Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Persulfate promoted carbamoylation of *N*-arylacrylamides and *N*-arylcinnamamides with 4-carbamoyl-Hantzsch esters

Qi Jing^{a,b}, Fu-Ci Qiao^a, Jing Sun^{b*}, Jing-Yun Wang^a, Ming-Dong Zhou^{a,b*}

^a College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China

^b School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.

Table of Contents

1. General methods	S2
2. General procedure for the carbamoylation	S2
3. Characteristic data of compounds	S2
4. Mechanistic investigations	
5. References	S14
6. NMR spectra	S15

1. General methods

Unless otherwise noted, all of the reagents were purchased from commercial suppliers and used without purification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE III HD 400 instrument. HRMS (ESI) determinations were carried out on a Bruker Daltonics MicrOTOF II spectrometer. Melting points were determined on a Shanghai Shenguang WRS-3 melting point instrument. The 4-carbamoyl-Hantzsch esters and N-arylacrylamides were prepared according to the published procedures¹⁻⁶.

2. General procedure for the carbamoylation

4-Carbamoyl Hantzsch ester 1 (0.24 mmol), N-arylacrylamides 2 or N-arylcinnamamides 4 (0.2 mmol), $(NH_4)_2S_2O_8$ (0.4 mmol), and CH_3CN-H_2O (2 mL, v/v, 1:1) were added to a 10 mL Schlenk tube under N₂. The mixture was heated at 50 °C for 12 h and then cooled to room temperature. After the reaction was completed, the mixture was concentrated under reduced pressure, the resulting mixture was dissolved with ethyl acetate (5 mL) and washed with H_2O (3 x 5 mL). The organic phase was concentrated under vacuum, the residue was purified by column chromatography on silica gel to give the corresponding products **3** or **5**.

3. Characteristic data of compounds

1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3a)⁷

Yield (88%), white solid, mp 140.5-141.3 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.25-7.19 (m, 1H), 7.17-7.11 (m, 1H), 7.02-6.96 (m, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 3.38-3.28 (m, 4H), 3.26 (s, 3H), 2.99 (d, *J* = 16.0 Hz, 1H), 2.94 (d, *J* = 16.0 Hz, 1H), 1.61-1.47 (m, 4H), 1.46-1.35 (m, 2H), 1.34 (s, 3H).

1,3-dimethyl-3-(2-morpholino-2-oxoethyl)indolin-2-one (3b)⁷

Yield (82%), white solid, mp 180.9-181.2 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400

MHz, CDCl₃) δ: 7.27-7.22 (m, 1H), 7.17-7.13 (m, 1H), 7.04-6.98 (m, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 3.66-3.48 (m, 4H), 3.48-3.28 (m, 4H), 3.26 (s, 3H), 3.00 (d, *J* = 16.0 Hz, 1H), 2.92 (d, *J* = 16.0 Hz, 1H), 1.36 (s, 3H).

1,3-dimethyl-3-(2-oxo-2-(pyrrolidin-1-yl)ethyl)indolin-2-one (3c)

Yield (80%), viscous liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.25-7.19 (m, 1H), 7.18-7.15 (m, 1H), 7.01-6.94 (m, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 3.37-3.27 (m, 3H), 3.25 (s, 3H), 3.23-3.17 (m, 1H), 2.91 (d, *J* = 16.0 Hz, 1H), 2.84 (d, *J* = 16.0 Hz, 1H), 1.89-1.82 (m, 2H), 1.78-1.70 (m, 2H), 1.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 180.8, 167.4, 143.8, 134.1, 127.6, 121.9, 121.7, 108.0, 46.5, 45.6, 45.4, 41.9, 26.3, 26.0, 24.5, 24.2; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₁N₂O₂ 273.1598; found 273.1598.

