Electrochemical C(sp²)–H/N–H "Formal" Cross-Dehydrogenative Coupling of Olefins with Benzotriazoles for Synthesis of *N*-Vinyl Benzotriazoles

Jin-Feng Lv,[†]a Yu-Fang Tan,[†]a Ya-Nan Zhao,^b Dan-Yang,^a Yan-Hong He *^a and Zhi Guan *^a

 ^a Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
^b Analytical and Testing Center, Southwest University, Chongqing, 400715, China [Emails: guanzhi@swu.edu.cn (for Z. Guan); heyh@swu.edu.cn (for Y.-H. He)]

[†] These authors contributed equally.

Contents

1.	General methods	S1
2.	Experimental procedures	S1
	2.1. General procedure for the preparation of substituted benzotriazoles 2	S1
	2.2. General procedure for the preparation of 8a	S2
	2.3. General procedure for the electrochemical synthesis of products 3	S2
	2.4. Scale-up experiment for the synthesis of 3a	S3
3.	Optimization of reaction conditions	S4
4.	Main by-products	S9
5.	Mechanistic investigation	S9
	5.1. EPR experiments	S9
	5.2. Cyclic voltammetry experiments	S10
	5.3. The measurement of pH values	S12
	5.4. Possible explanations for the elimination of HI from 8a to yield 3a	S13
6.	The possible mechanism of ^{<i>n</i>} Bu ₄ NBr participation	S13
7.	Characterization data of the products	S14
8.	References	S25
9.	NMR spectra of products	S26

1. General methods

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) with Haiyang GF 254 silica gel plates (Qingdao Haiyang chemical industry Co Ltd, Qingdao, China) using UV light and vanillic aldehyde or phosphomolybdic acid as visualizing agents. Flash column chromatography was performed using 200–300 mesh silica gel at increased pressure. ¹H NMR spectra, ¹⁹F NMR spectra and ¹³C NMR spectra were respectively recorded on 600 MHz, 565 MHz, 400 MHz, 151 MHz and 101 MHz NMR spectrometers. Chemical shifts (δ) were expressed in ppm with TMS as the internal standard, and coupling constants (*J*) were reported in Hz. High-resolution mass spectra were obtained by using ESI ionization sources (quadrupole time-of-flight mass spectra were recorded on a Bruker EMXplus-9.5/12 spectrometer. Cyclic voltammograms were obtained on a CHI 700E potentiostat (CH Instruments, Inc.).

Abbreviations: DMF = N,N-dimethylformamide, DMSO = dimethyl sulfoxide, DCE = dichloroethane, DCM = dichloromethane, MeCN = acetonitrile, THF = tetrahydrofuran, EA = ethyl acetate, HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol, AcOH = Acetic acid, DMPO = 3,4-dihydro-2,2-dimethyl-2*H*-pyrrole 1-oxide, n.r. = no reaction, n.d. = not detected.

2. Experimental procedures

2.1. General procedure for the preparation of substituted benzotriazoles 2¹

1,2-phenylenediamine derivative (3.26 mmol) was dissolved in a mixture of 0.45 mL of glacial acetic acid and 1.2 mL of water and cooled to 4 °C. A solution of sodium nitrite (0.26 g, 3.76 mmol) in 1 mL of water was added. The reaction temperature was raised to 50 °C for 30 min, then allowed

to cool to r.t. and stirred at this temperature for 12 h. The mixture was cooled to 0 °C for 1 h. Produced precipitate was collected by suction filtration, and washed with water, and dried to provide substituted benzotriazole **2**.

2.2. General procedure for the preparation of 8a²

1-methoxy-4-vinylbenzene **1a** (0.5 mmol), benzotriazole **2a** (1.0 mmol), I₂ (0.5 mmol) were added to DCE (2 mL). The mixture was stirred at 20 °C for 6 h (monitored by TLC), quenched with water (10 mL), extracted with dichloromethane (5×3 mL), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to give the target product **8a**.

2.3. General procedure for the electrochemical synthesis of products 3

To an undivided beaker-type electrolysis cell (10 mL) equipped with a magnetic stirring bar was added olefin **1** (0.2 mmol, 1 equiv), azole **2** (0.8 mmol, 4 equiv) and "Bu₄NI (0.1 mmol, 0.5 equiv) in MeCN (5 mL). A carbon rod electrode ($\Phi = 0.5$ cm) was used as the anode and a platinum plate (1 cm × 1 cm × 0.2 mm) was used as the cathode (the electrodes were immersed 1 cm in the reaction mixture). The reaction mixture was stirred and electrolyzed with a constant current of 10 mA at 50 °C (water bath) in air. After reaction completion (monitored by TLC), the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to give the target product **3**.

Figure S1 Electrochemical setup used.

The experimental setup consisted of a carbon rod electrode ($\Phi = 0.5$ cm) and a platinum plate (1 cm \times 1 cm \times 0.2 mm), a tube (10 mL) with perforated rubber plugs, an adjustable DC regulated power supply (MS-150V 100 mA), and a magnetic stirrer.

Although the reaction vessel is equipped with a cover, there are holes on the cover for the electrodes to pass through. These holes are not sealed around the electrodes. Additionally, there are additional gaps between the screw outer cap and the disc-shaped inner cover. As a result, the reaction system is not sealed, allowing it to be open to the atmosphere, and therefore, enabling the escape of the hydrogen gas produced during the reaction.

2.4. Scale-up experiment for the synthesis of 3a

1a (6 mmol, 1 equiv), **2a** (24 mmol, 4 equiv), ^{*n*}Bu₄NI (3 mmol, 0.5 equiv) and MeCN (60 mL) were added to an undivided beaker-type electrolysis cell (100 mL) equipped with a magnetic stir bar. Three carbon rod electrodes ($\Phi = 0.5$ cm each, 0.5 cm apart from each other and connected in parallel) were used as the anode and a platinum plate (3 cm × 3 cm × 0.2 mm) was used as cathode (the electrodes were immersed 3 cm in the reaction solution). The reaction mixture was stirred and electrolyzed at a constant current of 90 mA at 50 °C (in a water bath) under atmospheric conditions. Every 12 h, 5 mL of MeCN was added (a total of 3 additions) to maintain the reaction volume. After 46 h, the reaction mixture was filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (15:1, v/v) as the eluent to give the target product 3a (0.87 g, 58% yield).

Figure S2 Electrochemical setup used for the scale-up experiment.

The experimental setup for scale-up experiment consisted of three carbon rod electrodes ($\Phi = 0.5$ cm each) and a platinum plate (3 cm × 3cm × 0.2 mm), a beaker-type electrolysis cell (100 mL), an adjustable DC regulated power supply (MS-150V 100 mA), and a magnetic stirrer.

