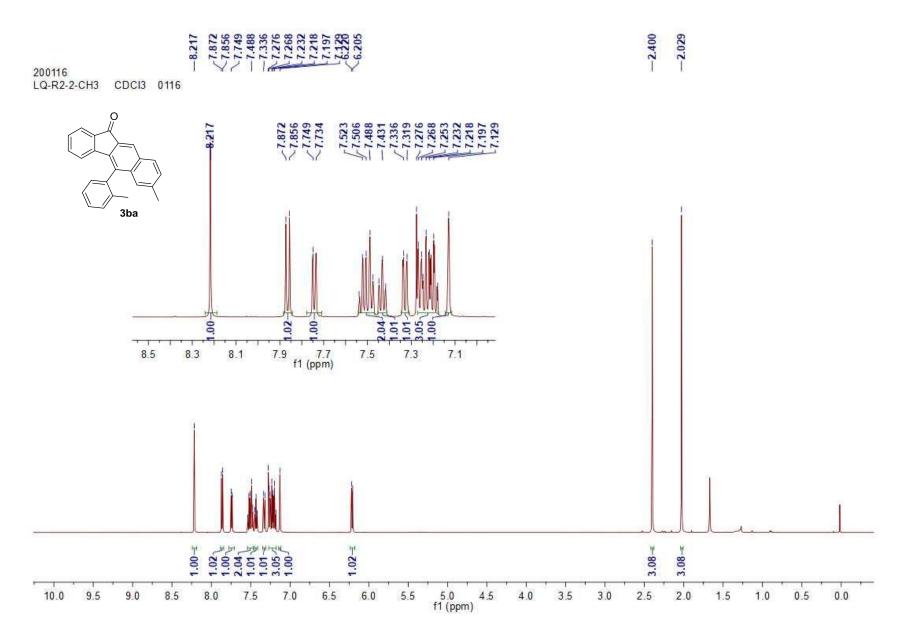
1a +
$$N_2BF_4$$
 std condition $D(H)$ $D(H)$

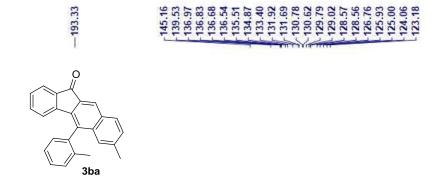
1a (92.9 mg, 0.4 mmol), **2b-d1** (231.5 mg, 1.2 mmol), **PS 1** (23.0 mg, 5 mol % based on **1a**) and CuSO₄ • 5H₂O (10.0 mg, 10 mol % based on **1a**), the tube was evacuated and refilled with N₂ for three times. Then 4 mL EtOH was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 15 W blue LED light. The reaction mixture was stirred at 40 °C for 2 h. Upon completion, the reaction mixture was evaporated and purified by column chromatography on silica gel (100-200 mesh), eluting with the indicated mixture of EA/PE (1:20 (v/v)) to give the pure product **3ab/3ab-d1** (46.9 mg, 40%). The ¹H NMR spectra of **3ab/3ab-d1** and the calculated D incorporated rate are listed as below:


Analytical data of **3ab/3ab-d1**: ¹H NMR (500 MHz, CDCl₃): δ 8.24 (s, 1H), 7.94 (d, J = 7.3 Hz, 0.5H), 7.74 (d, J = 7.0 Hz, 1H), 7.65–7.59 (m, 3H), 7.50–7.40 (m, 5H), 7.25–7.17 (m, 2H), 6.35 (d, J = 7.4 Hz, 1H).


When **2b-d1** was used, the reaction did not exhibit a primary kinetic isotope effect in the intramolecular competition experiment ($k_H/k_D = 1.0$), suggesting that the C-H bond cleavage in the late-stage cyclization process is not the rate-determining step.


8. References


- [1] J. Zhang, Y. Xiao, K. Chen, W. Wu, H. Jiang and S. Zhu, *Adv. Synth. Catal.*, 2016, **358**, 2684.
- [2] A. Ahrens, N. Heinrich, F. Niklas, S. R. Kohl, M. Hokamp, M. Rodolph, F. Rominger and A. S. K. Hashmi, *Adv. Synth. Catal.*, 2019, **361**, 5605.
- [3] P. Hanson, J. R. Jones, A. B. Taylor, P. H. Walton and A. W. Timms, *J. Chem. Soc., Perkin Trans.* 2, 2002, 1135.
- [4] L. Zheng, H. Xue, B. Zhou, S.-P. Luo, H. Jin and Y. Liu, Org. Lett., 2021, 23, 4478.
- [5] W. Ried and G. Clauss, Justus Liebigs Ann. Chem. 1975, 953.
- [6] L. Zheng, B. Zhou, H. Jin, T. Li and Y. Liu, Org. Lett., 2018, 20, 7053.
- [7]. Y.-X. Wang, F.-P. Zhang, Y.-X. Luan and M. Ye, Org. Lett., 2020, 22, 2230-2234


9. ¹H and ¹³C NMR spectra of unknown starting materials.

