Electronic Supporting Information

Trace Water in BF₃ OEt₂ System: A Facile Access to Sulfinyl Alkenylsulfone from Alkynes and Sodium Sulfinates

Shi-Wei Yu,^a Zu-Jia Chen,^a Zhao-Hua Chen,^a Si-Hong Chen,^a Kai Yang,^{b,*} Wen-Jin Xu,^a and Zhao-Yang Wang^{a,*}

^a School of Chemistry, South China Normal University; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, P. R. China. wangzy@scnu.edu.cn

^b College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China kai_yangyang@126.com

Contents

General Information	[2]
Preparation of Sodium Sulfinates and Isosorbide Derived Alkyne	[2]
Experimental Procedure for Compounds 3a-3u, 4a-4l	[4]
Gram-scale Experimental Procedure for Compound 3a	[5]
Experimental Procedure for Compounds 7a-7c	[5]
Data of Single-crystal X-ray Analysis (Figures S1-S2, Tables S1-S2)	[8]
Characterization Data for All Products 3a-3u, 4a-4l, 5a and 7a-7c	[10]
Experimental Spectra Used in Discussions (Figure S3)	[28]
NMR Spectra and HRMS for All Compounds 3a-3u, 4a-4l, 5a and 7a-7c	[30]
References	[90]

General Information

¹H and ¹³C NMR spectra were collected on an AVANCE NEO-600 in CDCl₃ using tetramethylsilane (TMS) as an internal standard. Mass spectra were recorded on a Thermo Scientific ISQ gas chromatograph-mass spectrometer. High-resolution mass spectra (HR-MS) were obtained with a MAT 95XP mass spectrometer. Single-crystal X-ray analysis was obtained using Agilent Gemini E. Reactions were monitored using thin-layer chromatography (TLC) and visualized with UV light at 254 nm.

All reagents and solvents, including various alkyne compounds 1 (including 1u), were purchased from commercial sources and used without further purification. Different sodium sulfinates 2 and isosorbide derived alkyne (1t) were synthesized according to the literature procedure.^[1]

Preparation of Sodium Sulfinates and Isosorbide Derived Alkyne

Ar-SO₂CI
$$\xrightarrow{Na_2SO_3, NaHCO_3}$$
 Ar-SO₂Na
H₂O, 80 °C, 4 h

According to the literature,^[1a, 1b] the mixture of arylsulfonyl chloride (10 mmol), sodium sulfite (20 mmol), sodium bicarbonate (20 mmol) in H₂O (15 mL) was stirred at 80 $^{\circ}$ C for 4 h. Water was removed by rotary evaporator. Then, the remaining solid was extracted and recrystallized by ethanol to get the required compound **2**.

According to the literature,^[1c] isosorbide (1.00 g, 6.8 mmol) was dissolved in KOH solution (4.6 g, 82.0 mmol KOH in 16 mL water), and propargyl bromide (4.7 mL, 54.6 mmol

in 16 mL toluene) was dissolved in 20 mL of DCM. Then, their solution mixture with tetrabutylammonium bromide (220 mg, 0.7 mmol) was stirred at 55 $\,^{\circ}$ C for 24 h. After the completion of reaction, EtOAc (15 mL) was poured into the reaction mixture. The organic layers were extracted with the saturated NH₄Cl (2 × 15 mL) and NaCl (2 × 15 mL). After the organic layer was dried over anhydrous Na₂SO₄, the filtration and the evaporation of the solvents under reduced pressure gave the crude product, which was purified by column chromatography on silica gel to afford the required isosorbide derivative **1t**.

3a: $R^1 = C_6H_5$, $R^2 = H$; **3b**: $R^1 = 4$ -MeC₆H₄, $R^2 = H$; **3c**: $R^1 = 4$ -EtC₆H₄, $R^2 = H$; **3d**: $R^1 = 4$ -OMeC₆H₄, $R^2 = H$; **3e**: $R^1 = 4$ -PhC₆H₄, $R^2 = H$; **3f**: $R^1 = 4$ -FC₆H₄, $R^2 = H$; **3g**: $R^1 = 4$ -ClC₆H₄, $R^2 = H$; **3h**: $R^1 = 4$ -BrC₆H₄, $R^2 = H$; **3i**: $R^1 = 4$ -NO₂C₆H₄, $R^2 = H$; **3j**: $R^1 = 4$ -ClC₆H₄, $R^2 = H$; **3k**: $R^1 = 3$ -MeC₆H₄, $R^2 = H$; **3i**: $R^1 = 3$ -OMeC₆H₄, $R^2 = H$; **3m**: $R^1 = 3$ -ClC₆H₄, $R^2 = H$; **3n**: $R^1 = 2$ -OMeC₆H₄, $R^2 = H$; **3o**: $R^1 = 2$ -FC₆H₄, $R^2 = H$; **3p**: $R^1 = 2$ -Naphthyl, $R^2 = H$; **3q**: $R^1 = 2$ -Thienyl, $R^2 = H$; **3r**: $R^1 = Bu$, $R^2 = H$; **3s**: $R^1 = C_6H_5$, $R^2 = CH_3$; **3t**: $R^1 = 1$ sosorbide, $R^2 = H$; **3u**: $R^1 = C$ Iodinafop-propargyl ester, $R^2 = H$;

The mixture of alkyne compound **1** (0.30 mmol, 1.0 equiv.), sodium 4-methylbenzenesulfinate **2a** (1.20 mmol, 4.0 equiv.) and BF₃ OEt₂ (0.84 mmol, 2.8 equiv.) in undried DCM (4 mL) under the sealed nitrogen atmosphere was stirred at 40 °C for 1 h. After the completion of reaction, EtOAc (15 mL) was poured into the reaction mixture. The organic layers were extracted with the saturated sodium chloride solution (3 × 15 mL). Then, the organic layer was dried over anhydrous Na₂SO₄. Finally, after the filtration and the evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford the desired product **3**.

Experimental Procedure for Compounds 4a-41

4a: Ar = C_6H_5 ; **4b**: Ar = 4-OMeC_6H_4; **4c**: Ar = 4-PhC_6H_4; **4d**: Ar = 4-FC_6H_4; **4e**: Ar = 4-ClC_6H_4; **4f**: Ar = 4-BrC_6H_4; **4g**: Ar = 4-IC_6H_4; **4h**: Ar = 4-CF_3C_6H_4; **4i**: Ar = 3-BrC_6H_4; **4j**: Ar = 3-MeC_6H_4; **4k**: Ar = 2-Naphthyl; **4l**: Ar = 2-Thienyl.