3. Optimization of reaction conditions

Í	N.N.	C rod (+) Pt (-), I = 15 mA ⁿ Bu ₄ NI (x equiv)	N N
	+ N H	MeCN (5 mL), 50 °C unsealed under air	A Co
	1a 2a		3a
Entry	Amount of ^{<i>n</i>} Bu ₄ NI (equiv)	Yield (%) ^b	Time (h)
1	0.3	30	5
2	0.4	51	6
3	0.5	64	6
4	0.6	60	6.5
5	0.7	58	7.5
6	0.8	55	8
7	1.2	50	16

Table S1. Screening of the amount of ⁿBu₄NI^a

^a Reaction conditions: A mixture of **1a** (0.2 mmol, 1 equiv), **2a** (0.8 mmol, 4 equiv) and ^{*n*}Bu₄NI (x equiv) in MeCN (5 mL) under a constant current of 15 mA (C-rod anode: $\Phi = 0.5$ cm; Pt-plate cathode: 1 cm × 1 cm × 0.2 mm) in an undivided cell at 50 °C (water bath) unsealed under air. ^b Isolated yield.

In the reaction, "Bu₄NI functions as both an electrolyte and an iodine mediator. When "Bu₄NI

was employed at 0.5 equiv, the voltage range of the reaction spanned from 2.7 to 5.8V, whereas with 1.2 equiv of ${}^{n}Bu_{4}NI$, the voltage range of the reaction was from 1.9 to 2.3V. During our experimental procedures, it was observed that an excessive addition of ${}^{n}Bu_{4}NI$ leads to an increased presence of elemental iodine within the system. With 1.2 equiv of ${}^{n}Bu_{4}NI$, even after extending the reaction time to 16 h, unreacted starting material remained.

		C rod (+) Pt (-), I = 15 mA ⁿ Bu ₄ NI (0.5 equiv)	N N
	+ NH	solvent (5 mL), 50 °C unsealed under air	
1a	a 2a		3a
Entry	Solvent	Yield (%) ^b	Time (h)
1	DCM	7	6
2	DCE	Voltage overload	0.5
3	EA	Voltage overload	0.3
4	THF	Voltage overload	0.3
5	DMSO	10	6
6	HFIP	n.d.	6
7	MeOH	n.d.	6
8	DMF	32	6.5
9	MeNO ₂	trace	6
10	acetone	49	8.5
11	MeCN	64	6
12	MeCN:acetone = 4:1	56	6
13	MeCN:acetone = 3:2	60	6
14	MeCN:acetone = 1:1	60	7
15	MeCN:acetone = 2:3	54	8
16	MeCN:acetone = 1:4	55	10
17	MeCN:DMF = 4:1	38	7

Table S2. Solvent screening^a

^a Reaction conditions: A mixture of **1a** (0.2 mmol, 1 equiv), **2a** (0.8 mmol, 4 equiv) and ^{*n*}Bu₄NI (0.1 mmol, 0.5 equiv) in a solvent (5 mL) under a constant current of 15 mA (C-rod anode: $\Phi = 0.5$ cm; Pt-plate cathode: 1 cm × 1 cm × 0.2 mm) in an undivided cell at 50 °C (water bath) unsealed under air. ^b Isolated yield.

Entry	Electrolyte	Yield (%) ^b
1	ⁿ Bu ₄ NBF ₄	n.d.
2	ⁿ Bu ₄ NPF ₆	n.d.
3	ⁿ Bu ₄ NOAc	n.r.
4	NaI	41
5	KI	29
6	$\rm NH_4 I$	n.d.
7	"Bu ₄ NClO ₄	n.d.
8	KClO ₄	n.d.
9	^{<i>n</i>} Et ₄ NI	53
10	ⁿ Et ₄ NCl	Trace
11	ⁿ Bu ₄ NBr	40
12	LiBr	Voltage overload
13	ⁿ Bu ₄ NI	64

^a Reaction conditions: A mixture of **1a** (0.2 mmol, 1 equiv), **2a** (0.8 mmol, 4 equiv) and electrolyte (0.1 mmol, 0.5 equiv) in MeCN (5 mL) under a constant current of 15 mA (C-rod anode: $\Phi = 0.5$ cm; Pt-plate cathode: 1 cm × 1 cm × 0.2 mm) in an undivided cell at 50 °C (water bath) unsealed under air for 6 h. ^b Isolated yield.

Table S4. Mediator screening ^a

		C rod (+) Pt (-), I = 15 mA ⁿ Bu ₄ NI (0.5 equiv)	N N	
<u>`</u> 0´		mediator (5 mol%) MeCN (5 mL), 50 ℃ unsealed under air		
	1a 2a		3a	
Entry	Med	liator	Yield (%) ^b	Time (h)
1	-	-	64	6
2	4-Acetamido-2,2,6,6-tetramethylpiperidine 1-Oxyl		64	6
3	2,2,6,6-Tetramethylpiperidinooxy		63	6
4	Ferro	ocene	54	6
5	Triphen	56	8	
6	9-Azabicyclo[3.3	.1]nonane N-oxyl	63	7
7	1,4-Diaza[2.2.2	2]bicyclooctane	55	10

^a Reaction conditions: A mixture of **1a** (0.2 mmol, 1 equiv), **2a** (0.8 mmol, 4 equiv), ^{*n*}Bu₄NI (0.1 mmol, 0.5 equiv) and mediator (5 mol%) in MeCN (5 mL) under a constant current of 15 mA (C-rod anode: $\Phi = 0.5$ cm; Pt-plate cathode: 1 cm × 1 cm × 0.2 mm) in an undivided cell at 50 °C (water bath) unsealed under air. ^b Isolated yield.

Table S5. Additive screening ^a

Entry	Additive	Yield (%) ^b	Time (h)
1		64	6
2	AcOH	n.d.	6
3	KHCO3	trace	6
4	2,6-lutidine	55	4.5
5	K ₂ CO ₃	44	6
6	Et ₃ N	48	6
7	1,8-Diazabicyclo[5.4.0]undecane-7-ene	50	8
8	4-Dimethylaminopyridine	49	8
9	КОН	44	6
10	K ₃ PO ₄	39	5
11	Cs_2CO_3	42	6
12	^t BuOK	33	6.5
13	2,4,6-collidine	50	5
14	N,N-Diisopropylethylamine	50	5
15	Propylamine	60	6.5

^a Reaction conditions: A mixture of **1a** (0.2 mmol, 1 equiv), **2a** (0.8 mmol, 4 equiv), ${}^{n}Bu_{4}NI(0.1 mmol, 0.5 equiv)$ and additive (0.1 mmol, 0.5 equiv) in MeCN (5 mL) under a constant current of 15 mA (C-rod anode: $\Phi = 0.5$ cm; Pt-plate cathode: 1 cm × 1 cm × 0.2 mm) in an undivided cell at 50 °C (water bath) unsealed under air. ^b Isolated yield.