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N,N-diethylacetamide (3d)⁷

Yield (75%), colorless liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.25-7.18 (m, 1H), 7.17-7.11 (m, 1H), 6.98 (t, *J* = 8.0 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 3.30-3.21 (m, 5H), 3.21-3.11 (m, 2H), 2.96 (d, *J* = 16.0 Hz, 1H), 2.91 (d, *J* = 16.0 Hz, 1H), 1.36 (s, 3H), 1.14 (t, *J* = 8.0 Hz, 3H), 0.90 (t, *J* = 8.0 Hz, 3H).

N-cyclopentyl-2-(1,3-dimethyl-2-oxoindolin-3-yl)acetamide (3e)⁷

Yield (88%), yellow solid, 118. 6-119.2 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.32-7.24 (m, 2H), 7.08 (t, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.33 (s, 1H), 4.11-3.98 (m, 1H), 3.24 (s, 3H), 2.75 (d, *J* = 16.0 Hz, 1H), 2.62 (d, *J* = 16.0 Hz, 1H), 1.92-1.74 (m, 2H), 1.68-1.46 (m, 4H), 1.43 (s, 3H), 1.33-1.17 (m, 2H). N-cycloheptyl-2-(1,3-dimethyl-2-oxoindolin-3-yl)acetamide (3f)7

Yield (70%), yellow liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.28-7.22 (m, 2H), 7.05 (t, *J* = 8.0 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.21 (d, *J* = 8.0 Hz, 1H), 3.83-3.71 (m, 1H), 3.22 (s, 3H), 2.73 (d, *J* = 16.0 Hz, 1H), 2.59 (d, *J* = 16.0 Hz, 1H), 1.78-1.64 (m, 2H), 1.59-1.45 (m, 6H), 1.43-1.38 (m, 4H), 1.33-1.21 (m, 3H).

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-hexylacetamide (3g)⁷

Yield (85%), yellow liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.30-7.22 (m, 2H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.32 (s, 1H), 3.23 (s, 3H), 3.13-3.03 (m, 2H), 2.77 (d, *J* = 16.0 Hz, 1H), 2.64 (d, *J* = 16.0 Hz, 1H), 1.41 (s, 3H), 1.38-1.29 (m, 2H), 1.28-1.16 (m, 6H), 0.85 (t, *J* = 8.0 Hz, 3H).

N-benzyl-2-(1,3-dimethyl-2-oxoindolin-3-yl)acetamide (3h)⁸

Yield (70%), yellow liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.31-7.19 (m, 5H), 7.10-6.99 (m, 3H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.60-6.50 (m, 1H), 4.34-4.14 (m, 2H), 3.09 (s, 3H), 2.84 (d, *J* = 16.0 Hz, 1H), 2.68 (d, *J* = 16.0 Hz, 1H), 1.38 (s, 3H).

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-(1-phenylethyl)acetamide (3i)⁷

Yield (41%), yellow solid, mp 171.7-172.5 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.33-7.23 (m, 5H), 7.21-7.15 (m, 2H), 7.08 (t, *J* = 8.0 Hz, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 1H), 5.03-4.89 (m, 1H), 3.24 (s, 3H), 2.80 (d, *J* = 16.0 Hz, 1H), 2.65 (d, *J* = 16.0 Hz, 1H), 1.38 (s, 3H), 1.34 (d, *J* = 8.0 Hz, 3H).

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-(furan-2-ylmethyl)acetamide (3j)

Yield (50%), white solid, mp 100.7-101.1 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.32-7.28 (m, 1H), 7.28-7.22 (m, 2H), 7.06 (t, J = 8.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.65 (s, 1H), 6.29-6.23 (m, 1H), 6.12-6.04 (m, 1H), 4.38-4.20 (m, 2H), 3.18 (s, 3H), 2.80 (d, J = 16.0 Hz, 1H), 2.68 (d, J = 16.0 Hz, 1H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 180.5, 168.7, 151.3, 142.8, 141.9, 133.1, 128.1, 122.3, 110.3, 108.3, 107.1, 46.1, 43.6, 36.3, 26.3, 23.5; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₉N₂O₃ 299.1390; found 299.1387.

