Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Asymmetric Construction of Phosphono Dihydropyranones from a-

Ketophosphonates Enabled by Pd/Chiral Isothiourea Relay Catalysis

Mostafa Sayed^{1,2}, Zhipeng Shi¹, Zhi-Yong Han^{1*}, Liu-Zhu Gong^{1*}

[1] Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

[2] Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt.

General Information

All reagents were obtained from commercial sources and were used without further purification. Room temperature (rt) refers to 20-25 °C. Analytical thin layer chromatography was performed on pre-coated silica gel plates (Kieselgel 60 F254 silica). TLC visualization was carried out with ultraviolet light (254 nm), followed by staining with a 1% aqueous KMnO₄ solution followed by heating. Flash column chromatography was performed on Kieselgel 60 silica in the solvent system stated. 1H, 13C, 19F and 31P nuclear magnetic resonance (NMR) spectra were acquired on a Brucker-400 MHz and 500 MHz at ambient temperature in the deuterated solvent stated spectrometer. Chemical shifts(δ) are given in ppm relative to TMS. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta H = 7.26$ ppm, $\delta C = 77.16$ ppm). The high-resolution mass spectra (HRMS) were recorded on a Thermo LTQ Orbitrap XL (ESI+) or a P-SIMS-Gly of Brucker Daltonics Inc (EI+). All coupling constants, J, are quoted in Hz and determined by analysis using MestReNova software. Multiplicities are indicated by: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), ddd (doublet of doublet of doublets), dddd (doublet of doublet of doublets), dt (doublet of triplets) and td (triplet of doublets). The abbreviation Ar is used to denote aromatic, br. to denote broad and app. to denote apparent. HPLC analyses were obtained on a Shimadzu HPLC. All chiral HPLC traces were compared with an authentic racemic trace prepared using racemic HBTM-2.1. Mass spectrometry (m/z) data were acquired by electrospray ionization (ESI). All phosphate esters were synthesized according to the literature¹ with some modifications.

1. Additional data for optimization of the reaction condition

Table S1. Evaluation of Lewis Base Organocatalysts^a

Br		P X Le	d(dba) ₂ (10 mol%) antphos (11 mol%) wis base (20 mol%)	
1	+ Ph ^o P OEt EtO ^{OEt}	1 bar	<i>i</i> -Pr₂NEt (4 eq.) THF (1 mL) 12 h, 30 ^o C	
Entr	y Lewis Base	Yield (%) ^b	d.r ^c	ee (%) ^d
1	4 a	45	13:1	63
2	4b	80	13:1	35
3	4 c	35	>20:1	26
4	4 d	85	13:1	4
5	4e	20	14:1	44
6	4 f	40	11:1	58
7	4h	60	12:1	55
8	4i	80	13:1	10
9	4g	60	9:1	20
10	4j	60	7:1	4
11	4k	70	>20:1	90

^{*a*}Unless noted otherwise, the reaction of **1** (0.225 mmol) and **2** (0.1 mmol, was carried out in THF (1.0 mL) at 30 °C in the presence of Pd(dba)₂ (10 mol %), XantPhos (11 mol %) and isothiourea catalyst (BTM) **4** (20 mol %), *i*-Pr₂NEt (4 equiv). ^{*b*}NMR yield. ^{*c*}The d.r. value was determined by 1H NMR analysis of the crude reaction mixture. ^{*d*}The *ee* was determined by HPLC of the pure product.

Table S2. Evaluation of Pd catalysts^a

v		()		
1	$Pd(OAc)_2$	30	9:1	83
2	PdCl ₂	32	10:1	91
3	[Pd(allyl)Cl] ₂	60	11:1	90
4	$Pd(TFA)_2$	30	11:1	84

^{*a*}Unless noted otherwise, the reaction of **1** (0.225 mmol) and **2** (0.1 mmol, was carried out in THF (1.0 mL) at 30 °C in the presence of Pd catalyst (10 mol %), XantPhos (11 mol %) and isothiourea catalyst (BTM) **4k** (20 mol %), *i*-Pr₂NEt (4 equiv). ^{*b*}NMR yield. ^{*c*}The d.r. value was determined by 1H NMR analysis of the crude reaction mixture. ^{*d*}The *ee* was determined by HPLC of the pure product.

|--|

Entry	Ligand	Yield (%) ^b	d.r ^c	ee (%) ^d
1	Ph ₃ P	traces	-	-
2	(2-furyl) ₃ P	22	8:1	80
3	DEPhos	45	9:1	86
4	DPPP	traces	-	-
5	DPPB	traces	-	-
6	DPPF	traces	-	-

^{*a*}Unless noted otherwise, the reaction of **1** (0.225 mmol) and **2** (0.1 mmol, was carried out in THF (1.0 mL) at 30 °C in the presence of Pd(dba)₂ (10 mol %), ligand (11 mol %) and isothiourea (BTM) catalyst **4k** (20 mol %), *i*-Pr₂NEt (4 equiv). ^{*b*}NMR yield. ^{*c*}The d.r. value was determined by 1H NMR analysis of the crude reaction mixture. ^{*d*}The *ee* was determined by HPLC of the pure product.

Table S4. Evaluation of Solvent^a

^{*a*}Unless noted otherwise, the reaction of **1** (0.225 mmol) and **2** (0.1 mmol, was carried out in THF (1.0 mL) at 30 °C in the presence of Pd(dba)₂ (10 mol %), XantPhos (11 mol %) and isothiourea (BTM) catalyst **4k** (20 mol %), *i*-Pr₂NEt (4 equiv). ^{*b*}NMR yield. ^{*c*}The d.r. value was determined by 1H NMR analysis of the crude reaction mixture. ^{*d*}The *ee* was determined by HPLC of the pure product.

Table S5. Evaluation of CO Pressure^a

Entry	CO Pressure	Yield (%) ^b	d.r ^c	ee (%) ^d
1	2	traces	-	-
2	3	N.D	-	-
3	4	N.D	-	-

^{*a*}Unless noted otherwise, the reaction of **1** (0.225 mmol) and **2** (0.1 mmol, was carried out in THF (1.0 mL) at 30 °C in the presence of Pd(dba)₂ (10 mol %), Xantphos (11 mol %) and benzotetramisole (BTM) catalyst **4k** (20 mol %), *i*-Pr₂NEt (4 equiv). ^{*b*}NMR yield. ^{*c*}The d.r. value was determined by 1H NMR analysis of the crude reaction mixture. ^{*d*}The *ee* was determined by HPLC of the pure product.

Scheme S1. Unsuccessful examples of benzyl bromides and α-ketophosphonates

2. Determining the absolute configuration of the products:

In previous work², the absolute configuration of **3h** was determined to be 3R, 4S. Through comparison of the HPLC data, **3h** in our case could also be determined as 3R, 4S. Reference HPLC data (CHIRALPAK AD-H, hexane/isopropanol = 90/10, 1 mL/min, 220 nm) tR (3R,4S): 30.4 min, tR (3S,4R) 33.6 min. Our HPLC data of **3j** (CHIRALPAK AD-H, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 220 nm, tR = 28.4 min (minor), tR = 31.7 min (major).

3. 1.0 Mmol scale reaction:

To a flame-dried and Ar-purged Schlenk tube (100 mL) were added Pd(dba)₂ (0.1 mmol, 58 mg), Xanthphos (0.11 mmol, 64 mg), **4k** (0.2 mmol, 62 mg) and a stirring bar. The Schlenk tube was then evacuated and filled back with argon. This cycle was repeated three times and followed by addition of 2-(bromomethyl) naphthalene (2.25 mmol, 495 mg), solution of diethyl (E)-(3-(*p*tolyl)acryloyl)phosphonate (1 mmol, 282 mg) in THF (10 mL), and *i*-Pr₂NEt (4 mmol, 517 mg). The solution was frozen under liquid nitrogen, the nitrogen atmosphere was evacuated from the tube in a Schlenk line and then was filled with 1 bar CO, then was stirred under CO atmosphere at 30 °C for 12 h. The reaction was directly purified by flash column chromatography on silica gel to give **3n**. The d.r. was determined by ¹H NMR analysis of the crude product. Then the reaction was directly purified through flash column chromatography on silica gel (PE: EA = 2:1) to give **3n** as a yellow oil, 360 mg, Yield: 80%. Enantiomeric excess: 94%, > 20:1 d.r.

4. Synthesis of substrates

4.1. General Procedure for the Synthesis of Allyl Alcohols³.

To a stirred solution of requisite aldehyde (10 mmol) in dichloromethane, diethylphosphite (10 mmol) was added, then triethyl amine (10 mmol) was added dropwise. The resulting solution was stirred at r.t. for 72 h before dilution with HCl (1 M) and the reaction was washed with H₂O, saturated aqueous NaHCO₃, and brine. The organic layer was dried over MgSO₄ and concentrated in vacuo to give the crude product.