	+ NN	I = 15 mA ⁿ Bu₄NI (0.5 equiv) ►	N N N
	N H	MeCN (5 mL), 50 °C unsealed under air	
1a	2a		3а
Entry	Electrode	material	Yield (%) ^b
1	C(+) Pt(-)		64
2	C(+) C(-)		44
3	Pt(+) Pt(-)		37
4	Pt(+) C(-)		36
5	RVC(+)) Pt(-)	n.d.
6	Pt(+) F	RVC(-)	n.d.

^a Reaction conditions: A mixture of **1a** (0.2 mmol, 1 equiv), **2a** (0.8 mmol, 4 equiv) and nBu_4NI (0.1 mmol, 0.5 equiv) in MeCN (5 mL) under a constant current of 15 mA (C-rod: $\Phi = 0.5$ cm; Pt-plate: 1 cm × 1 cm × 0.2 mm; RVC-plate: 0.5 cm × 0.5 cm × 0.5 cm) in an undivided cell at 50 °C (water bath) unsealed under air for 6 h. ^b Isolated yield.

Table S7. Screening of substrate molar ratio^a

	+ NN -	C rod (+) Pt (-), I = 15 mA $^{n}Bu_{4}NI$ (0.5 equiv) MeCN (5 mL), 50 °C unsealed under air	N N N
1a	2a		3a
Entry	Amount of 2a (equiv)	1a :2a	Yield (%) ^b
1	1	1:1	35
2	2	1:2	49
3	3	1:3	60
4	4	1:4	64
5	5	1:5	59
6	6	1:6	52
7	0.5	2:1	30
8	0.25	4:1	37

^a Reaction conditions: A mixture of **1a** (0.2 mmol, 1 equiv), **2a** (x equiv) and ${}^{n}Bu_{4}NI$ (0.1 mmol, 0.5 equiv) in MeCN (5 mL) under a constant current of 15 mA (C-rod anode: $\Phi = 0.5$ cm; Pt-plate cathode: 1 cm × 1 cm × 0.2 mm) in an undivided cell at water bath (50 °C) unsealed under air for 6 h. ^b Isolated yield.

	N N H	C rod (+) Pt (-), x mA ⁿ Bu ₄ NI (0.5 equiv) MeCN (5 mL), 50 °C unsealed under air	N N N N N N N N N N N N N N N N N N N
1a	2a		3a
Entry	Cu	urrent (mA)	Yield (%) ^b
1			n.r.
2		5	20
3		8	43
4		10	68
5		12	67
6		15	64
7		20	39

^a Reaction conditions: A mixture of **1a** (0.2 mmol, 1 equiv), **2a** (0.8 mmol, 4 equiv) and ^{*n*}Bu₄NI (0.1 mmol, 0.5 equiv) in MeCN (5 mL) under a constant current of x mA (C-rod anode: $\Phi = 0.5$ cm; Pt-plate cathode: 1 cm × 1 cm × 0.2 mm) in an undivided cell at 50 °C (water bath) unsealed under air for 6 h. ^b Isolated yield.

Table S9. Temperature screening ^a

+	N N N H	C rod (+) Pt (-), I = 10 mA ⁿ Bu ₄ NI (0.5 equiv) MeCN (5 mL), x °C unsealed under air	N N O
1a	2a		3a
Entry	Tem	perature (°C)	Yield (%) ^b
1		25	44
2	40		50
3		50	68
4		60	65

^a Reaction conditions: A mixture of **1a** (0.2 mmol, 1 equiv), **2a** (0.8 mmol, 4 equiv) and ⁿBu₄NI (0.1 mmol, 0.5 equiv) in MeCN (5 mL) under a constant current of 10 mA (C-rod anode: $\Phi = 0.5$ cm; Pt-plate cathode: 1 cm × 1 cm × 0.2 mm) in an undivided cell at water bath (x °C) unsealed under air for 6 h. ^b Isolated yield.

4. Main by-products

In the model reaction, the desired product **3a** was obtained in 68% isolated yield, while byproduct **4a** was isolated in 10% yield, and the iodinated compound **8a** was isolated in 4% yield. Additionally, nearly all reactions generated unidentified highly polar byproducts. For the ¹H NMR and ¹³C NMR of the secondary products (**4a** and **8a**), see SI, §7 and §9.

5. Mechanistic investigation

5.1. EPR experiments

The model reaction was carried out under standard conditions in the presence of 50 µL 3,4-dihydro-

2,2-dimethyl-2*H*-pyrrole 1-oxide (DMPO). After 10 minutes, the reaction solution was taken out with capillary and analyzed by EPR at room temperature. Radical signals were detected (Figure S3), indicating the possible generation of radicals.

EPR spectra were recorded with a modified Bruker EMXplus-9.5/12 spectrometer operated at 9.8293 GHz. The scan range was 150.0 G, with a resolution of 1500 points and a center field of 3511.15 G. The time constant was 81.92 ms, the conversion time was 66.68 ms, and the scan time was 100.02 s. A modulation amplitude of 10.0 G, the modulation frequency of 100.00 kHz, and microwave power of 6.325 mW were used for the experiments.

Figure S3 EPR experiments.

5.2. Cyclic voltammetry experiments

The electrochemical measurement was performed by a computer-controlled electrochemical analyzer. Cyclic voltammetry experiments were performed in a three-electrode cell with MeCN (15 mL) as solvent, "Bu₄NClO₄ (0.05 M) as supporting electrolyte, and the concentration of the tested compound was 2.0 mM. Glassy carbon (diameter 3 mm) was used as working electrode, platinum wire as auxiliary electrode, and Ag/AgCl (3 M KCl) as reference electrode. The scanning speed was 100 mV·s⁻¹. For "Bu₄NI, 1-methoxy-4-vinylbenzene (1a), benzotriazole (2a) and 1-(2-iodo-1-(4-methoxyphenyl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole (8a), the oxidation potential range studied was 0.0 V to +3.0 V *vs*. Ag/AgCl (3 M KCl). The oxidation potentials were determined as: The onset

potential for the oxidation of "Bu₄NI is around +0.73 V, 1-methoxy-4-vinylbenzene (1a) is around +1.17 V, no obvious oxidation peaks for benzotriazole 2a (Figure S4) and 1-(2-iodo-1-(4-methoxyphenyl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole (8a) is around +1.52 V (Figure S5). For 8a, the reduction potential range studied was 0.0 V to -3.0 V vs. Ag/AgCl (3 M KCl).The onset potential for the reduction of 8a is around -2.25 V (Figure S6).

Figure S4 Cyclic voltammogram oxidation potential of "Bu4NI, 1a and 2a

Figure S5 Cyclic voltammogram oxidation potential of 8a

Figure S6 Cyclic voltammogram reduction potential of 8a

5.3. The measurement of pH values

We monitored the pH values at the onset of the model reaction and after 3 h of electrolysis. The initial pH was around 6 (Figure S7 a), while after 3 h of electrolysis, the pH increased to approximately 8 (Figure S7 b).