The mixture of phenylacetylene **1a** (0.30 mmol, 1.0 equiv.), sodium sulfinate compound **2** (1.20 mmol, 4.0 equiv.) and BF₃ OEt₂ (0.84 mmol, 2.8 equiv.) in undried DCM (4 mL) under the sealed nitrogen atmosphere was stirred at 40 $\,^{\circ}$ C for 1 h. After the completion of reaction, EtOAc (15 mL) was poured into the reaction mixture. The organic layers were extracted with the saturated sodium chloride solution (3 × 15 mL). Then, the organic layer was dried over anhydrous Na₂SO₄. Finally, after the filtration and the evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford the desired product **4**.

Gram-scale Experimental Procedure for Compound 3a

The mixture of phenylacetylene **1a** (3.0 mmol, 0.33 mL), sodium 4-methylbenzenesulfinate **2a** (12.0 mmol, 2.136 g) and BF₃ OEt₂ (8.4 mmol, 2.2 mL) in undried DCM (10 mL) under the sealed nitrogen atmosphere was stirred at 40 °C for 1 h. After the completion of reaction, EtOAc (45 mL) was poured into the reaction mixture. The organic layers were extracted with the saturated sodium chloride solution (3 × 20 mL). Then, the organic extracts were dried over anhydrous Na₂SO₄. Finally, after the filtration and the evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to afford the desired product of **3a** (yield 95%, 1.13 g).

Experimental Procedure for Compounds 7a-7c

According to the literature,^[2, 3] the mixture of compound **3a** (0.30 mmol, 1.0 equiv.), NaH (0.45 mmol, 1.5 equiv.) in anhydrous CH₃CN (4 mL) was stirred at room temperature for 6 h. After the completion of reaction, EtOAc (15 mL) was poured into the reaction mixture. The organic layers were extracted with the saturated sodium chloride solution (3 × 15 mL). Then, the organic layer was dried over anhydrous Na₂SO₄. Finally, after the filtration and the evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford the desired product **7a**.

According to the literature,^[2, 3] the mixture of compound **3a** (0.30 mmol, 1.0 equiv.), DBU (3.0 mmol, 10.0 equiv.) in toluene (4 mL) was stirred at 100 °C for 6 h. After the completion of reaction, the saturated ammonium chloride solution (10 mL) was added to the reaction system to quench the reaction. Then, EtOAc (15 mL) was poured into the reaction mixture. The organic layers were extracted with the saturated sodium chloride solution (3 × 15 mL). The organic layer was dried over anhydrous Na₂SO₄. Finally, after the filtration and the evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford the desired product **7b**.

According to the literature,^[2, 3] the mixture of compound 3a (0.30 mmol, 1.0 equiv.), m-CPBA (0.45 mmol, 1.5 equiv.) in DCM (4 mL) was stirred at room temperature for 24 h. After the completion of reaction, EtOAc (15 mL) was poured into the reaction mixture. The organic layers were extracted with the saturated sodium chloride solution (3 \times 15 mL). Then, the organic layer was dried over anhydrous Na₂SO₄. Finally, after the filtration and the evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford the desired product **7c**.

Data of Single-crystal X-ray Analysis

Compound	3a
Empirical formula	$C_{22}H_{20}O_{3}S_{2}$
Formula weight	396.50
Temperature (K)	297
Wavelength (A)	0.71073
Crystal system	monoclinic
Space group	$P2_1/c$
Unit cell dimensions (Å, [°])	a = 10.264(3), b = 8.475(2), c = 22.934(6)
	$\alpha = 90, \beta = 94.71(3), \gamma = 90$
Volume ($Å^3$)	1988.2(9)
Z	4
Density (calculated) (g/cm^3)	1.325
Absorption coefficient (mm ⁻¹)	0.287
F(000)	832.0
Theta range for data collection	3.513 to 29.569
Index ranges	$-11 \le h \le 13, -10 \le k \le 11, -29 \le l \le 28$
Reflections collected	10272
Independent reflections	4692 [R(int) = 0.0392, R(sigma) = 0.0675]
Completeness to theta = 29.569°	84.1 %
Absorption correction	Multi-Scan
Max. and min. transmission	1.000 and 0.758
Refinement method	Least Squares minimisation
Data / restraints / parameters	4692 / 0 / 246
Goodness-of-fit on F^2	1.062
Final R indices [I>2sigma(I)]	$R_1 = 0.0718$, $wR_2 = 0.1360$
R indices (all data)	$R_1 = 0.1266, wR_2 = 0.1606$
Largest diff. peak and hole	0.27 and -0.35 e.Å ⁻³

 Table S1.
 Crystal data and structure refinement for 3a.

Fig. S1. The molecular structure of 3a.

Compound	31
Empirical formula	$C_{22}H_{19}FO_3S_2$
Formula weight	414.49
Temperature (K)	297
Wavelength (Å)	0.71073
Crystal system	triclinic
Space group	P-1
Unit cell dimensions (Å, [°])	a = 8.4367(9), b = 10.2011(7), c = 24.4853(15)
	$\alpha = 101.895(6), \beta = 92.033(7), \gamma = 91.343(7)$
Volume (Å ³)	2059.7(3)
Z	4
Density (calculated) (g/cm^3)	1.337
Absorption coefficient (mm ⁻¹)	0.287
F(000)	864.0
Theta range for data collection	2.041 to 25.000
Index ranges	$-10 \le h \le 7, -12 \le k \le 11, -29 \le l \le 29$
Reflections collected	16406
Independent reflections	7242 [$R_{int} = 0.0396$, $R_{sigma} = 0.0663$]
Completeness to theta = 25.000°	99.9 %
Absorption correction	Multi-Scan
Max. and min. transmission	1.000 and 0.873
Refinement method	Least Squares minimisation
Data / restraints / parameters	7242 / 0 / 509
Goodness-of-fit on F^2	1.057
Final R indices [I>2sigma(I)]	$R_1 = 0.0614, wR_2 = 0.1140$
R indices (all data)	$R_1 = 0.0999, wR_2 = 0.1330$
Largest diff. peak and hole	0.19 and -0.34 e.Å ⁻³

Table S2. Crystal data and structure refinement for 3f.

Fig. S2. The molecular structure of 3f.