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-phenethylacetamide (3k)7

Yield (83%), colorless liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.30-7.24 (m, 4H), 7.21-7.16 (m, 1H), 7.14-7.09 (m, 2H), 7.09-7.03 (m, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.26 (s, 1H), 3.44-3.27 (m, 2H), 3.21 (s, 3H), 2.76 (d, *J* = 16.0 Hz, 1H), 2.67 (t, *J* = 8.0 Hz, 2H), 2.61 (d, *J* = 16.0 Hz, 1H), 1.38 (s, 3H).

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-phenylacetamide (31)8

Yield (75%), white solid, mp 98.2-99.1°C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 8.87 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.34-7.27 (m, 4H), 7.15-7.03 (m, 2H), 6.87 (d, *J* = 8.0 Hz, 1H), 3.26 (s, 3H), 2.91 (d, *J* = 16.0 Hz, 1H), 2.84 (d, *J* = 16.0 Hz, 1H), 1.51 (s, 3H). 2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-(p-tolyl)acetamide (**3m**)⁸

Yield (76%), yellow solid, mp 111.8-112.5 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400

MHz, CDCl₃) δ: 8.73 (s, 1H), 7.37-7.27 (m, 4H), 7.13-7.05 (m, 3H), 6.86 (d, *J* = 8.0 Hz, 1H), 3.25 (s, 3H), 2.90 (d, *J* = 16.0 Hz, 1H), 2.82 (d, *J* = 16.0 Hz, 1H), 2.29 (s, 3H), 1.50 (s, 3H). 2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-(4-(trifluoromethyl)phenyl)acetamide (**3n**)⁸

Yield (51%), white solid, mp 72.1-72.9 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 9.52 (s, 1H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.34-7.26 (m, 2H), 7.12 (t, *J* = 8.0 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 3.27 (s, 3H), 2.95 (d, *J* = 16.0 Hz, 1H), 2.89 (d, *J* = 16.0 Hz, 1H), 1.50 (s, 3H).

3-(cyclopentylmethyl)-1,3-dimethylindolin-2-one (30)⁹

Yield (81%), colorless liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.29-7.22 (m, 1H), 7.18-7.14 (m, 1H), 7.08-7.02 (m, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 3.21 (s, 3H), 2.11-2.00 (m, 1H), 1.92-1.82 (m, 1H), 1.51-1.18 (m, 10H), 1.06-0.94 (m, 1H), 0.89-0.75 (m, 1H). 5-methoxy-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (**3p**)

Yield (71%), yellow solid, mp 134.5-135.2 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 6.78-7.76 (m, 1H), 6.74-6.72 (m, 2H), 3.76 (s, 3H), 3.36-3.30 (m, 4H), 3.23 (s, 3H), 2.98 (d, *J* = 16.0 Hz, 1H), 2.90 (d, *J* = 16.0 Hz, 1H), 1.59-1.47 (m, 4H), 1.43-1.33 (m, 2H), 1.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 180.5, 166.9, 155.5, 137.4, 135.9, 110.9, 109.9, 108.0, 55.6, 46.5, 46.0, 42.5, 40.5, 26.4, 26.2, 25.3, 25.0, 24.3; HRMS (ESI) calcd for C₁₈H₂₅N₂O₃⁺: [M+H]⁺ 317.1860, found: 317.1860.

1,3,5-trimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3q)⁷

Yield (81%), white solid, mp 112.3-112.8 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.02 (d, *J* = 8.0 Hz, 1H), 6.95 (s, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 3.42-3.26 (m, 4H), 3.23 (s, 3H), 2.97 (d, *J* = 16.0 Hz, 1H), 2.91 (d, *J* = 16.0 Hz, 1H), 2.30 (s, 3H), 1.60-1.46 (m, 4H), 1.45-1.34 (m, 2H), 1.33 (s, 3H).