4.2. General Procedure for Synthesis of Phosphonate Ester.

A solution of the requisite allylic alcohol (1.0 equiv.) in CH_2Cl_2 at -10 °C was added a saturated solution of SO₃.pyridine (3.0 equiv.) in DMSO and *i*-Pr₂NEt (3.0 equiv.) and the reaction stirred at -10 °C until complete by TLC (warming to rt if necessary). Upon completion the reaction was diluted with Et2O and washed consecutively with H₂O, saturated aqueous NaHCO₃, saturated aqueous Na₂SO₄

and brine. The ethereal solution was dried over MgSO₄ and concentrated in vacuo to give the crude product.

5. General procedure for the synthesis of the products 3a-3n

To a flame-dried and Ar-purged Schlenk tube (25 mL) were added Pd(dba)₂ (0.01 mmol, 5.8 mg), Xantphos (0.011 mmol, 6.4 mg), **4k** (0.02 mmol, 6.2 mg) and a stirring bar. The Schlenk tube was then evacuated and filled back with argon. This cycle was repeated three times and followed by addition of benzyl bromide derivative **1** (0.225 mmol), solution of α -Ketophosphonates **2** (0.1 mmol) in THF (1 mL), and *i*-Pr₂NEt (0.4 mmol, 51.7 mg). The solution was frozen under liquid nitrogen, the nitrogen atmosphere was evacuated from the tube in a Schlenk line and then was filled with 1 bar CO, then was stirred under CO atmosphere at 30 °C for 12 h. The reaction was directly purified by flash column chromatography on silica gel to give the pure product **3**.

6. General procedure for the synthesis of the products 4a-4h

To a flame-dried and Ar-purged Schlenk tube (25 mL) were added $Pd(dba)_2$ (0.01 mmol, 5.8 mg), Xantphos (0.011 mmol, 6.4 mg), **4k** (0.02 mmol, 6.2 mg) and a stirring bar. The Schlenk tube was then evacuated and filled back with argon. This cycle was repeated three times and followed by addition of benzyl bromide derivative **1** (0.225 mmol), solution of α -Ketophosphonates **2** (0.1 mmol) in THF (1 mL), and *i*-Pr2NEt (0.4 mmol, 51.7 mg). The solution was frozen under liquid nitrogen, the nitrogen atmosphere was evacuated from the tube in a Schlenk line and then was filled with 1 bar CO. The solution then was stirred under CO atmosphere at 30 °C for 12 h. After that, the tube was opened to release CO and 1 mL MeOH was added to the reaction mixture, then the reaction was allowed to stir at the same temperature for additional 24 h. After the reaction was completed, the solvent was removed, and the residue was purified by column chromatography to give the pure product **4**.

7. Characterization of allyl alcohols

Dimethyl (E)-(1-hydroxy-3-phenylallyl)phosphonate

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (m, 2H), 7.32 (m, 2H), 7.28 – 7.24 (m, 1H), 6.80 (ddd, *J* = 15.9, 4.9, 1.6 Hz, 1H), 6.33 (dt, *J* = 15.9, 5.8 Hz, 1H), 4.89 (s, 1H), 4.73 (ddd, *J* = 12.9, 6.2, 1.7 Hz, 1H), 3.83 (d, *J* = 10.4 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 136.30, 136.28, 132.63, 132.52, 128.60, 127.97, 126.70, 126.68, 123.58, 123.54, 69.86, 68.57, 54.08, 54.02, 53.80, 53.74. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₁H₁₅O₄PNa: 265.0606, found: 265.0602.

Diethyl (E)-(1-hydroxy-3-phenylallyl)phosphonate

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 (m, 2H), 7.31 (m, 2H), 7.26 (m, 1H), 6.79 (dd, *J* = 16.0, 4.9 Hz, 1H), 6.46 – 6.22 (m, 1H), 4.69 (ddd, *J* = 13.0, 6.2, 1.6 Hz, 1H), 4.52 (s, 1H), 4.19 (p, *J* = 7.4 Hz, 4H), 1.33 (qd, *J* = 7.1, 1.4 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 136.47, 136.45, 132.32, 132.22, 128.57, 127.85, 126.65, 126.63, 123.96, 123.93, 70.10, 68.81, 63.40, 63.35, 63.16, 63.10, 16.55, 16.51. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₃H₁₉O₄PNa: 293.0919, found: 293.0915.

Diethyl (E)-(1-hydroxy-3-(p-tolyl)allyl)phosphonate

¹**H NMR** (500 MHz, CDCl₃) δ 7.30 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 6.74 (ddd, J = 15.9, 4.9, 1.6 Hz, 1H), 6.27 (ddd, J = 15.9, 6.4, 5.3 Hz, 1H), 4.66 (ddd, J = 12.5, 6.4, 1.7 Hz, 1H), 4.26 – 4.12 (m, 4H), 2.34 (s, 3H), 1.33 (q, J = 7.0 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 137.85, 133.57, 133.55, 132.54, 132.44, 129.29, 126.59, 126.58, 122.58, 122.54, 70.23, 68.95, 63.39, 63.33, 63.25, 63.19, 21.26, 16.56, 16.52. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₂₁O₄PNa: 307.1070, found:307.1076 *Diethyl (E)-(1-hydroxy-3-(4-methoxyphenyl)allyl)phosphonate*

MeO

¹**H NMR** (500 MHz, CDCl₃) δ 7.33 (d, J = 8.5 Hz, 2H), 6.87 – 6.80 (m, 2H), 6.71 (ddd, J = 15.9, 4.8, 1.5 Hz, 1H), 6.18 (dt, J = 15.9, 6.0 Hz, 1H), 4.64 (ddd, J = 12.2, 6.5, 1.6 Hz, 1H), 4.22 – 4.12 (m, 3H), 3.80 (s, 3H), 1.32 (q, J = 7.4 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.42, 132.17, 132.06, 129.21, 129.19, 127.89, 127.88, 121.55, 121.52, 113.96, 70.23, 68.95, 63.33, 63.28, 63.16, 63.11, 55.29, 16.55, 16.51. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₄H₂₂O₅P: 301.1205, found: 301.1206 *Diethyl (E)-(3-(4-bromophenyl)-1-hydroxyallyl)phosphonate*

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 6.73 (ddd, *J* = 16.0, 5.0, 1.6 Hz, 1H), 6.32 (dt, *J* = 15.9, 5.5 Hz, 1H), 4.67 (ddd, *J* = 13.5, 5.9, 1.7 Hz, 1H), 4.55 (s, 1H), 4.19 (p, *J* = 7.2 Hz, 4H), 1.33 (q, *J* = 7.3 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 135.39, 135.36, 131.69, 130.96, 130.83, 128.13, 128.11, 124.76, 124.72, 121.67, 121.65, 70.10, 68.50, 63.43, 63.36, 63.20, 63.13, 16.55, 16.50. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₃H₁₈BrO₄PNa: 371.0024, found: 371.0021. *Diethyl (E)-(3-(4-fluorophenyl)-1-hydroxyallyl)phosphonate*

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (d, J = 8.3, 2H), 7.26 (d, J = 8.2 Hz, 2H), 6.75 (dd, J = 16.0, 5.0 Hz, 1H), 6.31 (dt, J = 16.0, 5.5 Hz, 1H), 5.53 (broad s, 1H), 4.69 (ddd, J = 13.9, 5.9, 1.8 Hz, 1H), 4.23 – 4.15 (m, 4H), 1.32 (q, J = 7.4 Hz, 6H). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -113.80. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₃H₁₉FO₄P: 289.1005, found: 289.1002.

Diethyl (E)-(3-(2-chlorophenyl)-1-hydroxyallyl)phosphonate

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.3, 2.1 Hz, 1H), 7.32 (dd, J = 7.3, 2.0 Hz, 1H), 7.19 (dd, J = 6.9, 2.1 Hz, 2H), 7.17 – 7.12 (m, 1H), 6.30 (ddd, J = 15.9, 6.1, 5.0 Hz, 1H), 5.68 (s, 1H), 4.72 (ddd, J = 13.3, 6.1, 1.8 Hz, 1H), 4.27 – 4.07 (m, 4H), 1.32 (td, J = 7.1, 5.2 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 134.73, 134.70, 133.20, 133.18, 129.66, 128.81, 128.50, 128.37, 127.10, 127.08, 127.06, 126.84, 77.40, 77.08, 76.77, 70.23, 68.63, 63.64, 63.57, 63.27, 63.20, 16.51, 16.46. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₃H₁₈ClO₄PNa: 327.0523, found:327.0532

Diethyl (E)-(3-(2-bromophenyl)-1-hydroxyallyl)phosphonate

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.27 – 7.20 (m, 3H), 6.75 (ddd, J = 16.0, 5.0, 1.7 Hz, 1H), 6.34 (dt, J = 15.9, 5.3 Hz, 1H), 5.95 (d, J = 5.5 Hz, 1H), 4.71 (ddd, J = 14.0, 5.8, 1.8 Hz, 1H), 4.20 (p, J = 7.0 Hz, 4H), 1.33 (dt, J = 9.0, 7.0 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.40, 138.37, 134.46, 130.61, 130.48, 129.78, 127.69, 127.68, 126.43, 126.41, 125.66, 125.62, 124.84, 124.82, 69.90, 68.30, 63.58, 63.50, 63.27, 63.20, 16.52, 16.47. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₃H₁₉BrO₄P: 349,0204, found: 349.0204.