Characterization Data for All Products 3a-3u, 4a-4l, 5a and 7a-7c

(*E*)-1-Methyl-4-((2-phenyl-2-(*p*-tolylsulfinyl)vinyl)sulfonyl)benzene (3a). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3a as a white solid (116.4 mg, 98%); m.p.: 166-168 °C (166-167 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.33 (*s*, 3H, CH₃), 2.40 (*s*, 3H, CH₃), 6.92 (*d*, J = 7.2 Hz, 2H, ArH), 7.08-7.13 (*m*, 4H, ArH), 7.22 (*d*, J = 7.8 Hz, 2H, ArH), 7.23-7.27 (*m*, 2H, ArH), 7.32 (*s*, 1H, =CH), 7.36 (*t*, J = 7.8 Hz, 1H, ArH), 7.55 (*d*, J = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.8, 125.6, 128.0, 128.2, 182.3, 129.4, 129.6, 129.8, 130.0, 130.2, 137.0, 137.6, 142.9, 144.9, 160.7; ESI-HRMS, *m/z*: Calcd for C₂₂H₂₁O₃S₂ [M+H]⁺: 397.0927, Found: 397.0920.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-1-Methyl-4-((2-(*p*-tolyl)-2-(*p*-tolylsulfinyl)vinyl)sulfonyl)benzene (3b). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3b as a white solid (115.6 mg, 94%); m.p.: 165-166 \mathbb{C} (166-167 $\mathbb{C}^{[2]}$); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.34 (*s*, 3H, CH₃), 2.35 (*s*, 3H, CH₃), 2.41 (*s*, 3H, CH₃), 6.85 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.07 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.10-7.15 (*m*, 4H, ArH), 7.23 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.28 (*s*, 1H, =CH), 7.58 (*d*, *J* = 7.8 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.7, 21.8, 125.3, 125.6, 128.1, 129.0, 129.1, 129.3, 129.9, 130.0, 137.2, 137.7, 140.6, 142.8, 144.9, 160.8.

(*E*)-1-Ethyl-4-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3c). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3c as a white solid (117.1 mg, 92%); m.p.: 161-163 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 1.23 (*t*, *J* = 7.2 Hz, 3H, CH₃), 2.33 (*s*, 3H, CH₃), 2.40 (*s*, 3H, CH₃), 2.64 (*q*, *J* = 7.2 Hz, 2H, CH₂), 6.85 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.07 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.09-7.12 (*m*, 4H, ArH), 7.20 (*d*, *J* = 9.0 Hz, 2H, ArH), 7.30 (*s*, 1H, =CH), 7.55 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 15.4, 21.6, 21.8, 28.8, 125.4, 125.5, 127.7, 128.1, 129.2, 129.4, 129.8, 129.9, 137.2, 137.7, 142.7, 144.8, 146.8, 160.9; ESI-HRMS, *m/z*: Calcd for C₂₄H₂₅O₃S₂ [M+H]⁺: 425.1240, Found: 425.1230.

(*E*)-1-Methoxy-4-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3d). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3d as a white solid (121.4mg, 95%); m.p.: 149-151 °C (150-151 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.34 (*s*, 3H, CH₃), 2.41 (*s*, 3H, CH₃), 3.82 (*s*, 3H, OCH₃), 6.80 (*d*, *J* = 9.0 Hz, 2H, ArH), 6.94 (*d*, *J* = 9.0 Hz, 2H, ArH), 7.11-7.13 (*m*, 4H, ArH), 7.24 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.27 (*s*, 1H, =CH), 7.58 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.8, 55.4, 113.8, 120.4, 125.5, 128.0, 128.8, 129.9, 130.0, 131.0, 137.5, 137.8, 142.7, 144.9, 160.5, 161.3.

(*E*)-4-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)-1,1'-biphenyl (3e). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3e as a white solid (120.4 mg, 85%); m.p.: 172-173 °C (162-163 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.34 (*s*, 3H, CH₃), 2.40 (*s*, 3H, CH₃), 7.01 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.12-7.16 (*m*, 4H, ArH), 7.22 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.36 (*s*, 1H, =CH), 7.38 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.44-4.47 (*m*, 2H, ArH), 7.49 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.58-7.60 (*m*, 4H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.8, 125.6, 126.7, 127.2, 128.0, 128.1, 129.0, 129.6, 129.8, 130.0, 137.1, 137.6, 139.8, 142.8, 142.9, 145.0, 160.5.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-1-Fluoro-4-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3f). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3f as a white solid (110.6 mg, 89%); m.p.: 149-150 °C (148-149 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.35 (*s*, 1H, CH₃), 2.42 (*s*, 1H, CH₃), 6.91-6.98 (*m*, 4H, ArH), 7.11-7.15 (*m*, 4H, ArH), 7.26 (*d*, 2H, *J* = 7.2 Hz, ArH), 7.33 (*s*, 1H, =CH), 7.58 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.8, 115.6 (*d*, *J* = 22.5 Hz), 124.3 (*d*, *J* = 3.0 Hz), 125.6, 128.0, 129.9, 130.0, 130.1, 131.5 (*d*, *J* = 9.0 Hz), 136.9, 137.5, 143.1, 145.2, 159.7, 163.8 (*d*, *J* = 249.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃), δ , ppm: -109.3.

(*E*)-1-Chloro-4-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3g). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3g as a white solid (120.0 mg, 93%); m.p.: 184-185 °C (185-186 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.35 (*s*, 3H, CH₃), 2.43 (*s*, 3H, CH₃), 6.86 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.12-7.16 (*m*, 4H, ArH), 7.23-7.27 (*m*, 4H, ArH), 7.32 (*s*, 1H, =CH), 7.58 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.7, 21.8, 125.7, 126.8, 128.1, 128.6, 130.0, 130.2, 130.6, 136.6, 136.7, 137.4, 143.2, 145.3, 159.4.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-1-Bromo-4-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3h). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3h as a white solid (129.4 mg, 91%); m.p.: 188-190 °C (189-190 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.36 (*s*, 3H, CH₃), 2.43 (*s*, 3H, CH₃), 6.79 (*d*, *J* = 9.0 Hz, 2H, ArH), 7.13-7.17 (*m*, 4H, ArH), 7.26 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.33 (*s*, 1H, =CH), 7.40 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.58 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.7, 21.8, 125.0, 125.7, 127.3, 128.1, 130.0, 130.1, 130.2, 130.8, 131.5, 136.7, 137.4, 143.3, 145.3, 159.4.

(*E*)-1-Methyl-4-((2-(4-nitrophenyl)-2-(*p*-tolylsulfinyl)vinyl)sulfonyl)benzene (3i). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3i as a white solid (115.1 mg, 87%); m.p.: 180-182 °C (180-181 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.37 (*s*, 3H, CH₃), 2.45 (*s*, 3H, CH₃), 7.09 (*d*, *J* = 9.0 Hz, 1H, ArH), 7.14-7.18 (*m*, 4H, ArH), 7.30 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.37 (*s*, 1H, =CH), 7.62 (*d*, *J* = 8.4 Hz, 2H, ArH), 8.12 (*d*, *J* = 9.0 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.7, 21.9, 123.3, 125.8, 128.1, 130.2, 130.3, 130.4, 131.2, 135.2, 136.1, 137.0, 143.8, 145.7, 148.6, 158.3.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-1-Methyl-4-((2-(*p*-tolylsulfinyl)-2-(4-trifluoromethylphenyl)vinyl)sulfonyl)benzene (3j). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3j as a white solid (122.5 mg, 88%); m.p.: 172-174 °C (174-175 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.36 (*s*, 3H, CH₃), 2.42 (*s*, 3H, CH₃), 7.00 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.12-7.17 (*m*, 4H, ArH), 7.25 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.38 (*s*, 1H, =CH), 7.50 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.56 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.7, 21.8, 123.7 (*q*, *J* = 271.5 Hz), 125.1 (*q*, *J* = 3.0 Hz), 125.7, 128.1, 129.7, 130.0, 130.2, 130.9, 132.0 (*q*, *J* = 33.0 Hz), 132.2, 136.4, 137.1, 143.5, 145.4, 159.0; ¹⁹F NMR (564 MHz, CDCl₃), δ , ppm: -62.9.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-1-Methyl-3-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3k). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3k as a white solid (113.2 mg, 92%); m.p.: 161-162 $\ \C$ (157-158 \C ^[2]);

¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.24 (*s*, 3H, CH₃), 2.34 (*s*, 3H, CH₃), 2.40 (*s*, 3H, CH₃), 6.65 (*s*, 1H, ArH), 6.68 (*d*, *J* = 7.8 Hz, 1H, ArH), 7.08-7.15 (*m*, 6H, ArH), 7.21 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.30 (*s*, 1H, =CH), 7.54 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.4, 21.6, 21.8, 125.6, 126.7, 128.0, 128.1, 129.5, 129.6, 129.8, 129.9, 130.9, 137.1, 137.6, 137.8, 142.8, 144.8, 160.9.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-1-Methoxy-3-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3l). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3l as a white solid (115.0 mg, 90%); m.p.: 157-159 °C (153-154 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.34 (*s*, 3H, CH₃), 2.40 (*s*, 3H, CH₃), 3.66 (*s*, 3H, OCH₃), 6.35-6.36 (*m*, 1H, ArH), 6.50 (*d*, *J* = 7.8 Hz, 1H, ArH), 6.87-6.88 (*dd*, *J* = 2.4 Hz, *J* = 8.4 Hz, 1H, ArH), 7.11-7.13 (*m*, 4H, ArH), 7.14-7.17 (*m*, 1H, ArH), 7.22 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.32 (*s*, 1H, =CH), 7.56 (*d*, *J* = 7.8 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.8, 55.4, 114.3, 116.4, 121.7, 125.7, 128.1, 129.3, 129.4, 129.7, 129.8, 130.0, 137.1, 137.6, 142.9, 144.9, 159.1, 160.5.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-1-Chloro-3-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3m). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product **3m** as a white solid (113.5 mg, 88%); m.p.: 184-186 °C (180-181 °C^[3]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.36 (*s*, 3H, CH₃), 2.42 (*s*, 3H, CH₃), 6.74-6.76 (*m*, 2H, ArH), 7.12-7.19 (*m*, 5H, ArH), 7.24 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.30-7.32 (*m*, 1H, ArH), 7.35 (*s*, 1H, =CH), 7.55 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.7, 21.8,

125.7, 127.9, 128.1, 128.8, 129.5, 129.9, 130.0, 130.1, 130.2, 130.7, 134.2, 136.5, 137.3, 143.3, 145.3, 159.1.

The data are in agreement with those previously reported in the literature.^[3]

(*E*)-1-Methoxy-2-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3n). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product **3n** as a white solid (109.9 mg, 86%); m.p.: 137-139 °C (138-139 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.34 (*s*, 3H, CH₃), 2.40 (*s*, 3H, CH₃), 3.47 (*s*, 3H, OCH₃), 6.47-6.61 (*m*, 1H, ArH), 6.68 (*d*, *J* = 8.4 Hz, 1H, ArH), 6.77-6.82 (*m*, 1H, ArH), 7.11-7.14 (*m*, 4H, ArH), 7.19 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.28-7.31 (*m*, 1H, ArH), 7.39 (*s*, 1H, =CH), 7.53 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.8, 55.2, 110.4, 117.0, 120.0, 125.8, 128.2, 129.5, 129.6, 129.9, 131.3, 131.8, 137.5, 142.6, 144.5, 156.5.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-1-Fluoro-2-(1-(*p*-tolylsulfinyl)-2-tosylvinyl)benzene (3o). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product **3o** as a white solid (99.3 mg, 80%); m.p.: 157-158 °C (156-157 °C^[3]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.35 (*s*, 3H, CH₃), 2.43 (*s*, 3H, CH₃), 6.75-6.82 (*m*, 1H, ArH), 6.93-6.97 (*m*, 1H, ArH), 7.03-7.07 (*m*, 1H, ArH), 7.13-7.16 (*m*, 4H, ArH), 7.28 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.33-7.37 (*m*, 1H, ArH), 7.41 (*s*, 1H, =CH), 7.64 (*d*, *J* = 7.8 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.7, 21.8, 115.6 (*d*, *J* = 21.0 Hz), 116.5 (*d*, *J* = 16.5 Hz), 123.8 (*d*, *J* = 3.0 Hz), 125.8, 128.2, 129.9, 130.0, 131.0 (*d*, *J* = 12.0 Hz), 131.1, 132.3 (*d*, *J* = 7.5 Hz), 136.6, 137.1, 143.2, 145.2, 155.0, 159.1 (*d*, *J* = 250.5 Hz); ¹⁹F NMR (564 MHz, CDCl₃), δ , ppm: -110.74.

The data are in agreement with those previously reported in the literature.^[3]

(*E*)-2-(1-(*p*-Tolylsulfinyl)-2-tosylvinyl)naphthalene (3p). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3p as a white solid (108.4 mg, 81%); m.p.: 172-174 °C (168-169 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.31 (*s*, 3H, CH₃), 2.33 (*s*, 3H, CH₃), 6.93-6.95 (*dd*, *J* = 8.4 Hz, 1.8 Hz, 1H, ArH), 7.07 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.10-7.12 (*m*, 4H, ArH), 7.40-7.43 (*m*, 2H, =CH, ArH), 7.50-7.56 (*m*, 4H, ArH), 7.67 (*d*, *J* = 8.4 Hz, 1H, ArH), 7.73 (*d*, *J* = 7.8 Hz, 1H, ArH), 7.81 (*d*, *J* = 7.8 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.7, 125.6, 125.9, 126.6, 126.9, 127.6, 127.92, 127.93, 128.1, 128.5, 129.0, 129.7, 129.9, 130.0, 132.3, 133.7, 137.0, 137.5, 142.9, 145.0, 160.6.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-2-(1-(*p*-Tolylsulfinyl)-2-tosylvinyl)thiophene (3q). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3q as a white solid (69.9 mg, 58%); m.p.: 156-158 $\ C$ (156-157 $\ C^{[2]}$); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.34 (*s*, 3H, CH₃), 2.42 (*s*, 3H, CH₃), 7.02-7.04 (*m*, 1H, ArH), 7.14-7.15 (*m*, 3H, ArH), 7.21 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.26 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.33 (*s*, 1H, =CH), 7.48 (*d*, *J* = 5.4 Hz, 1H, ArH), 7.65 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.8, 125.5, 127.6, 127.8, 128.0, 129.6, 129.9, 130.1, 130.7, 132.2, 137.4, 137.9, 143.0, 145.1, 154.0.