5-fluoro-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3r)⁷

Yield (70%), yellow solid, mp 115.4-116.2 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 6.95-6.87 (m, 2H), 6.78-6.72 (m, 1H), 3.40-3.28 (m, 4H), 3.25 (s, 3H), 3.02 (d, *J* = 16.0 Hz, 1H), 2.92 (d, *J* = 16.0 Hz, 1H), 1.62-1.48 (m, 4H), 1.48-1.34 (m, 2H), 1.33 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ: -121.7.

5-chloro-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3s)⁷

Yield (86%), white solid, mp 131.5-132.2 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.22-7.16 (m, 1H), 7.08 (d, *J* = 2.0 Hz, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 3.41-3.28 (m, 4H), 3.24 (s, 3H), 3.03 (d, *J* = 16.0 Hz, 1H), 2.92 (d, *J* = 16.0 Hz, 1H), 1.64-1.48 (m, 4H), 1.46-1.34 (m, 2H), 1.32 (s, 3H).

1,3,7-trimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (**3u**)⁷

Yield (75%), colorless liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 6.96-6.91 (m, 2H), 6.89-6.83 (m, 1H), 3.54 (s, 3H), 3.40-3.28 (m, 4H), 3.00 (d, J = 16.0 Hz, 1H), 2.93 (d, J = 16.0 Hz, 1H), 2.58 (s, 3H), 1.60-1.47 (m, 4H), 1.45-1.32 (m, 2H), 1.30 (s, 3H). 1,3,4-trimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one and 1,3,6-trimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one ($3v + 3v^2$)⁷

Yield (85%), colorless liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.13 (t, *J* = 8.0 Hz, 0.66H), 7.02 (d, *J* = 7.6 Hz, 0.34H), 6.80 (d, *J* = 7.6 Hz, 0.34H), 6.75 (d, *J* = 7.6 Hz, 0.67H), 6.72-6.65 (m, 1H), 3.42-3.27 (m, 4H), 3.24 (s, 3H), 3.20 (d, *J* = 16.8 Hz, 0.65H), 3.06 (d, *J* = 16.8 Hz, 0.65H), 2.98 (d, *J* = 16.4 Hz, 0.35H), 2.92 (d, *J* = 16.4 Hz, 0.35H), 2.35 (s, 1H), 2.33 (s, 2H), 1.61-1.46 (m, 4H), 1.43-1.30 (m, 5H).

7-chloro-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3w)⁷

Yield (51%), viscous liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.14-7.08 (m, 1H), 6.98-6.94 (m, 1H), 6.87 (t, *J* = 8.0 Hz, 1H), 3.62 (s, 3H), 3.39-3.27 (m, 4H), 3.04 (d, *J* = 16.4 Hz, 1H), 2.93 (d, *J* = 16.4 Hz, 1H), 1.59-1.47 (m, 4H), 1.45-1.31 (m, 2H), 1.29 (s, 3H).

4-chloro-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one and 6-chloro-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one $(3x+3x')^7$

Yield (70%), colorless liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.15 (t, J = 7.6 Hz, 0.81H), 7.03 (d, J = 8.0 Hz, 0.19H), 6.96-6.02 (m, 0.19H), 6.91-6.85 (m, 0.80H), 6.82 (d, J = 2.0 Hz, 0.19H), 6.76-6.71 (m, 0.81H), 3.62 (d, J = 16.4 Hz, 0.83H), 3.48-3.29 (m, 3H), 3.27-3.18 (m, 4H), 3.00 (d, *J* = 16.4 Hz, 0.22H), 2.98 (d, *J* = 16.4 Hz, 0.83H), 2.93 (d, *J* = 16.4 Hz, 0.22H), 1.61-1.48 (m, 4H), 1.46-1.28 (m, 5H).