Diethyl (E)-(1-hydroxy-3-(2-methoxyphenyl)allyl)phosphonate

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (dd, J = 7.6, 1.7 Hz, 1H), 7.23 (ddd, J = 7.4, 1.7, 0.8 Hz, 1H), 7.08 (ddd, J = 16.1, 4.8, 1.6 Hz, 1H), 6.92 (td, J = 7.5, 1.1 Hz, 1H), 6.87 (dd, J = 8.2, 1.1 Hz, 1H), 6.35 (ddd, J = 16.1, 6.6, 5.3 Hz, 1H), 4.67 (ddd, J = 12.4, 6.6, 1.6 Hz, 1H), 4.20 (dq, J = 8.0, 7.1 Hz, 4H), 3.84 (s, 3H), 1.34 (td, J = 7.1, 2.1 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 156.91, 129.08, 127.95, 127.81, 127.24, 127.22, 125.35, 125.32, 124.21, 124.16, 120.63, 110.88, 70.91, 69.31, 63.24, 63.17, 55.42, 16.54, 16.48. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₂₁O₄PNa: 323.1024, found:323.1034. *Diethyl (E)-(3-(2,3-dimethoxyphenyl)-1-hydroxyallyl)phosphonate*

¹**H NMR** (400 MHz, CDCl₃) δ 7.10 (t, J = 1.9 Hz, 1H), 7.01 (dt, J = 8.4, 2.2 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 4.96 (d, J = 10.1 Hz, 1H), 4.11 – 4.01 (m, 5H), 3.89 (s, 3H), 3.88 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 148.87, 148.85, 148.81, 148.79, 128.92, 128.90, 119.71, 119.66, 110.73, 110.71, 110.24, 110.20, 71.19, 69.91, 63.31, 63.25, 63.09, 63.03, 55.86, 16.50, 16.45, 16.41. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₅H₂₃O₆PNa: 353.1130, found: 353.1130. **8.** Characterization of Phosphate ester

Diethyl cinnamoylphosphonate

The product was obtained as yellow oil after chromatographic purification (PE:EA= 1:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 16.3 Hz, 1H), 7.63 (dd, *J* = 7.8, 1.8 Hz, 2H), 7.47 – 7.39 (m, 3H), 7.10 (dd, *J* = 16.3, 12.0 Hz, 1H), 4.27 (dq, *J* = 8.1, 7.1 Hz, 4H), 1.40 (t, *J* = 7.1 Hz, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 199.45, 197.70, 148.67, 148.65, 133.99, 133.97, 131.73, 129.10, 129.08, 128.89, 128.18, 125.29, 124.64, 63.96, 63.88, 16.45, 16.39. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₃H₁₈O₄P: 269.0943, found: 269.0943.

Diethyl (E)-(3-(p-tolyl)acryloyl)phosphonate

The product was obtained as yellow oil after chromatographic purification (PE:EA= 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 16.2 Hz, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 7.9 Hz, 2H), 7.07 (dd, J = 16.2, 12.1 Hz, 1H), 4.26 (dq, J = 8.0, 7.1 Hz, 4H), 2.40 (s, 3H), 1.44 – 1.35 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 199.32, 197.58, 148.79, 148.77, 142.61, 131.32, 129.88, 129.17, 128.23, 124.42, 123.77, 63.87, 63.80, 21.69, 16.46, 16.40. HRMS (ESI) m/z (M+H)⁺ calculated for C₁₄H₂₀O₄P: 283.1104, found: 283.1101.

Diethyl (E)-(3-(4-methoxyphenyl)acryloyl)phosphonate

The product was obtained as yellow oil after chromatographic purification (PE:EA= 1:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 16.1 Hz, 1H), 7.60 (d, *J* = 8.8 Hz, 2H), 7.00 (dd, *J* = 16.1, 12.2 Hz, 1H), 6.94 (d, *J* = 8.9 Hz, 2H), 4.25 (dq, *J* = 8.0, 7.0 Hz, 4H), 3.87 (s, 3H), 1.39 (td, *J* = 7.1, 0.5 Hz, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 198.86, 197.13, 162.69, 148.57, 148.54, 131.14, 126.74, 126.72, 123.15, 122.49, 114.61, 63.81, 63.74, 55.50, 16.45, 16.40. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₁₉O₅PNa: 321.0873, found: 321.0882.

Diethyl (E)-(3-(4-bromophenyl)acryloyl)phosphonate

The product was obtained as yellow oil after chromatographic purification (PE:EA= 1:1). ¹**H** NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 16.3 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.07 (dd, *J* = 16.3, 11.8 Hz, 1H), 4.29 – 4.22 (m, 4H), 1.40 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 199.31, 197.91, 147.10, 147.08, 132.91, 132.90, 132.42, 130.33, 126.25, 125.67, 125.15, 64.01, 63.95, 16.46, 16.41. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₃H₁₇BrO₄P: 347.0048, found: 347.0041. *Diethyl (E)-(3-(4-fluorophenyl)acryloyl)phosphonate*

The product was obtained as yellow oil after chromatographic purification (PE:EA= 1:1). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 16.2 Hz, 1H), 7.64 (dd, J = 8.7, 5.5 Hz, 2H), 7.13 (t, J = 8.6 Hz, 2H), 7.02 (dd, J = 16.2, 11.9 Hz, 1H), 4.30 – 4.21 (m, 4H), 1.40 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 199.16, 197.76, 165.75, 163.73, 147.26, 131.18, 131.11, 130.30, 130.28, 130.26, 125.02, 125.00, 124.49, 124.47, 116.49, 116.31, 63.96, 63.91, 16.45, 16.41. HRMS (ESI) m/z (M+H)⁺ calculated for C₁₃H₁₇FO₄P: 287.0843, found: 287.0849. ¹⁹F NMR (471 MHz, CDCl₃) δ -106.81.

Diethyl (E)-(3-(2-chlorophenyl)acryloyl)phosphonate

The product was obtained as yellow oil after chromatographic purification (PE:EA= 1:1). ¹H NMR (500 MHz, CDCl₃) δ 8.54 (d, *J* = 16.3 Hz, 1H), 7.72 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.38 (td, *J* = 7.7, 1.6 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.06 (dd, *J* = 16.3, 11.8 Hz, 1H), 4.29 (p, *J* = 7.3 Hz, 4H), 1.41 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 199.45, 198.04, 144.13, 144.12, 136.27, 132.33, 132.25, 132.24, 130.42, 127.79, 127.25, 127.15, 126.63, 64.02, 63.96, 16.48, 16.43. HRMS (ESI) m/z (M+Na)⁺ calculated for C₁₃H₁₆ClO₄PNa: 325.0377, found: 325.0378.

Diethyl (E)-(3-(2-bromophenyl)acryloyl)phosphonate

The product was obtained as yellow oil after chromatographic purification (PE:EA= 1:1). ¹**H** NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 16.3 Hz, 1H), 7.67 (ddd, *J* = 22.9, 7.9, 1.5 Hz, 2H), 7.44 – 7.33 (m, 1H), 7.30 (td, *J* = 7.7, 1.7 Hz, 1H), 7.01 (dd, *J* = 16.2, 12.3 Hz, 1H), 4.29 (dq, *J* = 8.2, 7.1 Hz, 4H), 1.42 (t, *J* = 7.1 Hz, 6H). ¹³**C** NMR (126 MHz, CDCl₃) δ 199.41, 198.00, 146.83, 146.81, 133.99, 133.98, 133.71, 132.45, 127.94, 127.87, 127.41, 126.89, 126.75, 64.01, 63.96, 16.49, 16.44. HRMS (ESI) m/z (M+H)⁺ calculated for C₁₃H₁₇BrO₄P: 347.0048, found: 347.0048.