Additionally, we assessed the pH of 0.1 mmol of ${}^{n}Bu_{4}NI$ dissolved in 5 mL of non-dried MeCN (analytical grade). In the absence of electrical current, the pH was approximately 6 (Figure S7 c). After 3 h of exposure to a 10 mA electrical current, the pH was approximately 8 (Figure S7 d).

Figure S7 The measurement of pH values. a) The model reaction system (before electrolysis); b) The model reaction system (after electrolysis under a 10 mA current for 3 h); c) 0.1 mmol of n Bu₄NI in a non-dried 5 mL MeCN (analytical grade) (before electrolysis); d) 0.1 mmol of n Bu₄NI in a non-dried 5 mL MeCN (analytical grade) (after electrolysis under a 10 mA current

for 3 h).

5.4. Possible explanations for the elimination of HI from 8a to yield 3a

Based on the aforementioned cyclic voltammetry measurements and pH determinations, we put forward possible explanations for the elimination of HI from **8a** to yield **3a**. The observational results suggest that, under our reaction conditions, **8a** is neither oxidized nor reduced. We speculate that I⁻ from $^{n}Bu_{4}NI$ undergoes anodic oxidation, while H⁺ ions, derived from the dissociation of water in the solvent, undergo cathodic reduction, resulting in the release of H₂. This leads to an increase in OH⁻ concentration within the system, consequently causing the reaction system to become basic, which is conducive to the elimination of HI. Notably, this reaction was conducted under elevated temperature at 50°C, and heating also promotes the elimination of HI.

6. The possible mechanism of "Bu₄NBr participation

The possible mechanism when "Bu₄NBr is used in place of "Bu₄NI (Figure S8).

Figure S8 Proposed mechanism.

7. Characterization data of the products

1-(1-(4-Methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3a)^[3]: $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 34.2 mg, 68% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.15-8.07 (m, 1H), 7.40-7.33 (m, 2H), 7.25-7.16 (m, 2H), 7.13-7.06 (m, 1H), 6.93-6.86 (m, 2H), 5.69 (d, *J* = 1.1 Hz, 1H), 5.65 (d, *J* = 1.1 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.9, 146.2, 142.3, 133.0, 128.3, 127.7, 127.2, 124.1, 120.1, 114.2, 111.3, 109.3, 55.4.

1-(1-(4-Methoxyphenyl)vinyl)-6-methyl-1*H*-benzo[*d*][1,2,3]triazole (3b) and 1-(1-(4-Methoxyphenyl)vinyl)-5-methyl-1*H*-benzo[*d*][1,2,3]triazole (3b'): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). Isomer (1.3:1 based on NMR), 29.7 mg, 56% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 8.6 Hz, 0.8H), 7.86 (s, 1H), 7.25-7.19 (m, 4.6H), 7.18 (d, *J* = 1.4 Hz, 0.8H), 6.96 (d, *J* = 8.5 Hz, 1H), 6.93-6.86 (m, 4.4H), 5.70 (s, 0.8H), 5.65 (s, 1H), 5.64 (s, 1H), 5.60 (s, 0.8H), 3.83 (d, *J* = 1.4 Hz, 5.4H), 2.50 (s, 3H), 2.42 (s, 2.4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.8, 146.8, 144.7, 142.4, 142.3, 138.4, 134.2, 131.5, 129.8, 128.4, 128.2, 127.3, 127.2, 126.4, 119.5, 119.0, 114.2, 110.9, 110.4, 109.3, 109.0, 55.4, 22.0, 21.4. HRMS (ESI): m/z: calcd for C₁₆H₁₅N₃ONa (M+Na)⁺ 288.1107; found 288.1110. Calcd for C₁₆H₁₅N₃OK (M+K)⁺ 304.0847; found 304.0860.

1-(1-(4-Methoxyphenyl)vinyl)-7-methyl-1*H***-benzo**[*d*][1,2,3]triazole (3c): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 27.6 mg, 52% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.26-7.19 (m, 3H), 7.15-7.10 (m, 1H), 6.93-6.85 (m, 3H), 5.68 (d, *J* = 1.0 Hz, 1H), 5.63 (d, *J* = 0.9 Hz, 1H), 3.83 (s, 3H), 2.84 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.8, 146.1, 142.5, 133.0, 131.0, 128.3, 127.6, 127.3, 123.9, 114.2, 109.3, 108.6, 55.4, 16.7. HRMS (ESI): m/z: calcd for $C_{16}H_{15}N_3ONa (M+Na)^+$ 288.1107; found 288.1107.

1-(1-(4-Methoxyphenyl)vinyl)-5,6-dimethyl-1*H***-benzo[***d***][1,2,3]triazole (3d): R_f = 0.25 (Petroleum ether/EtOAc, 15:1). 34.0 mg, 61% yield. Colorless oil. ¹H NMR (400 MHz, Chloroform***d***) \delta 7.83 (s, 1H), 7.25-7.16 (m, 2H), 6.92-6.84 (m, 3H), 5.67 (s, 1H), 5.60 (s, 1H), 3.83 (s, 3H), 2.39 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-***d***) \delta 160.8, 145.3, 142.4, 138.1, 133.9, 132.1, 128.3, 127.4, 119.1, 114.2, 110.7, 109.0, 55.4, 20.9, 20.3. HRMS (ESI): m/z: calcd for C_{17}H_{17}N_3ONa (M+Na)⁺ 302.1264; found 302.1265.**

6-Methoxy-1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3e) and 5-Methoxy-1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3e'): $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). Isomer (2.5:1 based on NMR), 24.2 mg, 43% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 9.1 Hz, 0.4H), 7.42 (d, *J* = 2.3 Hz, 1H), 7.25-7.20 (m, 2.8H), 7.04 (d, *J* = 2.2 Hz, 0.4H), 7.02-7.01 (m, 0.8H), 6.95-6.87 (m, 4H), 6.40 (d, *J* = 2.2 Hz, 0.4H), 5.70 (d, *J* = 0.9 Hz, 0.4H), 5.66-5.64 (m, 2H), 5.63 (d, *J* = 0.9 Hz, 0.4H), 3.89 (s, 3H), 3.83 (d, *J* = 0.9 Hz, 4.2H), 3.70 (s, 1.2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.8 (160.84), 160.8 (160.80), 160.1, 157.3, 147.2, 142.3, 128.5, 128.4, 128.3, 127.1, 120.7, 120.3, 116.2, 114.2 (114.20), 114.2 (114.18), 111.9, 109.2, 109.0, 98.9, 91.8, 55.7, 55.6, 55.4 (55.40), 55.4 (55.38). HRMS (ESI): m/z: calcd for C₁₆H₁₅N₃O₂Na (M+Na)⁺ 304.1056; found 304.1052. Calcd for C₁₆H₁₅N₃O₂K (M+K)⁺ 320.0796; found 320.0792.