1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)-1H-pyrrolo[2,3-b]pyridin-2(3H)-one (**3y**)⁷

Yield (75%), colorless liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 8.15-8.11 (m, 1H), 7.42-7.38 (m, 1H), 6.89-6.85 (m, 1H), 3.37-3.30 (m, 7H), 3.00 (d, *J* = 16.4 Hz, 1H), 2.94 (d, *J* = 16.4 Hz, 1H), 1.60-1.47 (m, 4H), 1.46-1.37 (m, 2H), 1.36 (s, 3H). 1-methyl-1-(2-*oxo*-2-(piperidin-1-yl)ethyl)-5,6-dihydro-1H-pyrrolo[3,2,1-ij]quinolin-2(4*H*)-one (**3z**)

Yield (88%), colorless liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.05-6.94 (m, 2H), 6.91-6.84 (m, 1H), 3.80-3.71 (m, 2H), 3.40-3.30 (m, 4H), 2.94 (s, 2H), 2.87-2.69 (m, 2H), 2.12-1.92 (m, 2H), 1.60-1.50 (m, 4H), 1.49-1.39 (m, 2H), 1.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 179.7, 167.2, 139.5, 132.8, 126.5, 121.4, 119.8, 119.7, 47.0, 46.6, 42.5, 40.2, 38.8, 26.3, 25.4, 24.6, 24.3, 21.2; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₅N₂O₂ 313.1911; found 313.1910.

1-ethyl-3-methyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3ab)⁷

Yield (82%), colorless liquid, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.24-7.12 (m, 2H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.85 (d, *J* = 7.6 Hz, 1H), 3.90-3.70 (m, 2H), 3.42-3.23 (m, 4H), 2.95 (s, 2H), 1.59-1.45 (m, 4H), 1.45-1.35 (m, 2H), 1.34 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H). 3-methyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)-1-phenylindolin-2-one (**3ac**)⁷

Yield (79%), white solid, mp 88.9-89.5 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ: 7.57-7.45 (m, 4H), 7.42-7.33 (m, 1H), 7.22-7.11 (m, 2H), 7.06-6.98 (m, 1H), 6.81 (d, *J* = 7.6 Hz, 1H), 3.44-3.31 (m, 4H), 3.12 (d, *J* = 16.4 Hz, 1H), 3.05 (d, *J* = 16.0 Hz, 1H), 1.62-1.50 (m, 4H), 1.48-1.36 (m, 5H).

1-benzyl-3-methyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3ad)⁷

Yield (72%), white solid, mp 133.1-133.8 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.39-7.34 (m, 2H), 7.33-7.28 (m, 2H), 7.25-7.20 (m, 1H), 7.19-7.16 (m, 1H), 7.13-7.08 (m, 1H), 7.00-6.94 (m, 1H), 6.69 (d, J = 8.0Hz, 1H), 5.12 (d, J = 16.0 Hz, 1H), 4.85 (d, J = 16.0 Hz, 1H), 3.41-3.34 (m, 4H), 3.09 (d, J = 16.0 Hz, 1H), 3.02 (d, J = 16.0 Hz, 1H), 1.62-1.53 (m, 2H), 1.51-1.44 (m, 4H), 1.43 (s, 3H).

1-methyl-4-phenyl-3-(piperidine-1-carbonyl)-3,4-dihydroquinolin-2(1*H*)-one (5a)

Yield (56%), white solid, mp 196.9-197.3 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.36-7.29 (m, 2H), 7.29-7.20 (m, 4H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.95 (t, *J* = 7.6 Hz, 1H) 6.79 (d, *J* = 7.6 Hz, 1H), 4.74 (d, *J* = 10.8 Hz, 1H), 4.20 (d, *J* = 10.8 Hz, 1H), 3.69-3.57 (m, 1H), 3.48-3.31 (m, 5H), 3.30-3.21 (m, 1H), 1.64-1.44 (m, 4H), 1.22-1.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.7, 166.3, 140.2, 139.4, 128.7, 128.6, 128.2, 127.7, 127.2, 123.1, 114.5, 50.7, 47.3, 45.1, 43.2, 29.9, 26.3, 25.4, 24.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₅N₂O₂ 349.1911; found 313.1911.