Diethyl (E)-(3-(2-methoxyphenyl)acryloyl)phosphonate

The product was obtained as yellow oil after chromatographic purification (PE:EA= 1:1). ¹**H** NMR (500 MHz CDCl₃) δ 8.48 (d, *J* = 16.1 Hz, 1H), 7.71 – 7.57 (m, 1H), 7.34 (td, *J* = 7.4, 1.3 Hz, 1H), 7.30 – 7.19 (m, 3H), 7.02 (dd, *J* = 16.1, 12.7 Hz, 1H), 4.27 (p, *J* = 7.2 Hz, 4H), 2.50 (s, 3H), 1.40 (t, *J* = 7.1 Hz, 7H). ¹³C NMR (126 MHz, CDCl₃) δ 199.31, 197.92, 146.42, 146.41, 139.33, 132.85, 132.84, 131.50, 131.10, 126.56, 126.53, 126.06, 125.54, 63.89, 63.84, 19.76, 16.48, 16.44. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₁₉O₄PNa: 305.0923, found: 305.0931.

Diethyl (E)-(3-(2,3-dimethoxyphenyl)acryloyl)phosphonate

The product was obtained as yellow oil after chromatographic purification (PE:EA= 1:1). ¹H NMR (500 MHz, CDCl₃) δ 8.43 (d, *J* = 16.5 Hz, 1H), 7.24 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.17 – 7.07 (m, 2H), 7.01 (dd, *J* = 8.1, 1.4 Hz, 1H), 4.28 (p, *J* = 7.2 Hz, 4H), 3.91 (s, 3H), 3.89 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 199.53, 198.13, 153.15, 149.49, 143.37, 143.35, 128.16, 128.15, 126.09, 125.57, 124.33, 119.29, 115.29, 63.83, 63.77, 61.62, 55.92, 16.47, 16.42. HRMS (ESI) m/z (M+H)⁺ calculated for C₁₅H₂₂O₆P: 329.1154, found: 329.1150.

Dimethyl cinnamoylphosphonate

The product was obtained as yellow oil without further purification. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, *J* = 16.3 Hz, 1H), 7.69 – 7.57 (m, 2H), 7.53 – 7.35 (m, 3H), 7.08 (dd, *J* = 16.3, 13.0 Hz, 1H), 3.92 (s, 3H), 3.90 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 198.55, 197.16, 149.16, 149.15, 133.88, 133.86, 131.87, 129.13, 125.35, 124.82, 54.14, 54.08. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₁H₁₄O₄P: 241.0630, found: 241.0628.

9. Characterization of products 3a-3n

Diethyl ((3R,4S)-2-oxo-3,4-diphenyl-3,4-dihydro-2H-pyran-6-yl)phosphonate (3a)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3a** (yield: 70%, 27 mg, d.r. >20:1, 90% ee) as yellow oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.20 (m, 6H), 7.12 (m, 2H), 7.07 – 7.01 (m, 2H), 6.51 (dd, *J* = 10.1, 4.0 Hz, 1H), 4.31 – 4.09 (m, 4H), 4.06 (ddd,

J = 8.3, 3.9, 2.6 Hz, 1H), 3.96 (d, J = 8.3 Hz,1H), 1.42 (t, J = 7.1 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 167.22 (d, J = 8.4 Hz), 145.40, 143.10, 138.92, 135.39, 129.05, 128.80, 128.24, 127.99, 127.87, 127.44, 122.40, 122.21, 63.50 (dd, J = 11.3, 5.8 Hz), 52.61, 45.51 (d, J = 12.7 Hz), 29.73, 16.36 (dd, J = 9.5, 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 4.31. HRMS (ESI) m/z (M+Na)⁺ calculated for C₂₁H₂₃O₅PNa: 409.1181, found: 409.1178. Enantiomeric excess: 90%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 13.0 min (minor), tR = 16.1 min (major).

Diethyl((3R,4S)-2-oxo-3-phenyl-4-(p-tolyl)-3,4-dihydro-2H-pyran-6-yl)phosphonate (3b)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3b** (yield: 80%, 32 mg, d.r. >20:1, 90% ee) as yellow oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 3H), 7.13 (m, 2H), 7.06 (d, *J* = 7.8 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.50 (dd, *J* = 10.1, 4.0 Hz, 1H), 4.30 – 4.06 (m, 4H), 4.05 – 3.99 (m, 1H), 3.94 (d, *J* = 8.2 Hz, 1H), 2.29 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.32 (d, *J* = 8.7 Hz), 145.10, 142.78, 137.57, 129.71, 129.38, 128.78, 128.60, 128.23, 127.94, 127.27, 122.65 (d, *J* = 19.4 Hz), 63.53 (dd, *J* = 11.4, 5.9 Hz), 52.65, 45.06 (d, *J* = 12.6 Hz), 41.01, 21.07, 16.34 (dd, *J* = 9.8, 6.3 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 4.42. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₂₂H₂₅O₅PNa: 423.1332, found: 423.1339. Enantiomeric excess: 90%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 11.8 min (minor), tR = 13.5 min (major)

Diethyl ((3R,4S)-4-(4-methoxyphenyl)-2-oxo-3-phenyl-3,4-dihydro-2H-pyran-6-yl)phosphonate (3c)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3c** (yield: 70%, 29.2 mg, d.r. >20:1, 88% ee) as yellow oil). ¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.22 (m, 3H), 7.12 (m, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.78 (d, *J* = 8.7 Hz, 2H), 6.50 (dd, *J* = 10.1, 3.9 Hz, 1H), 4.33 – 4.07 (m, 4H), 4.01 (ddd, *J* = 8.4, 4.0, 2.7 Hz, 1H), 3.92 (d, *J* = 8.3 Hz, 1H), 3.76 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 167.34 (d, *J* = 8.5 Hz), 159.04, 145.13, 142.82, 135.49, 130.86, 129.75, 129.68, 128.78, 128.50, 128.25, 128.00, 127.93, 122.82, 122.63, 114.35, 114.00, 63.48 (dd, *J* = 11.7, 5.8 Hz), 55.27, 52.88, 44.71 (d, *J* = 12.6 Hz), 16.35 (dd, *J* = 10.4, 6.3 Hz). ³¹**P** NMR (162 MHz, CDCl₃) δ 4.41. HRMS (ESI) m/z (M+H)⁺ calculated for C₂₂H₂₆O₆P: 417.1462, found: 417.1471. Enantiomeric excess: 88%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 10.8 min (minor), tR = 11.7 min (major).

Diethyl ((3R,4S)-4-(4-fluorophenyl)-2-oxo-3-phenyl-3,4-dihydro-2H-pyran-6-yl)phosphonate (3d)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3d** (yield: 78%, 31.5 mg, d.r. >20:1, 94% ee) as yellow oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 3H), 7.09 (dd, *J* = 7.5, 2.1 Hz, 2H), 7.03 – 6.88 (m, 4H), 6.48 (dd, *J* = 10.1, 3.7 Hz, 1H), 4.32 – 4.10 (m, 4H), 4.05 (dt, *J* = 9.0, 3.3 Hz, 1H), 3.88 (d, *J* = 9.0 Hz, 1H), 1.42 (t, *J* = 7.1 Hz, 3H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.01 (d, *J* = 8.7 Hz), 163.36, 160.91, 145.69, 143.38, 135.10, 134.72, 134.69, 129.13, 129.05, 128.83, 128.53, 128.30, 128.05, 122.16, 121.97, 116.05, 115.84, 63.52 (dd, *J* = 12.2, 6.0 Hz), 52.83, 44.82 (d, *J* = 12.6 Hz), 16.36 (dd, *J* = 10.3, 6.2 Hz). ³¹**P NMR** (202 MHz, CDCl₃) δ 4.11. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.05. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₁H₂₃FO₅P: 405.1267, found: 405.1276. Enantiomeric excess: 94%, determined by HPLC (Daicel Chirapak AD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 228 nm): tR = 21.7 min (major), tR = 31.8 min (minor).

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3e** (yield: 65%, 30.2 mg, d.r. >20:1, 88% ee) as yellow oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (dd, J = 8.0, 1.4 Hz, 1H), 7.33 (m, 6H), 7.22 – 7.16 (m, 2H), 6.49 – 6.38 (m, 1H), 4.63 (td, J = 5.3, 1.2 Hz, 1H), 4.34 – 4.24 (m, 2H), 4.22 – 4.15 (m, 2H), 4.12 – 4.02 (m, 1H), 1.44 (t, J = 7.0 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.76 (d, J = 8.1 Hz), 146.40, 144.09, 137.01, 135.05, 133.78, 129.66, 129.37, 129.08, 128.89, 128.62, 128.50, 128.32, 128.19, 127.75, 127.20, 124.16, 120.53, 120.34, 63.56 (dd, J = 15.8, 5.8 Hz), 50.71, 44.24 (d, J = 12.6 Hz), 16.35 (dd, J = 12.6, 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 4.06. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₁H₂₂BrO₅P: 465.0461, found: 465.0455. Enantiomeric excess: 88%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 10.5 min (major), tR = 11.5 min (minor).