(*E*)-1-Methyl-4-((2-(*p*-tolylsulfinyl)hex-1-en-1-yl)sulfonyl)benzene (3r). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3r as a white solid (57.5 mg, 51%); m.p.: 151-153 °C (152-153 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 0.85 (*t*, *J* = 7.2 Hz, 3H, CH₃), 1.25-1.33 (*m*, 2H, CH₂), 1.49-1.57 (*m*, 2H, CH₂), 1.97-2.02 (*m*, 1H, CH_{2a}), 2.42 (*s*, 3H, CH₃), 2.47 (*s*, 3H, CH₃), 2.96-3.01 (*m*, 1H, CH_{2b}), 7.13 (*s*, 1H, =CH), 7.30 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.37 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.47 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.82 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 13.7, 21.7, 21.8, 22.9, 26.7, 31.5, 126.7, 127.7, 127.8, 130.2, 130.5, 137.9, 138.0, 143.7, 145.2, 162.3.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-1-Methyl-4-((1-phenyl-1-(*p*-tolylsulfinyl)prop-1-en-2-yl)sulfonyl)benzene (3s). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3s as a white solid (105.8 mg, 86 %); m.p.: 143-145 °C (143-144 °C^[3]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.37 (*s*, 3H, CH₃), 2.38 (*s*, 3H, CH₃), 2.72 (*s*, 3H, CH₃), 6.21 (*d*, *J* = 6.0 Hz, 1H, ArH), 6.76 (*d*, *J* = 6.0 Hz, 1H, ArH), 6.99-7.02 (*m*, 3H, ArH), 7.10 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.15 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.24-7.28 (*m*, 4H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 15.8, 21.6, 21.7, 124.4, 126.6, 126.8, 128.1, 128.9, 129.6, 129.8, 131.0, 136.6, 137.9, 142.1, 144.2, 144.6, 153.4.

(3R,3aR,6S,6aR)-3-(Prop-2-yn-1-yloxy)-6-((E)-2-(*p*-tolylsulfinyl)-3-tosylallyl)oxyhexahydrofuro[3,2-b]furan (3t). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3t as a white waxy solid (94.4 mg, 61 %); ¹H NMR (600 MHz, CDCl₃), δ, ppm: 2.40-2.49 (*m*, 6H, CH₃), 3.48-4.04 (*m*, 6H, ≡CH, CH, CH₂), 4.10-4.36 (*m*, 4H, CH₂), 4.50-4.69 (*m*, 2H, CH), 5.22-5.40 (*m*, 1H, CH), 7.17-7.38 (*m*, 5H, =CH, ArH), 7.47-7.55 (*m*, 2H, ArH), 7.79-7.83 (*m*, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ, ppm: 21.7, 21.9, 56.9, 57.8, 57.9, 63.0, 63.1, 63.7, 64.7, 69.9, 70.3, 70.4, 72.7, 73.2, 73.3, 75.2, 75.3, 75.4, 78.6, 78.9, 79.2, 79.3, 80.26, 80.28, 80.5, 80.58, 80.60, 83.11, 83.12, 84.6, 84.8, 85.3, 85.6, 86.3, 86.33, 126.3, 126.4, 126.44, 126.5, 127.8, 127.93, 127.95, 128.0, 128.3, 128.9, 129.2, 130.3, 130.33, 130.34, 130.36, 130.4, 130.44, 130.5, 137.0, 137.1, 137.14, 137.22, 137.9, 138.0, 138.4, 143.1, 143.2, 143.4, 143.5, 145.5, 145.6, 145.65, 145.7, 158.8, 158.9, 159.5; ESI-HRMS, *m*/*z*: Calcd for C₂₆H₂₉O₇S₂ [M+H]⁺: 517.1349, Found: 517.1346.

(*E*)-2-(*p*-Tolylsulfinyl)-3-tosylallyl-2-(4-(5-chloro-3-fluoropyridin-2-yl)oxyphenoxy)propanoate (3u). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 4:1) to provide the product 3u as a white waxy solid (108.0 mg, 56 %, dr = 1:1), (76 %, dr = 1:1^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 1.58 (*d*, *J* = 6.6 Hz, 3H, CH₃), 1.63 (*d*, *J* = 7.2 Hz, 3H, CH₃), 2.40 (*s*, 3H, CH₃), 2.41 (*s*, 3H, CH₃), 2.47 (*s*, 3H, CH₃), 2.48 (*s*, 3H, CH₃), 4.49 (*d*, *J* = 14.4 Hz, 1H, CH), 4.59 (*d*, *J* = 14.4 Hz, 1H, CH), 4.72-4.76 (*m*, 2H, CH), 5.80-5.83 (*m*, 1H, CH), 5.86-5.89 (*m*, 1H, CH), 6.90 (*d*, *J* = 7.2 Hz, 2H, ArH), 6.91 (*d*, *J* = 7.2 Hz, 2H, ArH), 7.08-7.10 (*m*, 4H, ArH), 7.25 (*d*, *J* = 9.6 Hz, 2H, ArH), 7.27 (*s*, 1H, =CH), 7.28 (*s*, 1H, =CH), 7.30 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.39 (*d*, *J* = 8.4 Hz, 4H, ArH), 7.44-7.50 (*m*, 6H, ArH), 7.80-7.87 (*m*, 6H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 18.6, 18.7, 21.7, 21.9, 57.5, 57.8, 72.9, 73.1, 116.2, 116.3, 122.6, 122.7, 125.04 (*d*, *J* = 15.0 Hz), 125.05 (*d*, *J* = 4.5 Hz), 125.16 (*d*, *J* = 18.0 Hz), 125.17 (*d*, *J* = 4.5 Hz), 126.4, 126.5, 128.16, 128.19, 130.4, 130.6, 130.7, 130.8, 136.69, 136.72, 137.0, 137.1, 140.26 (*d*, *J* = 6.0 Hz), 140.27 (*d*, *J* = 6.0 Hz), 144.0, 145.83, 145.84, 147.0 (*d*, *J* = 264.0 Hz), 147.1 (*d*, *J* = 265.5 Hz), 147.5, 151.3 (*d*, *J* = 10.5 Hz), 151.4 (*d*, *J* = 12.0 Hz), 154.7, 154.8, 155.6, 155.7, 171.2; ESI-HRMS, *m*/*z*: Calcd for C₃₁H₂₈CIFNO₇S₂ [M+H]⁺: 644.0974, Found: 644.0966.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-((2-Phenyl-2-phenylsulfinylvinyl)sulfonyl)benzene (4a). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product 4a as a white solid (102.7 mg, 93%); m.p.: 183-184 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.90 (*d*, *J* = 7.2 Hz, 2H, ArH), 7.20 (*d*, *J* = 7.2 Hz, 2H, ArH), 7.24-7.27 (*m*, 2H, ArH), 7.31-7.33 (*m*, 2H, ArH), 7.35 (*s*, 1H, =CH), 7.37 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.41-7.45 (*m*, 3H, ArH), 7.58 (*t*, *J* = 7.2 Hz, 1H, ArH), 7.68 (*d*, *J* = 7.2 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 125.5, 128.0, 128.1, 128.3, 129.2, 129.3, 129.4, 129.5, 130.4, 132.2, 133.9, 140.3, 140.5, 161.3; ESI-HRMS, *m*/*z*: Calcd for C₂₀H₁₇O₃S₂ [M+H]⁺: 369.0614, Found: 369.0609.