1-methyl-3-(piperidine-1-carbonyl)-4-(p-tolyl)-3,4-dihydroquinolin-2(1H)-one (5b)

Yield (48%), yellow solid, mp 163.8-164.9 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.28-7.24 (m, 1H), 7.16-7.08 (m, 4H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.95 (t, *J* = 7.6 Hz, 1H) 6.81 (d, *J* = 7.6 Hz, 1H), 4.69 (d, *J* = 8.0 Hz, 1H), 4.18 (d, *J* = 8.0 Hz, 1H), 3.69-3.57 (m, 1H), 3.48-3.38 (m, 5H), 3.35-3.27 (m, 1H), 2.33 (s, 3H), 1.60-1.52 (m, 4H), 1.28-1.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.8, 166.4, 139.4, 137.1, 136.8,129.4, 128.5, 128.4, 128.3, 127.6, 123.1, 114.4, 50.7, 47.3, 44.6, 43.2, 29.9, 26.2, 25.4, 24.4, 21.0; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₇N₂O₂ 363.2067; found 363.2069.

4-(4-bromophenyl)-1-methyl-3-(piperidine-1-carbonyl)-3,4-dihydroquinolin-2(1H)-one (5c)

Yield (48%), yellow solid, mp 185.6-186.4 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.48-7.46 (m, 2H), 7.30-7.26 (m, 1H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.96 (t, *J* = 8.0 Hz, 1H) 6.73 (d, *J* = 8.0 Hz, 1H), 4.74 (d, *J* = 10.2 Hz, 1H), 4.15 (d, *J* = 10.2 Hz, 1H), 3.62-3.54 (m, 1H), 3.48-3.31 (m, 5H), 3.30-3.21 (m, 1H), 1.64-1.50 (m, 4H), 1.26-1.20 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.4, 166.0, 139.4, 139.3, 131.8, 130.5, 128.0, 127.9, 127.8, 123.2, 121.1, 114.6, 50.5, 47.3, 44.4, 43.3, 30.0, 26.3, 25.5, 24.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄BrN₂O₂ 427.1016; found 427.1011.

6-fluoro-1-methyl-4-phenyl-3-(piperidine-1-carbonyl)-3,4-dihydroquinolin-2(1H)-one (5d)

Yield (48%), yellow solid, mp 154.2-155.1 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.38-7.32 (m, 2H), 7.30-7.27 (m, 1H), 7.22-7.18 (m, 2H), 6.97-6.95 (m, 2H) 6.58-6.50 (m, 1H), 4.72 (d, J = 8.0 Hz, 1H), 4.19 (d, J = 8.0 Hz, 1H), 3.69-3.61 (m, 1H), 3.48-3.40 (m, 5H), 3.34-3.26 (m, 1H), 1.56-1.50 (m, 4H), 1.22-1.14 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.3, 166.1, 158.8 (d, J = 242.0 Hz), 139.6, 135.7 (d, J = 2.0 Hz), 130.6 (d, J = 7.0 Hz), 128.9, 128.6, 127.5, 115.7 (d, J = 8.0 Hz), 115.5 (d, J = 25.0 Hz), 114.0 (d, J = 22.0 Hz), 50.5, 47.4, 45.1, 43.3, 30.2, 26.2, 25.5, 24.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄FN₂O₂ 367.1816; found 367.1819.

6-chloro-1-methyl-4-phenyl-3-(piperidine-1-carbonyl)-3,4-dihydroquinolin-2(1H)-one (5e)

Yield (26%), white solid, mp 162.3-162.9 °C, PE/EA = 3/1 to EA as the eluent; ¹H NMR (400 MHz, CDCl₃) δ : 7.38-7.32 (m, 2H), 7.30-7.28 (m, 1H), 7.25-7.17 (m, 3H), 6.96 (d, *J* = 8.0 Hz, 1H) 6.82-6.78 (m, 1H), 4.69 (d, *J* = 8.0 Hz, 1H), 4.17 (d, *J* = 8.0 Hz, 1H), 3.69-3.57 (m, 1H), 3.48-3.41 (m, 5H), 3.34-3.26 (m, 1H), 1.55-1.47 (m, 4H), 1.22-1.12 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.3, 166.1, 139.6, 138.1, 130.0, 129.0, 128.6, 128.5, 128.3, 127.7, 127.6, 115.8, 50.6, 47.4, 45.1, 43.4, 30.0, 26.2, 25.5, 24.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄ClN₂O₂ 383.1521; found 383.1517.