Diethyl ((3R,4S)-4-(2-methoxyphenyl)-2-oxo-3-phenyl-3,4-dihydro-2H-pyran-6-yl)phosphonate (3f)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3f** (yield: 75%, 31.2 mg, d.r. >20:1, 90% ee) as yellow oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 6H), 7.04 (dd, J = 7.5, 1.7 Hz, 1H), 6.98 – 6.77 (m, 2H), 6.38 (ddd, J = 10.1, 5.2, 0.9 Hz, 1H), 4.29 – 4.08 (m, 6H), 3.80 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.25 (d, J = 8.2 Hz), 156.84, 144.87, 142.56, 137.09, 129.25, 128.82, 128.41, 127.84, 127.51, 126.91, 120.94, 120.84, 120.65, 110.90, 63.28 (d, J = 5.9 Hz), 54.93, 50.36, 41.75 (d, J = 12.9 Hz), 16.33

(dd, J = 6.3, 4.0 Hz). ³¹**P** NMR (162 MHz, CDCl₃) δ 4.85. HRMS (ESI) m/z (M+H)⁺ calculated for C₂₂H₂₆O₆P: 417.1467, found: 417.1461. Enantiomeric excess: 90%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 11.1 min (minor), tR = 12.0 min (major).

diethyl ((3R,4S)-4-(2,3-dimethoxyphenyl)-2-oxo-3-phenyl-3,4-dihydro-2H-pyran-6-yl)phosphonate (3g)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3g** (yield: 72%, 32.2 mg, d.r. >20:1, 84% ee) as yellow oil). ¹**H NMR** (400 MHz CDCl₃) δ 7.34 – 7.19 (m, 5H), 6.97 (t, *J* = 8.0 Hz, 1H), 6.84 (dd, *J* = 8.3, 1.4 Hz, 1H), 6.66 (dd, *J* = 7.8, 1.5 Hz, 1H), 6.37 (dd, *J* = 10.1, 4.7 Hz, 1H), 4.35 (ddd, *J* = 6.4, 4.7, 2.0 Hz, 1H), 4.30 – 4.06 (m, 5H), 3.84 (s, 3H), 3.77 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.21 (d, *J* = 8.5 Hz), 152.79, 146.72, 136.63, 132.29, 130.99, 130.50, 128.94, 128.86, 128.82, 128.61, 128.40, 127.86, 127.80, 126.88, 124.15, 121.87, 121.68, 119.89, 112.36, 63.37 (dd, *J* = 9.6, 5.9 Hz), 60.60, 55.79, 51.00, 16.35 (t, *J* = 6.3 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 4.61. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₃H₂₈O₇P: 447.1573, found: 447.1566. Enantiomeric excess: 84%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 14.5 min (minor), tR = 23.3 min (major).

Dimethyl ((3R,4S)-2-oxo-3,4-diphenyl-3,4-dihydro-2H-pyran-6-yl)phosphonate (3h)

The reaction was directly purified by flash column chromatography (PE:EA= 1:1) on silica gel to give **3h** (yield: 80%, 28.6 mg, d.r. >20:1, 95% ee) as yellow oil). ¹**H** NMR (400 MHz, CDCl₃) δ 7.28 (m, 4H), 7.26 – 7.18 (m, 2H), 7.12 (m, 2H), 7.04 (m, 2H), 6.53 (dd, *J* = 10.2, 3.9 Hz, 1H), 4.07 (ddd, *J* = 8.6, 3.9, 2.8 Hz, 1H), 3.97 (d, *J* = 8.5 Hz, 1H), 3.90 (d, *J* = 11.2 Hz, 3H), 3.81 (d, *J* = 11.2 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 166.96 (d, *J* = 8.6 Hz), 144.45, 142.13, 138.78, 135.33, 130.07, 130.06, 129.06, 128.81, 128.70, 128.54, 128.21, 127.41, 123.08 (d, *J* = 19.4 Hz), 53.70 (dd, *J* = 7.5, 5.8 Hz), 45.62 (d, *J* = 12.7 Hz). ³¹**P** NMR (202 MHz, CDCl₃) δ 7.11. HRMS (ESI) m/z (M+H)⁺ calculated for C₁₉H₂₀O₅P: 359.1048, found: 359.1054. Enantiomeric excess: 95%, determined by HPLC (Daicel Chirapak AD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 28.4 min (major), tR =

31.7 min (minor). (Daicel Chirapak ID, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 22.7 min (minor), tR = 24.4 min (major).

Diethyl ((3R,4S)-3-(4-chlorophenyl)-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-pyran-6-yl)phosphonate (3i)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3i** (yield: 65%, 28.3 mg, d.r. >20:1, 87% ee) as yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.4 Hz, 2H), 7.09 – 6.98 (m, 4H), 6.88 (d, J = 8.0 Hz, 2H), 6.46 (dd, J = 10.1, 3.3 Hz, 1H), 4.31 – 4.08 (m, 4H), 3.97 (dt, J = 9.8, 3.3 Hz, 1H), 3.87 (d, J = 9.8 Hz, 1H), 2.29 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.08 (d, J = 19.3 Hz), 145.09, 143.24, 137.70, 135.53, 133.90, 133.83, 129.86, 129.74, 128.91, 127.31, 122.73 (d, J = 19.3 Hz), 63.52 (dd, J = 11.4, 5.8 Hz), 52.19, 45.12 (d, J = 12.5 Hz), 16.38 (dd, J = 9.4, 6.2 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 4.20. HRMS (ESI) m/z (M+H)⁺ calculated for C₂₂H₂₅ClO₅P: 435.1128, found: 435.1122. Enantiomeric excess: 87%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 14 min (minor), tR = 16.1 min (major).

Diethyl ((3R,4S)-3-(4-fluorophenyl)-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-pyran-6-yl)phosphonate (3j)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3j** (yield: 55%, 23 mg, d.r. >20:1, 92% ee) as yellow oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.05 – 7.01 (m, 4H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 6.45 (dd, *J* = 10.1, 3.4 Hz, 1H), 4.31 – 4.06 (m, 4H), 3.94 (dt, *J* = 9.6, 3.3 Hz, 1H), 3.85 (d, *J* = 9.5 Hz, 1H), 2.27 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 167.27 (d, *J* = 8.8 Hz), 163.18, 161.22, 145.08, 143.24, 137.64, 135.67, 131.21, 131.18, 130.16, 130.10, 129.70, 129.49, 129.47, 128.43, 127.90, 127.31, 126.64, 122.73 (d, *J* = 19.2 Hz), 115.70 (d, *J* = 21.6 Hz), 63.50 (dd, *J* = 12.0, 5.9 Hz), 52.06, 45.26 (d, *J* = 12.4 Hz), 16.37 (dd, *J* = 9.8, 6.2 Hz). ³¹**P NMR** (202 MHz, CDCl₃) δ 4.24. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -114.07. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₂H₂₅FO₅P: 419.1424, found: 419.1423. Enantiomeric excess: 92%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 13.2 min (minor), tR = 14.3 min (major).

Diethyl ((3R,4S)-3-(4-(tert-butyl)phenyl)-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-pyran-6-yl)phosphonate (3k)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3k** (yield: 80%, 36.5 mg, d.r. >20:1, 86% ee) as yellow oil). ¹**H** NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 8.3 Hz, 2H), 7.10 (dd, *J* = 13.6, 8.1 Hz, 4H), 6.97 (d, *J* = 8.1 Hz, 2H), 6.49 (dd, *J* = 10.1, 4.7 Hz, 1H), 4.29 – 4.00 (m, 5H), 3.97 (d, *J* = 6.2 Hz, 1H), 2.30 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.31 (t, *J* = 6.9 Hz, 3H), 1.28 (s, 9H). ¹³**C** NMR (126 MHz, CDCl₃) δ 167.28 (d, *J* = 8.4 Hz), 150.93, 144.92, 143.08, 137.56, 135.98, 132.51, 129.76, 127.53, 127.16, 125.75, 122.07 (d, *J* = 19.3 Hz), 63.39 (dd, *J* = 16.6, 5.7 Hz), 52.06, 44.85 (d, *J* = 12.5 Hz), 34.51, 31.27, 21.08, 16.33 (dd, *J* = 14.1, 6.3 Hz). ³¹**P** NMR (202 MHz, CDCl₃) δ 4.50. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₆H₃₄O₅P: 457.2144, found: 457.2143. Enantiomeric excess: 86%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 7.6 min (minor), tR = 9.6 min (major).