(*E*)-1-Methoxy-4-(2-(4-methoxyphenylsulfinyl)-2-phenylvinyl)sulfonylbenzene (4b). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product 4b as a white solid (120.7 mg, 94%); m.p.: 154-156 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 3.77 (*s*, 1H, OCH₃), 3.83 (*s*, 1H, OCH₃), 6.80 (*d*, *J* = 9.0 Hz, 2H, ArH), 6.86 (*d*, *J* = 9.0 Hz, 2H, ArH), 6.89 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.16 (*d*, *J* = 9.0

Hz, 2H, ArH), 7.21-7.25 (*m*, 2H, ArH), 7.31-7.34 (*m*, 2H, =CH, ArH), 7.57 (*d*, J = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 55.6, 55.8, 114.4, 114.7, 127.7, 128.1, 128.4, 129.3, 129.9, 130.0, 130.2, 130.9, 132.0, 160.3, 162.7, 163.9; ESI-HRMS, *m*/*z*: Calcd for C₂₂H₂₁O₅S₂ [M+H]⁺: 429.0825, Found: 429.0820.

(*E*)-4-(2-([1,1'-biphenyl]-4-ylsulfinyl)-2-phenylvinyl)sulfonyl-1,1'-biphenyl (4c). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product 4c as a white solid (109.2 mg, 70%); m.p.: 176-178 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.97 (*d*, *J* = 7.2 Hz, 2H, ArH), 7.27-7.29 (*m*, 3H, ArH), 7.37-7.40 (*m*, 2H, ArH), 7.43 (*s*, 1H, =CH), 7.44-7.46 (*m*, 3H, ArH), 7.47-7.50 (*m*, 3H, ArH), 7.53-7.55 (*m*, 4H, ArH), 7.56-7.58 (*m*, 2H, ArH), 7.62 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.73 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 125.9, 127.3, 127.5, 127.8, 127.9, 128.2, 128.3, 128.5, 128.6, 128.8, 129.1, 129.2, 129.4, 129.8, 130.4, 138.8, 138.9, 139.3, 139.4, 145.1, 146.9, 161.0; ESI-HRMS, *m*/*z*: Calcd for C₃₂H₂₃O₃S₂ [M-H]⁻: 519.1094, Found: 519.1093.

(*E*)-1-Fluoro-4-((2-(4-fluorophenylsulfinyl)-2-phenylvinyl)sulfonyl)benzene (4d). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product 4d as a white solid (71.5 mg, 59 %); m.p.: 144-146 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.90 (*d*, *J* = 7.2 Hz, 2H, ArH), 7.00-7.04 (*m*, 2H, ArH), 7.07-7.11 (*m*, 2H, ArH), 7.19-7.21 (*m*, 2H, ArH), 7.27-7.30 (*m*, 2H, ArH), 7.34 (*s*, 1H, =CH), 7.39 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.65-7.67 (*m*, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 116.5 (*d*, *J* = 22.5 Hz), 116.7 (*d*, *J* = 22.5 Hz), 127.8 (*d*, *J* = 9.0 Hz), 127.9, 128.5, 129.2,

129.7, 130.6, 131.0 (*d*, J = 9.0 Hz), 135.6 (*d*, J = 3.0 Hz), 136.3 (*d*, J = 3.0 Hz), 161.3, 164.9 (*d*, J = 253.0 Hz), 166.0 (*d*, J = 255.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃), δ , ppm: -102.8, -105.9; ESI-HRMS, m/z: Calcd for C₂₀H₁₅F₂O₃S₂ [M+H]⁺: 405.0425, Found: 405.0419.

(*E*)-1-Chloro-4-((2-(4-chlorophenylsulfinyl)-2-phenylvinyl)sulfonyl)benzene (4e). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product **4e** as a white solid (117.7 mg, 90%); m.p.: 187-189 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.91 (*d*, *J* = 7.2 Hz, 2H, ArH), 7.10 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.29-7.31 (*m*, 4H, ArH), 7.32 (*s*, 1H, =CH), 7.38-7.43 (*m*, 3H, ArH), 7.57 (*d*, *J* = 9.0 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 126.6, 127.7, 128.5, 129.3, 129.4, 129.5, 129.6, 130.7, 138.5, 138.6, 138.7, 140.8, 161.4; ESI-HRMS, *m/z*: Calcd for C₂₀H₁₅Cl₂O₃S₂ [M+H]⁺: 436.9834, Found: 436.9826.

(*E*)-1-Bromo-4-(2-(4-bromophenylsulfinyl)-2-phenylvinyl)sulfonylbenzene (4f). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product 4f as a yellow solid (136.7 mg, 87%); m.p.: 190-192 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.91 (*d*, *J* = 7.2 Hz, 2H, ArH), 7.03 (*d*, *J* = 9.0 Hz, 2H, ArH), 7.29-7.32 (*m*, 3H, =CH, ArH), 7.42 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.46 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.49 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.56 (*d*, *J* = 9.0 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 126.7, 127.0, 127.7, 128.6, 129.3, 129.4, 129.5, 129.6, 130.8, 132.5, 132.6, 139.2, 139.3, 161.3; ESI-HRMS, *m/z*: Calcd for C₂₀H₁₅Br₂O₃S₂ [M+H]⁺: 526.8803, Found: 526.8795.

(*E*)-1-Iodo-4-(2-(4-iodophenylsulfinyl)-2-phenylvinyl)sulfonylbenzene (4g). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product 4g as a yellow solid (150.7 mg, 81%); m.p.: 187-189 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.87 (*d*, *J* = 8.4 Hz, 2H, ArH), 6.91 (*d*, *J* = 7.2 Hz, 2H, ArH), 7.29-7.32 (*m*, 4H, ArH), 7.34 (*s*, 1H, =CH), 7.42 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.66 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.77 (*d*, *J* = 9.0 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 99.1, 102.1, 126.6, 127.7, 128.5, 129.3, 129.4, 129.5, 130.8, 138.4, 138.5, 139.9, 140.1, 161.3; ESI-HRMS, *m/z*: Calcd for C₂₀H₁₅I₂O₃S₂ [M+H]⁺: 620.8547, Found: 620.8536.