6-Fluoro-1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3f) and 5-Fluoro-1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3f'): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). Isomer (1:1 based on NMR), 20.4 mg, 38% yield. Orange oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.10-8.01 (m, 1H), 7.76-7.69 (m, 1H), 7.26-7.18 (m, 4H), 7.18-7.09 (m, 2H), 7.04-7.00 (m, 1H), 6.93-6.86 (m, 4H), 6.76-6.63 (m, 1H), 5.69 (s, 1H), 5.68 (s, 1H), 5.66 (s, 1H), 5.65 (s, 1H), 3.84 (d, J = 2.8 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 162.3 (d, J = 248.7 Hz), 161.0, 159.7 (d, J = 243.7 Hz), 146.5, 146.4, 143.0, 142.2, 142.1, 133.5, 133.4, 130.0, 128.3 (128.33),

128.3 (128.29), 126.9, 126.7, 121.6, 121.5, 117.7, 117.5, 114.4, 114.3, 114.2, 114.0, 112.3 (112.32), 112.3 (112.26), 109.5, 109.4, 104.7, 104.5, 97.3, 97.1, 55.4. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -111.00, -117.60. HRMS (ESI): m/z: calcd for C₁₅H₁₂FN₃ONa (M+Na)⁺ 292.0857; found 292.0857. Calcd for C₁₅H₁₂FN₃OK (M+K)⁺ 308.0596; found 308.0597.

6-Chloro-1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3g) and 5-Chloro-1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3g'): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). Isomer (1:1 based on NMR), 23.4 mg, 41% yield. Orange oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.09 (d, *J* = 1.9 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.35-7.31 (m, 2H), 7.23-7.18 (m, 4H), 7.12 (d, *J* = 1.9 Hz, 1H), 6.99 (d, *J* = 8.8 Hz, 1H), 6.92-6.89 (m, 4H), 5.72 (s, 1H), 5.69 (s, 1H), 5.66 (s, 1H), 5.63 (s, 1H), 3.84 (m, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.0 (161.04), 161.0 (161.02), 146.8, 144.7, 142.1, 142.0, 134.2, 133.6, 131.7, 130.1, 128.6, 128.3, 128.2, 126.8, 126.7, 125.4, 121.0, 119.5, 114.4, 114.3, 112.2, 111.0, 109.8, 109.6, 55.4. HRMS (ESI): m/z: calcd for C₁₅H₁₂ClN₃ONa (M+Na)⁺ 308.0561; found 308.0559.

6-Bromo-1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3h) and 5-Bromo-1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3h'): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). Isomer (1.3:1 based on NMR), 28.6 mg, 43% yield. Orange oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.26 (d, *J* = 1.7 Hz, 0.8H), 7.97 (d, *J* = 8.8 Hz, 1H), 7.46 (m, 2H), 7.32 (d, *J* = 1.7 Hz, 1H), 7.20 (m, 3.4H), 6.95 (d, *J* = 8.8 Hz, 1H), 6.91-6.88 (m, 3.4H), 5.72 (d, *J* = 1.2 Hz, 1H), 5.70 (d, *J* = 1.1 Hz, 0.8H), 5.66 (d, *J* = 1.1 Hz, 0.8H), 5.62 (d, *J* = 1.2 Hz, 1H), 3.84 (d, *J* = 4.5 Hz, 5.4H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.0, 161.0(160.99), 147.3, 145.0, 142.0, 142.0(141.97), 134.0, 131.9, 131.1, 128.3, 128.2, 128.0, 126.7, 126.7(126.67), 122.7, 122.2, 121.2, 117.4, 114.4, 114.3, 114.1, 112.6, 109.9, 109.7, 55.4. HRMS (ESI): m/z: calcd for C₁₅H₁₂BrN₃ONa (M+Na)⁺ 352.0056; found 352.0048.

1-(1-(4-Methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole-6-carbonitrile (3i) and 1-(1-(4-Methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole-5-carbonitrile (3i'): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). Isomer (1.3:1 based on NMR), 33.1 mg, 60% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.50 (s, 0.8H), 8.22 (d, *J* = 8.6 Hz, 1H), 7.61-7.57 (m, 1.8H), 7.44 (s, 1H), 7.21-7.18 (m, 3.6H), 7.17-7.15 (m, 0.8H), 6.94-6.90 (m, 3.6H), 5.77-5.75 (m, 1.8H), 5.71-5.69 (m, 1.8H), 3.86 (s, 3H), 3.85 (s, 2.4H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.3, 161.2, 147.4, 145.4, 141.8 (141.81), 141.8 (141.77), 134.5, 132.3, 129.9, 128.2 (128.24), 128.2 (128.23), 126.5, 126.4, 126.2 (126.21), 126.2 (126.15), 121.6, 118.3, 118.2, 117.1, 114.6, 114.5, 112.8, 111.3, 110.4 (110.41), 110.4 (110.39), 108.1, 55.4. HRMS (ESI): m/z: calcd for C₁₆H₁₂N₄ONa (M+Na)⁺ 299.0903; found 299.0897. Calcd for C₁₆H₁₂N₄OK (M+K)⁺ 315.0643; found 315.0647.

1-(1-(4-Methoxyphenyl)vinyl)-6-(trifluoromethyl)-1*H***-benzo[***d***][1,2,3]triazole (3i) and 1-(1-(4-Methoxyphenyl)vinyl)-5-(trifluoromethyl)-1***H***-benzo[***d***][1,2,3]triazole (3i'): R_f = 0.25 (Petroleum ether/EtOAc, 15:1). Isomer (1.4:1 based on NMR), 40.2 mg, 63% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-***d***) δ 8.43 (s, 0.7H), 8.23 (d,** *J* **= 8.7 Hz, 1H), 7.64-7.57 (m, 1.7H), 7.46 (s, 1H), 7.24-7.18 (m, 3.4H), 7.18 (d,** *J* **= 8.7 Hz, 0.7H), 6.94-6.87 (m, 3.4H), 5.78 (d,** *J* **= 1.4 Hz, 1H), 5.74 (d,** *J* **= 1.3 Hz, 0.7H), 5.70 (d,** *J* **= 1.3 Hz, 0.7H), 5.67 (d,** *J* **= 1.3 Hz, 1H), 3.84 (s, 5.1H). ¹³C NMR (151 MHz, Chloroform-***d***) δ 161.2, 161.1, 147.3, 145.4, 142.0 (142.00), 142.0 (141.98), 134.3, 132.5, 130.0 (q,** *J* **= 32.6 Hz), 128.3, 128.2, 126.9 (q,** *J* **= 33.0 Hz) 126.7, 126.6, 124.3 (q,** *J* **= 2.7 Hz), 123.8 (q,** *J* **= 272.6 Hz), 123.1, 121.2, 120.9 (q,** *J* **= 3.0 Hz), 118.4 (q,** *J* **= 4.5 Hz), 114.4 (114.43), 114.4 (114.41), 112.3, 110.1, 110.0, 109.4 (q,** *J* **= 4.5 Hz), 55.4 (55.40), 55.4 (55.39). ¹⁹F NMR (565 MHz, Chloroform-***d***) δ -61.47, -61.78. HRMS (ESI): m/z: calcd for C_{16}H_{13}F_3N_3O (M+H)⁺ 320.1005; found 320.1007.**