Diethyl ((3R,4S)-3-(3-methoxyphenyl)-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-pyran-6-yl)phosphonate (3l) OMe

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3l** (yield: 58%, 27.9 mg, d.r. >20:1, 88% ee) as yellow oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (t, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 8.1 Hz, 2H), 6.80 (dd, *J* = 8.2, 2.5 Hz, 1H), 6.74 (dd, *J* = 7.7, 1.7 Hz, 1H), 6.68 (t, *J* = 2.2 Hz, 1H), 6.48 (dd, *J* = 10.1, 4.1 Hz, 1H), 4.32 – 4.06 (m, 4H), 4.02 (ddd, *J* = 6.8, 4.2, 2.4 Hz, 1H), 3.92 (d, *J* = 7.8 Hz, 1H), 3.75 (s, 3H), 2.29 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.11 (d, *J* = 8.6 Hz), 159.77, 145.18, 142.87, 137.59, 137.02, 135.90, 129.76 (d, *J* = 4.9 Hz), 127.22, 122.40 (d, *J* = 19.3 Hz), 120.40, 114.19, 113.15, 63.46 (dd, *J* = 8.8, 5.9 Hz), 55.24, 52.59, 45.03 (d, *J* = 12.5 Hz), 29.72, 21.05, 16.34 (dd, *J* = 10.0, 6.3 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 4.39. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₃H₂₈O₆P: 431.1624, found: 431.1617. Enantiomeric excess: 88%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 14.3 min (minor), tR = 16.8 min (major).

Diethyl ((3*R*,4*S*)-3-([1,1'-biphenyl]-4-yl)-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-pyran-6-yl)phosphonate (3*m*)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3m** (yield: 60%, 28.6 mg, d.r. >20:1, 88% ee) as yellow oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 3H), 7.44 – 7.38 (m, 2H), 7.38 – 7.32 (m, 2H), 7.29 (d, J = 2.0 Hz, 1H), 7.14 (dt, J = 7.7, 1.5 Hz, 1H), 7.08 (d, J = 7.8 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 6.52 (dd, J = 10.1, 3.9 Hz, 1H), 4.31 – 4.08 (m, 4H), 4.09 – 4.04 (m, 1H), 4.01 (d, J = 8.0 Hz, 1H), 2.30 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.32 (d, J = 8.5 Hz), 145.03, 143.18, 140.78, 140.33, 137.60, 135.85, 134.49, 130.14, 129.75, 128.82, 128.66, 128.38, 128.01, 127.45, 127.30, 127.04, 125.99, 123.12, 122.61, 122.46, 122.03, 63.48 (dd, J = 12.9, 5.9 Hz), 52.36, 45.05 (d, J = 12.5 Hz), 16.38 (dd, J = 10.8, 6.2 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 4.40. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₈H₃₀O₅P: 477.1831, found: 477.1827. Enantiomeric excess: 88%, determined by HPLC (Daicel Chirapak OD-H, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 15.0 min (minor), tR = 23.7 min (major).

Diethyl((3R,4S)-3-(naphthalen-1-yl)-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-pyran-6yl)phosphonate (3n)

The reaction was directly purified by flash column chromatography (PE:EA= 2:1) on silica gel to give **3n** (yield: 85%, 38.3 mg, d.r. >20:1, 94% ee) as yellow oil).¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (dd, J = 8.8, 3.6 Hz, 2H), 7.75 – 7.69 (m,1H), 7.54-7.45 (m, 4H), 7.31 (dd, J = 8.6, 2.0 Hz,1H), 7.04 (d, J = 7.9 Hz, 2H), 6.96 (d, J = 8.2 Hz, 1H), 6.52 (dd, J = 10.1, 3.9 Hz, 1H), 4.27 (ddq, J = 8.2, 7.0, 3.3 Hz, 2H), 4.21 – 4.13 (m, 2H), 4.15 – 4.08 (m, 2H), 2.27 (s, 3H), 1.42 (t, J = 7.1 Hz,3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.32 (d, J = 8.5 Hz), 144.98, 143.13, 137.59, 135.83, 133.17, 132.78 (d, J = 10.5 Hz), 129.76, 128.72, 127.84, 127.66, 127.48, 127.26, 126.37 (d, J = 7.7 Hz), 125.66, 122.58 (d, J = 19.3 Hz), 63.48 (dd, J = 17.0, 5.9 Hz), 52.77, 44.91 (d, J = 12.5 Hz), 21.05, 16.36 (dd, J = 15.6, 6.2 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 4.44. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₆H₂₈O₅P: 451.1674, found: 451.1676. Enantiomeric excess: 94%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 254 nm): tR = 31.1 min (minor), tR = 33.9 min (major).

10. Characterization of products 4a-4h Dimethyl (2R,3R)-2,3-diphenylpentanedioate (4a)

The reaction was directly purified by flash column chromatography (PE:EA= 10:1) on silica gel to give product **4a** (yield: 70%, 21.8 mg, d.r. >20:1, 92% ee) as white solid). ¹**H NMR** (500 MHz, CDCl₃) δ 7.15 – 7.08 (m, 7H), 7.08 – 7.03 (m, 1H), 7.02 – 6.97 (m, 2H), 3.90 – 3.80 (m, 2H), 3.69 (s, 3H), 3.51 (s, 3H),

2.88 – 2.72 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 173.38, 171.90, 140.18, 136.59, 128.60, 128.25, 128.12, 127.26, 126.70, 57.18, 52.18, 51.57, 45.49, 39.22, 29.72. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₉H₂₀O₄Na: 335.1259, found: 335.1269: Enantiomeric excess: 92%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 254 nm): tR = 8.6 min (minor), tR = 9.9 min (major).

Dimethyl (2R,3R)-3-(2-chlorophenyl)-2-phenylpentanedioate (4b)

The reaction was directly purified by flash column chromatography (PE:EA= 10:1) on silica gel to give product **4b** (yield: 75%, 26 mg, d.r. >20:1, 76% ee) as colorless oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 2H), 7.20 – 7.05 (m, 6H), 7.04 – 6.98 (m, 1H), 4.42 (s, 1H), 4.12 (d, *J* = 10.3 Hz, 1H), 3.67 (s, 3H), 3.52 (s, 3H), 3.05 – 2.91 (m, 1H), 2.83 (dd, *J* = 15.6, 4.4 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.06, 171.81, 137.78, 136.28, 134.25, 129.81, 128.90, 128.39, 128.32, 128.07, 127.94, 127.45, 126.65, 55.26, 52.18, 51.60, 41.53, 37.48. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₉H₁₉ClO₄Na: 369.0870, found: 369.0885: Enantiomeric excess: 76%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 6.6 min (minor), tR = 8.8 min (major)

Dimethyl (2R,3R)-3-(2-bromophenyl)-2-phenylpentanedioate (4c)

The reaction was directly purified by flash column chromatography (PE:EA= 10:1) on silica gel to give product **4c** (yield: 65%, 25.3 mg, d.r. >20:1, 84% ee) as colorless oil). ¹**H** NMR (400 MHz, CDCl₃) δ 7.39 (m, 1H), 7.30 – 7.22 (m, 2H), 7.22 – 7.12 (m, 5H), 6.95 (m, 1H), 4.42 (s, 1H), 4.12 (s, 1H), 3.66 (s, 3H), 3.52 (s, 3H), 2.97 (s, 1H), 2.82 (dd, *J* = 15.5, 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.95, 171.81, 136.20, 133.17, 128.63, 128.48, 128.35, 128.26, 127.48, 127.32, 55.58, 52.17, 51.62, 43.52, 37.48. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₉H₁₉BrO₄Na: 413.0364, found: 413.0357: Enantiomeric excess: 84%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 6.8 min (minor), tR = 10.3 min (major). *Dimethyl* (2*R*,3*R*)-3-(4-bromophenyl)-2-phenylpentanedioate (4d)

The reaction was directly purified by flash column chromatography (PE:EA= 10:1) on silica gel to give product **4d** (yield: 76%, 29.6 mg, d.r. >20:1, 91% ee) as colorless oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 7.19 – 7.06 (m, 5H), 6.92 – 6.81 (m, 2H), 3.89 – 3.76 (m, 2H), 3.69 (s, 3H), 3.53 (s, 3H), 2.86 – 2.65 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.13, 171.63, 139.29, 136.21, 131.27, 129.86, 128.51, 128.45, 127.50, 120.59, 56.90, 52.28, 51.68, 44.89, 38.99. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₉H₁₉BrO₄Na: 413.0364, found: 413.0375 Enantiomeric excess: 91%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 9 min (major), tR = 10.5 min (minor).