(*E*)-1-(2-Phenyl-2-(4-trifluoromethylphenylsulfinyl)vinyl)sulfonyl-4-trifluoromethylphenzene (4h). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product 4h as a white solid (80.1 mg, 53 %); m.p.: 145-146 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.92 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.26 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.29-7.33 (*m*, 2H, ArH), 7.36 (*s*, 1H, =CH), 7.44 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.58 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.68 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.78 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 123.1 (*q*, *J* = 271.5 Hz), 123.3 (*q*, *J* = 271.5 Hz), 125.5, 126.2 (*q*, *J* = 3.0 Hz), 126.3 (*q*, *J* = 3.0 Hz), 127.3, 128.7, 129.3, 129.5, 131.1, 134.0 (*q*, *J* = 33.0 Hz), 135.0 (*q*, *J* = 33.0 Hz), 143.5, 144.5, 161.8; ¹⁹F NMR (564 MHz, CDCl₃), δ , ppm: -63.0, -63.3; ESI-HRMS, *m*/*z*: Calcd for C₂₂H₁₅F₆O₃S₂ [M+H]⁺: 505.0361, Found: 505.0355.

(*E*)-1-Bromo-3-(2-((3-bromophenyl)sulfinyl)-2-phenylvinyl)sulfonylbenzene (4i). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product **4i** as a white solid (114.7 mg, 73%); m.p.: 122-124 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.90 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.04 (*d*, *J* = 7.8 Hz, 1H, ArH), 7.18 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.26-7.27 (*m*, 1H, ArH), 7.30-7.34 (*m*, 4H, =CH, ArH), 7.44-7.46 (*m*, 1H, ArH), 7.55 (*d*, *J* = 7.2 Hz, 1H, ArH), 7.62 (*d*, *J* = 7.2 Hz, 1H, ArH), 7.68-7.69 (*m*, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 123.2, 123.4, 123.7, 126.6, 127.4, 127.9, 128.6, 129.3, 129.7, 130.6, 130.8, 131.0, 131.1, 135.2, 137.0, 142.0, 142.2, 161.8; ESI-HRMS, *m/z*: Calcd for C₂₀H₁₅Br₂O₃S₂ [M+H]⁺: 524.8658, Found: 524.8650.

(*E*)-1-Methyl-3-(2-phenyl-2-(*m*-tolylsulfinyl)vinylsulfonyl)benzene (4j). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product 4j as a white solid (97.4 mg, 82%); m.p.: 87-89 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.27 (*s*, 3H, CH₃), 2.34 (*s*, 3H, CH₃), 6.89 (*d*, *J* = 7.2 Hz, 2H, ArH), 6.91 (*d*, *J* = 7.8 Hz, 1H, ArH), 7.02 (*s*, 1H, ArH), 7.17 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.21 (*d*, *J* = 7.2 Hz, 1H, ArH), 7.25-7.27 (*m*, 2H, ArH), 7.30-7.34 (*m*, 1H, ArH), 7.34 (*s*, 1H, =CH), 7.35-7.38 (*m*, 2H, ArH), 7.43 (*s*, 1H, ArH), 7.48 (*d*, *J* = 7.8 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.3, 21.4, 122.7, 125.1, 125.5, 128.1, 128.2, 128.4, 128.9, 129.1, 129.4, 129.6, 130.2, 133.0, 134.6, 139.5, 139.6, 139.9, 140.3, 161.1; ESI-HRMS, *m*/*z*: Calcd for C₂₂H₁₉O₃S₂ [M-H]⁻: 395.0781, Found: 395.0777.

(*E*)-2-(2-(Naphthalen-2-ylsulfinyl)-2-phenylvinyl)sulfonylnaphthalene (**4k**). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product **4k** as a white solid (108.1 mg, 77%); m.p.: 172-174 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.86 (*d*, *J* = 7.2 Hz, 2H, ArH), 7.13-7.16 (*m*, 2H, ArH), 7.25-7.27 (*m*, 1H, ArH), 7.28 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.50-7.52 (*m*, 2H, =CH, ArH), 7.55-7.60 (*m*, 2H, ArH), 7.64-7.70 (*m*, 4H, ArH), 7.80-7.83 (*m*, 3H, ArH), 7.87-7.89 (*m*, 2H, ArH), 8.15 (*s*, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 120.4, 122.6, 127.0, 127.5, 127.7, 128.0, 128.1, 128.2, 128.3, 128.5, 128.7, 129.3, 129.4 129.5, 129.6, 129.7, 130.0, 130.1, 130.4, 132.1, 132.5, 134.8, 135.4, 137.0, 137.1, 161.2; ESI-HRMS, *m/z*: Calcd for C₂₈H₂₁O₃S₂ [M+H]⁺: 469.0926, Found: 469.0920.

(*E*)-2-(2-Phenyl-2-(thiophen-2-ylsulfinyl)vinyl)sulfonylthiophene (4l). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 5:1) to provide the product 4l as a yellow solid (78.6 mg, 69%); m.p.: 133-134 °C; ¹H NMR (600 MHz, CDCl₃), δ , ppm: 6.91-6.92 (*m*, 1H, ArH), 7.05-7.06 (*m*, 1H, ArH), 7.07-7.08 (*m*, 3H, ArH), 7.29-7.31 (*m*, 2H, ArH), 7.38 (*t*, *J* = 7.2 Hz, 1H, ArH), 7.48-7.49 (*dd*, *J* = 3.6 Hz, 1.2 Hz, 1H, ArH), 7.49 (*s*, 1H, =CH), 7.61-7.62 (*dd*, *J* = 5.4 Hz, 1.2 Hz, 1H, ArH), 7.67-7.68 (*dd*, *J* = 4.8 Hz, 1.2 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 127.4, 127.9, 128.1, 128.4, 129.1, 130.3, 130.5, 132.8, 133.2, 134.6, 134.9, 141.47, 141.49, 160.2; ESI-HRMS, *m/z*: Calcd for C₁₆H₁₃O₃S₄ [M+H]⁺: 380.9742, Found: 380.9734.

S-(*p*-Tolyl) 4-methylbenzenesulfonothioate (5a). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 15:1) to provide the product 5a as a white solid (10 mg); m.p.: 73-75 $\$ C (74-75 $\$ C^[4]); ¹H NMR (600 MHz,

CDCl₃), δ , ppm: 2.38 (*s*, 3H, CH₃), 2.42 (*s*, 3H, CH₃), 7.14 (*d*, *J* = 7.8 Hz 2H, ArH), 7.21 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.24 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.46 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.6, 21.8, 124.7, 127.7, 129.5, 130.3, 136.6, 140.6, 142.2, 144.7.