Methyl 1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole-6-carboxylate (3k) and Methyl 1-(1-(4-methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole-5-carboxylate (3k'): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). Isomer (1.6:1 based on NMR), 35.2 mg, 57% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.87-8.78 (m, 0.6H), 8.16-8.13 (m, 1H), 8.09-8.05 (m, 1H), 8.05-8.04 (m, 0.6H), 7.98-7.94 (m, 1H), 7.23-7.19 (m, 3.2H), 7.13-7.09 (m, 0.6H), 6.92-6.87 (m, 3.2H), 5.80 (d, J = 1.2 Hz, 1H), 5.73 (d, J = 1.1 Hz, 0.6H), 5.69 (d, J = 1.2 Hz, 0.6H), 5.65 (d, J = 1.2 Hz, 1H), 3.97 (s, 1.8H), 3.92 (s, 3H), 3.83 (d, J = 1.7 Hz, 4.8H). ¹³C NMR (101 MHz,

Chloroform-*d*) δ 166.4, 166.3, 161.0, 148.0, 145.9, 142.0, 135.2, 132.9, 129.7, 128.5, 128.3, 128.1, 126.9, 126.7, 126.6, 124.9, 122.9, 120.0, 114.3 (114.33), 114.3 (114.31), 113.7, 111.2, 110.1, 109.8, 55.4, 52.5, 52.4. HRMS (ESI): m/z: calcd for C₁₇H₁₅N₃O₃Na (M+Na)⁺ 332.1006; found 332.1006. Calcd for C₁₇H₁₅N₃O₃K (M+K)⁺ 348.0745; found 348.0746.

1-(1-(4-Methoxyphenyl)vinyl)-1*H***-indazole (31)**: $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 12.5 mg, 25% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.99 (s, 1H), 7.76 (d, *J* = 8.8 Hz, 1H), 7.66-7.60 (m, 1H), 7.36-7.29 (m, 3H), 7.13-7.06 (m, 1H), 6.96-6.90 (m, 2H), 5.80 (s, 1H), 5.40 (s, 1H), 3.85 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.7, 149.4, 146.2, 129.4, 128.1, 126.9, 123.5, 122.3, 121.8, 120.4, 117.9, 114.1, 107.4, 55.4. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₂ONa (M+Na)⁺ 273.0998; found 273.0998.

1-(1-(4-Ethoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3m): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 32.9 mg, 62% yield. Orange oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14-8.05 (m, 1H), 7.39-7.33 (m, 2H), 7.24-7.18 (m, 2H), 7.12-7.07 (m, 1H), 6.90-6.85 (m, 2H), 5.69 (d, J = 0.9 Hz, 1H), 5.65 (d, J = 0.9 Hz, 1H), 4.05 (q, J = 7.0 Hz, 2H), 1.42 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.2 146.1, 142.3, 133.0, 128.3, 127.7, 126.9, 124.1, 120.1, 114.7, 111.4, 109.2, 63.6, 14.7. HRMS (ESI): m/z: calcd for C₁₆H₁₅N₃ONa (M+Na)⁺ 288.1107; found 288.1093. Calcd for C₁₆H₁₅N₃OK (M+K)⁺ 304.0847; found 304.0834.

1-(1-(3,4-Dimethoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3n): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 39.4 mg, 70% yield. Colorless oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.17-8.05 (m, 1H), 7.41-7.34 (m, 2H), 7.13-7.05 (m, 1H), 6.86 (s, 2H), 6.82 (s, 1H), 5.70 (s, 1H), 5.69 (s, 1H), 3.91 (s, 3H), 3.78 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 1 150.6, 149.3, 146.2, 142.5, 133. 0, 127.7, 127.5, 124.1, 120.2, 120.1, 111.4, 111.3, 110.2, 109.4, 56.0 (56.03), 56.0 (56.00).

HRMS (ESI): m/z: calcd for $C_{16}H_{15}N_3O_2Na$ (M+Na)⁺ 304.1056; found 304.1059. Calcd for $C_{16}H_{15}N_3O_2K$ (M+K)⁺ 320.0796; found 320.0799.

1-(1-(2-Methoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (30): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 12.1 mg, 24% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.10-8.04 (m, 1H), 7.44-7.37 (m, 2H), 7.34-7.29 (m, 2H), 7.07-7.00 (m, 2H), 6.87 (d, *J* = 8.3 Hz, 1H), 5.95 (s, 1H), 5.63 (s, 1H), 3.44 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 157.5, 146.1, 140.7, 132.6, 131.2, 130.7, 127.4, 124.2, 123.8, 120.9, 119.9, 111.4, 111.3, 111.0, 55.5. HRMS (ESI): m/z: calcd for C₁₅H₁₃N₃ONa (M+Na)⁺ 274.0951; found 274.0945.

1-(1-(P-tolyl)vinyl)-1*H***-benzo**[*d*][1,2,3]triazole (3p)^[4]: $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 7.1 mg, 15% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.13-8.09 (m, 1H), 7.40-7.34 (m, 2H), 7.18 (s, 4H), 7.10-7.05 (m, 1H), 5.75 (d, *J* = 1.0 Hz, 1H), 5.72 (d, *J* = 1.1 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 146.2, 142.7, 140.0, 133.0, 131.9, 129.5, 127.7, 126.8, 124.1, 120.1, 111.3, 110.2, 21.3.

1-(1-(4-(Tert-butyl)phenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3q)^[4]: $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 15.5 mg, 28% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.16-8.07 (m, 1H), 7.42-7.36 (m, 4H), 7.25-7.19 (m, 2H), 7.17-7.11 (m, 1H), 5.79 (s, 1H), 5.71 (s, 1H), 1.33 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 153.2, 146.1, 142.7, 133.1, 131.8, 127.7, 126.6, 125.7, 125.6, 125.5, 124.1, 120.1, 111.2, 110.3, 34.8, 31.3, 31.2, 31.0.