Dimethyl (2R,3R)-2-(4-chlorophenyl)-3-(p-tolyl)pentanedioate (4e)

The reaction was directly purified by flash column chromatography (PE:EA= 10:1) on silica gel to give product **4e** (yield: 71%, 25.6 mg, d.r. >20:1, 90% ee) as colorless oil). ¹**H NMR** (500 MHz, CDCl₃) δ 7.11 (d, *J* = 8.6 Hz, 1H), 7.06 (d, *J* = 8.6 Hz, 1H), 6.92 (d, *J* = 7.9 Hz, 1H), 6.86 (d, *J* = 8.1 Hz, 1H), 3.85 – 3.74 (m, 1H), 3.69 (s, 2H), 3.52 (s, 2H), 2.82 – 2.67 (m, 1H), 2.20 (s, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 173.18, 171.84, 136.66, 136.37, 135.20, 133.11, 129.99, 129.02, 128.43, 127.85, 56.47, 52.31, 51.63, 44.94, 39.38, 21.02. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₂₀H₂₁ClO₄Na: 383.1026, found: 383.1040: Enantiomeric excess: 90%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 5.4 min (minor), tR = 5.9 min (major)

Dimethyl (2R,3R)-2-(4-fluorophenyl)-3-(p-tolyl)pentanedioate (4f)

The reaction was directly purified by flash column chromatography (PE:EA= 10:1) on silica gel to give product **4f** (yield: 69%, 23.7 mg, d.r. >20:1, 88% ee) as colorless oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.18 – 6.96 (m, 1H), 7.00 – 6.68 (m, 3H), 3.88 – 3.75 (m, 1H), 3.69 (s, 1H), 3.52 (s, 1H), 2.91 – 2.54 (m, 1H), 2.20 (s, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.39, 171.87, 163.13, 160.69, 136.79, 136.28, 132.47, 132.43, 130.22, 130.14, 128.95, 127.86, 115.23, 115.02, 56.35, 52.23, 51.60, 45.14, 39.32, 21.00. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.20. **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₂₀H₂₁FO₄Na: 367.1322, found: 367.1334: Enantiomeric excess: 88%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C, 220 nm): tR = 5.3 min (minor), tR = 5.6 min (major).

Dimethyl (2R,3R)-2-([1,1'-biphenyl]-4-yl)-3-(p-tolyl)pentanedioate (4g)

The reaction was directly purified by flash column chromatography (PE:EA= 10:1) on silica gel to give product **4g** (yield: 65%, 23.7 mg, d.r. >20:1, 84% ee) as colorless oil). ¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.45 (m, 2H), 7.43 – 7.34 (m, 4H), 7.34 – 7.28 (m, 1H), 7.20 (d, *J* = 8.3 Hz, 2H), 6.92 (s, 4H), 3.95 – 3.81 (m, 2H), 3.70 (s, 3H), 3.52 (s, 3H), 2.87 – 2.49 (m, 2H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.46, 172.01, 140.53, 139.90, 137.02, 136.19, 135.72, 129.96, 129.06, 128.93, 128.80, 128.71, 127.94, 127.48, 127.34, 127.26, 127.07, 126.93, 126.89, 56.81, 52.22, 51.59, 44.97, 39.30, 21.02. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₆H₂₇O₄: 403.1909, found: 403.1916: Enantiomeric excess: 84%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol = 90/10, flow rate 0.3 mL/min, T = 30 °C, 220 nm): tR = 16.3 min (minor), tR = 17.1 min (major).

Dimethyl (2R,3R)-2-(naphthalen-2-yl)-3-(p-tolyl)pentanedioate (4h)

The reaction was directly purified by flash column chromatography (PE:EA= 10:1) on silica gel to give product **4h** (yield: 84%, 31.5 mg, d.r. >20:1, 86% ee) as colorless oil). ¹**H** NMR (400 MHz, CDCl₃) δ 7.81 – 7.50 (m, 1H), 7.45 – 7.28 (m, 1H), 7.06 – 6.79 (m, 1H), 4.19 – 3.84 (m, 1H), 3.69 (s, 1H), 3.53 (s, 1H), 2.99 – 2.65 (m, 0H), 2.14 (s, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 173.47, 172.02, 136.98, 136.16, 134.20, 133.14, 132.53, 128.93, 127.92, 127.89, 127.86, 127.82, 127.52, 126.46, 125.91, 125.80, 57.17, 52.21, 51.59, 44.81, 39.48, 20.96. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₂₄H₂₅O₄: 377.1753, found: 377.1767: Enantiomeric excess: 86%, determined by HPLC (Daicel Chirapak OJ, hexane/ isopropanol = 90/10, flow rate 0.3 mL/min, T = 30 °C, 220 nm): tR = 35.6 min (major), tR = 41.9 min (minor).

NMR Spectra of Allyl Alchols

	210 -2
	200 -
	- 190 -
	- 180
	170 -
	- 160 -
	150 -
	- 140
	130 -
	120 -
 	- 110
	(ppm)
	- 6
	- 8
	-70
	- 99
	- 22
	- 4
	- R
	- 8
	- 10
	- 0
	- 9

NMR Spectra of Phosphate Ester Substrates

		1 18
		-210 -
		- 200
		- 190
		-180
		-170
		-160
		- 150
		-140
		-130
		-120
18.801		-110
		- ¹ - 6-
		- 8
		- 02-
		- 9
		-20
		- 40
		-30
		- 20
		-10
		-0
		10 -

NMR Spectra of Products 3a-3n

¹H NMR spectrum of product **3a**

¹³C NMR spectrum of product 3a

³¹P NMR spectrum of product 3a

¹H NMR spectrum of product **3b**

¹³C NMR spectrum of product **3b**

¹H NMR spectrum of product 3c

¹³C NMR spectrum of product 3c

³¹P NMR spectrum of product 3c

¹H NMR spectrum of product 3d

¹³C NMR spectrum of product 3d

¹H NMR spectrum of product **3e**

¹³C NMR spectrum of product 3e

¹H NMR spectrum of product **3**f

¹³C NMR spectrum of product 3f

³¹P NMR spectrum of product **3f**

¹H NMR spectrum of product **3**g

¹³C NMR spectrum of product 3g

³¹P NMR spectrum of product 3g

¹H NMR spectrum of product **3h**

³¹P NMR spectrum of product **3h**

¹³C NMR spectrum of product 3i

³¹P NMR spectrum of product 3i

¹H NMR spectrum of product 3j

¹³C NMR spectrum of product 3j

³¹P NMR spectrum of product 3j

¹⁹F NMR spectrum of product 3j

¹H NMR spectrum of product 3k

¹³C NMR spectrum of product 3k

³¹P NMR spectrum of product 3k

¹H NMR spectrum of product 3l

¹³C NMR spectrum of product 31

³¹P NMR spectrum of product 31

¹H NMR spectrum of product **3m**

¹³C NMR spectrum of product 3m

³¹P NMR spectrum of product 3m

¹H NMR spectrum of product **3n**

¹³C NMR spectrum of product **3n**

NMR Spectra of products 5a-5h

¹H NMR spectrum of product 4a

¹³C NMR spectrum of product 4a

¹H NMR spectrum of product 4b

¹H NMR spectrum of product 4c

¹H NMR spectrum of product 4d

¹³C NMR spectrum of product 4d

¹³C NMR spectrum of product 4e

¹⁹F NMR spectrum of product 4f

¹H NMR spectrum of product 4g

¹³C NMR spectrum of product 4g

¹³C NMR spectrum of product 4h

HPLC Spectra of Compounds 3a-3n

HPLC spectra of product 3a

F 1	OCESSED Charmer Desci 2990 FDI	~ 220.0	1111 233	0 2 10-4	00/1111
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	13.843	2036832	49.64	59408
2	2998 PDA 220.0 nm (2998 (210-400)nm)	17.504	2066009	50.36	46964

Processed	Channel	Descr.:	2998	PDA	220.0	nm	(2998	(210-4	100)	nm
							-			

		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 PDA 220.0 nm (2998 (210-400)nm)	13.045	1458401	4.82	46003
ſ	2	2998 PDA 220.0 nm (2998 (210-400)nm)	16.113	28795520	95.18	651343

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	12.007	15330820	50.80	489515
2	2998 PDA 220.0 nm (2998 (210-400)nm)	13.938	14846732	49.20	407896

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result ld: 2415; Processing Method: 4Me

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	11.857	661783	4.98	23237
2	2998 PDA 220.0 nm (2998 (210-400)nm)	13.563	12621166	95.02	364154

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	10.799	657178	6.14	26159
2	2998 PDA 220.0 nm (2998 (210-400)nm)	11.728	10045121	93.86	358461

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

HPLC spectra of product 3d

Channel: 2998; Processed Channel: 2998 PDA 228.0 nm (2998 (210-400)nm); Result ld: 1960; Processing Method: 11012023