The data are in agreement with those previously reported in the literature.^[4]

1-Methyl-4-(phenylethynylsulfonyl)benzene (**7a**). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 20:1) to provide the product **7a** as a white solid (46.1 mg, 60%); m.p.: 79-81 °C; (73-74 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.47 (*s*, 3H, CH₃), 7.35-7.40 (*m*, 4H, ArH), 7.47 (*t*, *J* = 7.8 Hz, 1H, ArH), 7.51-7.53 (*m*, 2H, ArH), 7.96 (*d*, *J* = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.9, 85.7, 93.1, 118.2, 127.7, 128.8, 130.1, 131.6, 132.9, 139.1, 145.5; ESI-HRMS, *m/z*: Calcd for C₁₅H₁₃O₂S [M+H]⁺: 257.0631, Found: 257.0629.

The data are in agreement with those previously reported in the literature.^[2]

(*E*)-(2-Phenyl-2-(*p*-tolylsulfinyl)vinyl)(*p*-tolyl)sulfane (**7b**). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate = 10:1) to provide the product **7b** as a white solid (45.7 mg, 42%); m.p.: 114-116 °C; (117-118 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.32 (*s*, 3H, CH₃), 2.36 (*s*, 3H, CH₃), 7.12 (*d*, *J* = 7.8 Hz, 2H, ArH), 7.15-7.18 (*m*, 4H, ArH), 7.25-7.27 (*m*, 2H, ArH), 7.29-7.32 (*m*, 3H, ArH), 7.37 (*d*, *J* = 8.4 Hz, 2H, ArH), 7.41 (*s*, 1H, =CH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.3, 21.5, 125.2, 128.7, 129.0, 129.1, 129.7, 130.3, 130.6, 131.1, 131.7, 132.3, 138.3, 139.3, 140.0, 141.6; ESI-HRMS, *m*/*z*: Calcd for C₂₂H₂₁OS₂ [M+H]⁺:365.1028, Found: 365.1025.

(*E*)-4,4'-(1-Phenylethene-1,2-diyldisulfonyl)bis(methylbenzene) (**7c**). The crude product was purified by flash chromatography on silica gel (Petroleum ether / Ethyl acetate/ DCM = 8:1:1) to provide the product **7c** as a white solid (112.5 mg, 91%); m.p.: 148-150 °C (152-153 °C^[2]); ¹H NMR (600 MHz, CDCl₃), δ , ppm: 2.39 (*s*, 3H, CH₃), 2.40 (*s*, 3H, CH₃), 6.91 (*d*, J = 7.2 Hz, 2H, ArH), 7.17-7.20 (*m*, 6H, ArH), 7.34-7.37 (*m*, 3H, ArH), 7.45 (*d*, J = 8.4 Hz, 2H, ArH), 7.75 (*s*, 1H, =CH); ¹³C NMR (150 MHz, CDCl₃), δ , ppm: 21.7, 21.8, 127.8, 128.3, 129.3, 129.8, 129.9, 130.1, 130.3, 133.3, 133.9, 136.4, 137.7, 145.5, 145.8, 152.9; ESI-HRMS, m/z: Calcd for C₂₂H₂₁O₄S₂ [M+H]⁺: 413.0876, Found: 413.0873.

Experimental Spectra Used in Discussions

Fig. S3. The HRMS and GC-MS of control experiments.

NMR Spectra and HRMS for All Compounds 3a-3u, 4a-4l, 5a and 7a-7c

¹³C NMR spectrum of compound **3a**

HRMS spectrum of compound 3a

¹H NMR spectrum of compound **3c**

 ^{13}C NMR spectrum of compound 3c

HRMS spectrum of compound 3c

¹H NMR spectrum of compound **3d**

¹³C NMR spectrum of compound **3d**

¹³C NMR spectrum of compound **3e**

 ^{13}C NMR spectrum of compound 3f

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹³C NMR spectrum of compound **3h**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR spectrum of compound **3j**

^{13}C NMR spectrum of compound 3k

¹³C NMR spectrum of compound **3**l

¹³C NMR spectrum of compound **3m**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR spectrum of compound **3n**

¹³C NMR spectrum of compound **30**

¹H NMR spectrum of compound **3**q

 13 C NMR spectrum of compound **3t**

HRMS of compound 3t

 ^{13}C NMR spectrum of compound 3u

HRMS of compound 3u

¹³C NMR spectrum of compound **4a**

HRMS spectrum of compound 4a

¹³C NMR spectrum of compound **4b**

HRMS of compound 4b

 ^{13}C NMR spectrum of compound 4c

HRMS of compound 4c

¹³C NMR spectrum of compound **4d**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR spectrum of compound **4d**

HRMS of compound 4d

¹³C NMR spectrum of compound **4e**

HRMS of compound 4e

HRMS of compound 4f

 13 C NMR spectrum of compound **4g**

HRMS of compound 4g

¹⁹F NMR spectrum of compound **4h**

HRMS of compound 4h

¹³C NMR spectrum of compound **4i**

HRMS of compound 4i

¹³C NMR spectrum of compound **4**j

HRMS of compound 4j

HRMS of compound 4k

¹³C NMR spectrum of compound **4**l

HRMS of compound 41

¹³C NMR spectrum of compound 7a

HRMS of compound 7a

¹³C NMR spectrum of compound **7b**

HRMS of compound 7b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR spectrum of compound **7**c

HRMS of compound 7c

References

- [1] a) R. Gianatassio, J. M. Lopchuk, J. Wang, C. M. Pan, L. R. Malins, L. Prieto, T. A. Brandt, M. R. Collins, G. M. Gallego, N. W. Sach, J. E. Spangler, H. C. Zhu, J. J. Zhu and P. S. Baran, Strain-release amination, *Science*, 2016, **351**, 241-246; b) B. N. Du, P. Qian, Y. Wang, H. B. Mei, J. L. Han and Y. Pan, Cu-Catalyzed deoxygenative C2-sulfonylation Reaction of Quinoline *N*-Oxides with Sodium Sulfinate *Org. Lett.*, 2016, **18**, 4144-4147; c) E. A. Gormong, T. M. Reineke and T. R. Hoye, *ACS Macro Lett.*, 2021, **10**, 1068-1072.
- [2] Z. K. Wang, Z. S. Zhang, W. J. Zhao, P. Sivaguru, G. Zanoni, Y. Y. Wang, E. A. Anderson and X. H. Bi, *Nat. Commun.*, 2021, **12**, 5244.
- [3] Z. S. Zhang, Q. M. Song, C. J. Feng, Z. K. Wang, W. J. Zhao, Y. Q. Ning and Y. Wu, *Chem. Asian J.*, 2022, 17, e202200299.
- [4] L. Cao, S.-H. Luo, K. Jiang, Z.-F. Hao, B.-W. Wang, C.-M. Pang and Z.-Y. Wang, Org. Lett., 2018, 20, 4754-4758.