1-(1-(4-Phenoxyphenyl)vinyl)-1*H***-benzo[***d***][1,2,3]triazole (3r): R_f = 0.25 (Petroleum ether/EtOAc, 10:1). 25.0 mg, 40% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.12 (d, J = 8.1 Hz, 1H), 7.44-7.33 (m, 4H), 7.28-7.22 (m, 2H), 7.20-7.11 (m, 2H), 7.10-7.03 (m, 2H), 7.02-6.95 (m, 2H), 5.75 (s, 1H), 5.70 (s, 1H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 159.0, 156.3, 146.2, 142.2, 133.0, 129.9, 129.4, 128.5, 127.8, 124.2, 124.0, 120.2, 119.6, 118.4, 111.2, 110.1. HRMS (ESI): m/z: calcd for C₂₀H₁₅N₃ONa (M+Na)⁺ 336.1107; found 336.1113.**

1-(1-phenylvinyl)-1*H***-benzo[***d***][1,2,3]triazole (3s)^[4]: R_f = 0.25 (Petroleum ether/EtOAc, 20:1). 4.4 mg, 10% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.21-8.04 (m, 1H), 7.43-7.34 (m, 5H), 7.32-7.25 (m, 2H), 7.09-6.98 (m, 1H), 5.79 (s, 1H), 5.77 (s, 1H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 146.2, 142.7, 134.6, 132.9, 129.8, 128.9, 127.9, 126.9, 124.2, 120.1, 111.3, 111.1.**

1-(1-(Thiophen-2-yl)vinyl)-1*H***-benzo[***d***][1,2,3]triazole (3t): R_f = 0.25 (Petroleum ether/EtOAc, 15:1). 20.0 mg, 44% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-***d***) δ 8.16-8.07 (m, 1H), 7.47-7.29 (m, 4H), 7.00 (q,** *J* **= 5.1, 3.7 Hz, 1H), 6.91 (q,** *J* **= 3.7, 1.2 Hz, 1H), 5.85 (d,** *J* **= 1.4 Hz, 1H), 5.60 (d,** *J* **= 1.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-***d***) δ 146.0, 137.7, 136.8, 133.0, 128.0, 127.8, 127.4, 127.2, 124.3, 120.2, 111.0, 110.4. HRMS (ESI): m/z: calcd for C₁₂H₉N₃SNa (M+Na)⁺ 250.0409; found 250.0409. Calcd for C₁₂H₉N₃SK (M+K)⁺ 266.0149; found 266.0149.**

1-(1-(4-Ethoxyphenyl)vinyl)-6-methyl-1*H***-benzo**[*d*][1,2,3]triazole (3u) and 1-(1-(4-Ethoxyphenyl)vinyl)-5-methyl-1*H***-benzo**[*d*][1,2,3]triazole (3u'): $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). Isomer (1.9:1 based on NMR), 25.1 mg, 45% yield. Orange oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 8.5 Hz, 0.5H), 7.86 (s, 1H), 7.23-7.17 (m, 4.5H), 6.97-6.94 (m, 1H), 6.91-6.85 (m, 3.5H), 5.69 (s, 0.5H), 5.65 (s, 1H), 5.63 (s, 1H), 5.60 (s, 0.5H), 4.08-4.02 (m, 3H), 2.50 (s, 3H), 2.42 (s, 1.5H), 1.45-1.40 (m, 4.5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.2 (160.19), 160.2 (160.18), 146.7, 144.7, 142.4 (142.39), 142.4 (142.35), 138.4, 134.2, 133.5, 131.5, 129.8, 128.4, 128.2, 127.1, 127.0, 126.4, 119.5, 119.0, 114.7 (114.67), 114.7 (114.66), 110.9, 110.4, 109.2, 108.9, 63.6, 22.0, 21.4, 14.7. HRMS (ESI): m/z: calcd for C₁₇H₁₇N₃ONa (M+Na)⁺ 302.1264; found 302.1265. Calcd for C₁₇H₁₇N₃OK (M+K)⁺ 318.1003; found 318.1005.

1-(1-(3,4-Dimethoxyphenyl)vinyl)-7-methyl-1*H***-benzo**[*d*][**1,2,3**]**triazole** (**3v**): $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). 31.9 mg, 54% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.25 (t, 1H), 7.15-7.11 (m, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 6.85 (d, *J* = 1.2 Hz, 2H), 6.81 (t, *J* = 1.2 Hz, 1H), 5.69 (d, 1H), 5.66 (d, 1H), 3.91 (s, 3H), 3.78 (s, 3H), 2.84 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 150.5, 149.2, 146.0, 142.6, 132.9, 131.0, 127.7, 127.6, 124.0, 120.1, 111.2, 110.2, 109.4, 108.6, 56.0 (56.03), 56.0 (55.99), 16.7. HRMS (ESI): m/z: calcd for C₁₇H₁₇N₃O₂Na (M+Na)⁺ 318.1213; found 318.1213.

1-(1-(3,4-Dimethoxyphenyl)vinyl)-5,6-dimethyl-1*H***-benzo**[*d*][1,2,3]triazole (3w): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 30.9 mg, 50% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 6.90 (s, 1H), 6.84 (q, 3H), 5.67 (s, 1H), 5.62 (s, 1H), 3.91 (d, J = 1.5 Hz, 3H), 3.79 (d, J = 1.4 Hz, 3H), 2.40 (s, 3H), 2.31 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 150.5, 149.2, 145.3, 142.6, 138.1, 133.9, 132.1, 127.7, 120.1, 119.1, 111.3, 110.7, 110.2, 109.1, 56.0 (56.03), 56.0 (55.99), 20.8, 20.3. HRMS (ESI): m/z: calcd for $C_{18}H_{19}N_3O_2Na$ (M+Na)⁺ 332.1369; found 332.1366. Calcd for $C_{18}H_{19}N_3O_2K$ (M+K)⁺ 348.1109; found 348.1110.

1-(1-(3,4-Dimethoxyphenyl)vinyl)-6-methyl-1*H*-benzo[*d*][1,2,3]triazole (3x) and 1-(1-(3,4-Dimethoxyphenyl)vinyl)-5-methyl-1*H*-benzo[*d*][1,2,3]triazole (3x'): $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). Isomer (1.7:1 based on NMR), 29.5 mg, 50% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 8.5 Hz, 0.6H), 7.85 (q, *J* = 1.2 Hz, 1H), 7.21-7.18 (m, 1.6H), 6.97 (d, *J* = 8.5 Hz, 1H), 6.92 (q, *J* = 1.1 Hz, 0.6H), 6.86-6.81 (m, 4.8H), 5.71 (d, *J* = 1.0 Hz, 0.6H), 5.67-5.65 (m, 2H), 5.63 (d, *J* = 0.9 Hz, 0.6H), 3.92-3.90 (m, 4.8H), 3.81-3.78 (m, 4.8H), 2.51-2.49 (m, 3H), 2.44-2.41 (m, 1.8H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.4, 149.2, 146.7, 144.7, 142.5, 142.4, 138.5, 134.2, 133.5, 131.5, 129.8, 127.6, 127.5, 126.4, 120.1, 120.0, 119.5, 119.0, 111.2, 111.1, 110.9, 110.4, 110.1, 109.9, 109.5, 109.1, 56.0 (55.99), 56.0 (55.97), 22.0, 21.4. HRMS (ESI): m/z: calcd for C₁₇H₁₇N₃O₂Na (M+Na)⁺ 318.1213; found 318.1213. Calcd for C₁₇H₁₇N₃O₂K (M+K)⁺ 334.0952; found 334.0952.