Pre	ocessed (Channel	Descr.:	2998 PC	A 228.0	nm	(2998	3 (210-4	100)r	າຫ
					-	-				

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 228.0 nm (2998 (210-400)nm)	21.778	2244692	97.09	43505
2	2998 PDA 228.0 nm (2998 (210-400)nm)	31.793	67343	2.91	1418

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	11.217	20888558	47.41	769999
2	2998 PDA 220.0 nm (2998 (210-400)nm)	12.055	23174874	52.59	701706

-					
Processed	Channel D	escr.: 2998	3 PDA 220.0 r	nm (2998 (2	10-400)nm)

	Tocessed onaline Desci 2000 1	233	0 (∠ 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	11.103	1247742	4.67	56656
2	2998 PDA 220.0 nm (2998 (210-400)nm)	12.056	25448029	95.33	830920

 Processed Channel Descr.
 RT
 Area
 % Area
 Height

 1
 2998 PDA 220.0 nm (2998 (210-400)nm)
 14.476
 11833702
 50.24
 263277

 2
 2998 PDA 220.0 nm (2998 (210-400)nm)
 23.688
 11720884
 49.76
 163645

Processed Ch	annel Descr	2998 PDA 2	20 0 nm (2998	(210-400) nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	14.517	1251604	8.18	30680
2	2998 PDA 220.0 nm (2998 (210-400)nm)	23.305	14053631	91.82	195774

HPLC spectra of product 3h using AD-H column

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	29.568	3583208	50.29	80750
2	2998 PDA 220.0 nm (2998 (210-400)nm)	32.926	3542156	49.71	68507

Channel: 2998; Processed Channel: 2998 PDA 219.0 nm (2998 (210-400)nm); Result Id: 212. Processing Method: AsyMe

F	Processed Channel Descr.: 2998 P	DA 219	. <mark>0 nm (</mark>)	299	8 (210-4	400)nm)	
_								

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 219.0 nm (2998 (210-400)nm)	28.369	74359735	97.23	1095390
2	2998 PDA 219.0 nm (2998 (210-400)nm)	31.699	2119327	2.77	34672

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	22.347	59683920	50.23	1454927
2	2998 PDA 220.0 nm (2998 (210-400)nm)	24.086	59143984	49.77	1256584

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	13.352	3939079	49.89	107991
2	2998 PDA 220.0 nm (2998 (210-400)nm)	15.565	3955715	50.11	97592

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	14.099	970623	5.86	47120
2	2998 PDA 220.0 nm (2998 (210-400)nm)	16.160	15601853	94.14	348202

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	13.075	6103548	48.80	176163
2	2998 PDA 220.0 nm (2998 (210-400)nm)	14.426	6402468	51.20	171964

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result ld: 2424; Processing Method: 22

Processed Channel Descr.	: 2998 PDA 220.0 nm	(2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	13.204	790793	4.09	23889
2	2998 PDA 220.0 nm (2998 (210-400)nm)	14.292	18543935	95.91	500030

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	7.443	7547935	49.80	400171
2	2998 PDA 220.0 nm (2998 (210-400)nm)	9.507	7607255	50.20	291748

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result ld: 2486; Processing Method: a

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	7.590	5929891	6.82	318695
2	2998 PDA 220.0 nm (2998 (210-400)nm)	9.630	81013355	93.18	1998778

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

rocessed Channel Desch.: 2990 Pl	JA 220.0	7 mm (2	330	210-	400)1111
Processed	DT		0/		Listaka

	Channel Descr.	RI	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	14.092	8480662	49.79	225656
2	2998 PDA 220.0 nm (2998 (210-400)nm)	16.675	8553659	50.21	190247

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result Id: 2466; Processing Method: aa

	Processed Channel Descr.		RT	Area	% Area	Height
	1	2998 PDA 220.0 nm (2998 (210-400)nm)	14.342	635782	6.21	16209
ſ	2	2998 PDA 220.0 nm (2998 (210-400)nm)	16.762	9594148	93.79	207449

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	15.868	9324781	50.61	211628
2	2998 PDA 220.0 nm (2998 (210-400)nm)	24.973	9099145	49.39	111898

-					
	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	15.065	2287091	6.14	41283
2	2998 PDA 220.0 nm (2998 (210-400)nm)	23.691	34987844	93.86	436128

HPLC spectra of product 3n

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2321; Processing Method: Ali

Processed	Channel	Descr.:	2998	Ch1	254nm@4.8nm	

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	32.463	28549353	48.01	335230
2	2998 Ch1 254nm@4.8nm	34.096	30913235	51.99	302338

Channel: 2998 Ch1 254nm@4.8nm; Processed Channel: 2998 Ch1 254nm@4.8nm; Result ld: 2323; Processing Method: Ali

Processed Channe	Descr.: 2998 Ch'	l 254nm@4.8nm
------------------	------------------	---------------

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 Ch1 254nm@4.8nm	31.077	1433574	3.18	20775
2	2998 Ch1 254nm@4.8nm	33.986	43597691	96.82	418391

HPLC Spectra of Products 4a-4h

Ρ	eak	Nan	n

Peak Name:									
	Injection	RT	Area	% Area	Height				
1	1	9.950	868688	95.63	39906				
2	1	8.628	39706	4.37	2727				

Processing Method: 00

Ρ	Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)						
	Processed Channel Descr.	RT	Area	% Area	Height		
1	2998 PDA 220.0 nm (2998 (210-400)nm)	6.637	2353526	12.07	189457		
2	2998 PDA 220.0 nm (2998 (210-400)nm)	8.846	17151678	87.93	1005553		

HPLC spectra of product 4c

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result ld: 3998; Processing Method: 00

P	Processed	Channel	Descr.:	2998	PDA	220.0	nm	(2998	B (210-	400)	nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	6.814	13473081	50.08	919554
2	2998 PDA 220.0 nm (2998 (210-400)nm)	10.305	13432436	49.92	661322

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result kl: 4004; Processing Method: 00

Processed C	Channel	Descr.:	2998	PDA	220.0	nm	(2998	(210-4	00)	nm	j

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	6.849	1215998	8.16	81277
2	2998 PDA 220.0 nm (2998 (210-400)nm)	10.336	13694813	91.84	664318

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result ld: 4115; Processing Method: 00

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	9.052	14799866	95.50	738716
2	2998 PDA 220.0 nm (2998 (210-400)nm)	10.554	696940	4.50	33875

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

HPLC spectra of product 4e

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	5.476	1127343	5.22	89204
2	2998 PDA 220.0 nm (2998 (210-400)nm)	5.976	20487599	94.78	1441935

HPLC spectra of product 4f

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result ld: 4051; Processing Method: 00

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	5.269	10519086	49.59	900048
2	2998 PDA 220.0 nm (2998 (210-400)nm)	5.619	10691172	50.41	898349

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result ld: 4085; Processing Method: 00

Processed	Channel	Descr.:	2998	PDA 22	20.0 nr	n (29	98 (2	210-4	00)n	IM)	

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	5.337	932542	6.29	100366
2	2998 PDA 220.0 nm (2998 (210-400)nm)	5.682	13902446	93.71	1346261

HPLC spectra of product 4g

	Processed Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	16.371	6031296	8.18	220154
2	2998 PDA 220.0 nm (2998 (210-400)nm)	17.160	67728828	91.82	2104048

Processed Channel Descr.: 2998 PDA 220.0 nm (2998 (210-400)nm)

HPLC spectra of product 4h

Channel: 2998; Processed Channel: 2998 PDA 220.0 nm (2998 (210-400)nm); Result ld: 4167; Processing Method: 000

 Processed Channel Descr.: 2998 P	DA 220	.0 nm (299	8 (210-4	00)nm)
Processed Channel Deser	RT	Area	% Area	Height

	Channel Descr.	RT	Area	% Area	Height
1	2998 PDA 220.0 nm (2998 (210-400)nm)	35.166	201358830	48.79	1417620
2	2998 PDA 220.0 nm (2998 (210-400)nm)	41.318	211358477	51.21	1173738

Peak Results									
	Name	RT	Area	Height	% Area				
1		35.601	147431523	1033980	92.91				
2		41.882	11245692	71091	7.09				

References

_

- 1 D. A. Evans, J. S. Johnson and E. J. Olhava, *J. Am. Chem. Soc.*, 2000, **122**, 1635–1649.
- 2 S. R. Smith, S. M. Leckie, R. Holmes, J. Douglas, C. Fallan, P. Shapland, D. Pryde, A. M. Z. Slawin and A. D. Smith, *Org. Lett.*, 2014, **16**, 2506–2509.
- 3 J. K. Kozlowski, N. P. Rath and C. D. Spilling, *Tetrahedron*, 1995, **51**, 6385–6396.