4. Mechanistic Investigations

1a (0.24 mmol), **2a** (0.2 mmol), $(NH_4)_2S_2O_8$ (0.4 mmol), TEMPO (0.4 mmol), and degassed CH₃CN-H₂O (2 mL, 1:1, v/v) were added to a 10 mL Schlenk tube under N₂. The mixture was heated at 50 °C for 12 h and then cooled to room temperature. After the reaction was completed, the reaction mixture was monitored by TLC, and no desired product was observed. Then the mixture was concentrated under reduced pressure, the resulting mixture was dissolved with ethyl acetate (5 mL) and washed with H₂O (3 x 5 mL). The organic phase was concentrated under vacuum, the residue was measured by HRMS. The HRMS below indicated the formation of carbamoyl-TEMPO adduct.

1a (0.24 mmol), 2a (0.2 mmol), (NH₄)₂S₂O₈ (0.4 mmol), 1,1-diphenylene (0.4 mmol), and degassed CH₃CN-H₂O (2 mL, 1:1, v/v) were added to a 10 mL Schlenk tube under N₂. The mixture was heated at 50 °C for 12 h and then cooled to room temperature. After the reaction was completed, the mixture was concentrated under reduced pressure, the resulting mixture was dissolved with ethyl acetate (5 mL) and washed with H₂O (3 x 5 mL). The organic phase was concentrated under vacuum, the yield was determined by ¹H NMR with CH₂Br₂ as internal standard.

5. References

(1) N. Alandini , L. Buzzetti, G. Favi, T. Schulte, L. Candish, K.D. Collins, P. Melchiorre. Angew. Chem. Int. Ed. 2020, 59, 5248-5253.

- (2) L, Cardinale, M. O. Konev, A. J. Wangelin. Chem. Eur. J. 2020, 26, 8239-8243.
- (3) B.T. Matsuo, P.H.R. Pliveira, J.T.M. Correia, M.W. Paixão. Org. Lett. 2021, 23, 6775-6779.
- (4) L. Cardinale, M.W.S. Schmotz, M.O. Konev. A. J. Wangelin. Org. Lett. 2022, 24, 506-510.
- (5) D.C. Fabry, M. Stodulski, D.C.S. Hoerner, T. Gulder. Chem. Eur. J. 2012, 18, 10834-10838.
- (6) Z. He, J. Guo, S. Tian. Adv. Synth. Catal. 2018, 360, 1544-1548.
- (7) Q. Gao, Q. Jing, Y. Chen, J. Sun, M. Zhou. Chin. J. Org. Chem. 2022, 42, 257-265.
- (8) Z. He, J. Guo, S. Tian. Adv. Synth. Catal. 2018, 360, 1544-1548.
- (9) K. Muralirajan, R. Kancherla, A. Gimnkhan, R. Magnus. Org. Lett. 2021, 23, 6905-6910.

6. NMR spectra

-100 -110 -120 f1 (ppm) -30 -40 -50 -60 -70 -90 -130 -140 -150 -80 -160 -170 -180 -190 -200

¹³C NMR (100 MHz, CDCl₃) spectra of **5a**

166.69 166.32	140.16 139.38 128.67 128.67 128.17 128.17 128.17 128.17 128.13 127.19 112.19 114.46 114.46	77.32 77.00 76.68	50.72 47.33 45.05 43.24	29.89 26.18 25.42 24.36
\vee		\checkmark	1717	

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)