1-(1-(3,4-Dimethoxyphenyl)vinyl)-6-(trifluoromethyl)-1*H***-benzo[***d***][1,2,3]triazole (3y) and 1-(1-(3,4-Dimethoxyphenyl)vinyl)-5-(trifluoromethyl)-1***H***-benzo[***d***][1,2,3]triazole (3y'): R_f = 0.25 (Petroleum ether/EtOAc, 15:1). Isomer (1.8:1 based on NMR), 38.4 mg, 55% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-***d***) δ 8.46-8.40 (m, 0.6H), 8.26-8.22 (m, 1H), 7.66-7.58 (m, 1.8H), 7.52-7.49 (m, 1H), 7.21 (d,** *J* **= 8.7 Hz, 0.6H), 6.88-6.76 (m, 4.6H), 5.81 (d,** *J* **= 1.2 Hz, 1H), 5.76 (d,** *J* **= 1.2 Hz, 0.6H), 5.73 (d,** *J* **= 1.1 Hz, 0.6H), 5.70 (d,** *J* **= 1.3 Hz, 1H), 3.94-3.91 (m, 4.8H), 3.84-3.81 (m, 4.8H). ¹³C NMR (101 MHz, Chloroform-***d***) δ 150.8, 150.7, 149.4 (149.37), 149.4 (149.35), 147.3, 145.3, 142.1, 142.0, 134.3, 132.4, 130.0 (q,** *J* **= 32.6 Hz), 127.0, 126.8 (126.84), 126.8 (126.79), 126.7, 124.4 (q,** *J* **= 3.2 Hz), 123.7 (q,** *J* **= 272.8 Hz), 121.2, 121.0 (q,** *J* **= 3.1 Hz), 120.1, 120.0, 118.3 (q,** *J* **= 4.4 Hz), 112.4, 111.2 (111.23), 111.2 (111.21), 110.3, 110.2, 109.8 (109.84), 109.8 (109.77), 109.4 (q,** *J* **= 4.6 Hz), 56.0 (56.01), 56.0 (55.98), 56.0 (55.97). ¹⁹F NMR (376 MHz, Chloroform-***d***) δ -61.47, -61.75. HRMS (ESI): m/z: calcd for C₁₇H₁₅F₃N₃O₂ (M+H)⁺ 350.1111; found 350.1116.**

Methyl 1-(1-(3,4-dimethoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole-6-carboxylate (3z) and Methyl 1-(1-(3,4-dimethoxyphenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole-5-carboxylate (3z'): $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). Isomer (1.5:1 based on NMR), 49.5 mg, 73% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.87-8.81 (m, 0.7H), 8.15 (d, *J* = 8.7 Hz, 1H), 8.08-8.04 (m, 1.7H), 8.00-7.93 (m, 1H), 7.10 (d, *J* = 8.8 Hz, 0.7H), 6.87-6.79 (m, 5.1H), 5.81 (d, *J* = 1.3 Hz,

1H), 5.75-5.73 (m, 0.7H), 5.73-5.71 (m, 0.7H), 5.67 (d, J = 1.3 Hz, 1H), 3.98 (s, 2.1H), 3.94-3.90 (m, 8.1H), 3.81 (s, 3H), 3.79 (s, 2.1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.4, 166.3, 150.8 (150.80), 150.8 (150.76), 149.4, 148.0, 145.9, 142.2, 135.2, 133.0, 129.8, 128.5, 127.2, 127.1, 126.7, 125.0, 122.9, 120.1, 120.0, 113.6, 111.3, 111.2, 110.4, 110.1, 110.0, 109.9, 56.1, 56.0, 52.5, 52.4. HRMS (ESI): m/z: calcd for C₁₈H₁₇N₃O₄Na (M+Na)⁺ 362.1111; found 362.1111. Calcd for C₁₈H₁₇N₃O₄K (M+K)⁺ 378.0851; found 378.0855.

5,6-Dimethyl-1-(1-(4-phenoxyphenyl)vinyl)-1*H***-benzo**[*d*][1,2,3]triazole (3aa): $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). 25.2 mg, 37% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.24 (q, *J* = 9.3, 2.7 Hz, 2H), 7.15-7.11 (m, 1H), 7.06-7.02 (m, 2H), 6.99-6.94 (m, 3H), 5.72 (s, 1H), 5.64 (s, 1H), 2.39 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.8, 156.3, 145.3, 142.2, 138.3, 134.1, 132.1, 129.9, 129.6, 128.5, 124.0, 119.5, 119.2, 118.5, 110.6, 109.8, 21.0, 20.4. HRMS (ESI): m/z: calcd for C₂₂H₁₉N₃ONa (M+Na)⁺ 364.1420; found 364.1420. Calcd for C₂₂H₁₉N₃OK (M+K)⁺ 380.1160; found 380.1153.

2-(1-(4-Methoxyphenyl)vinyl)-2H-benzo[*d*][1,2,3]triazole (4a): $R_f = 0.25$ (Petroleum ether/EtOAc, 30:1). 5.1 mg, 10% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93-7.88 (m, 2H), 7.43-7.36 (m, 4H), 6.97-6.93 (m, 2H), 6.10 (s, 1H), 5.58 (s, 1H), 3.85 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.7, 144.7, 129.7, 127.2, 127.1, 118.5, 113.9, 109.6, 55.4. HRMS (ESI): m/z: calcd for C₁₅H₁₃N₃ONa (M+Na)⁺ 274.0951; found 274.0961. Calcd for C₁₅H₁₃N₃OK (M+K)⁺ 290.0690; found 290.0709.

4-((2*H*-benzo[*d*][1,2,3]triazol-2-yl)methyl)-2,6-di-tert-butylphenol (6a')^[5]: $R_f = 0.25$ (Petroleum ether/EtOAc, 20:1). 27.0 mg, 10% yield. Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 (dd,

J = 6.5, 3.1 Hz, 2H), 7.36 (dd, J = 6.6, 3.0 Hz, 2H), 7.29 (s, 2H), 5.78 (s, 2H), 5.25 (s, 1H), 1.41 (s, 18H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 154.2, 144.6, 136.3, 126.2, 125.5 (125.54), 125.5 (125.45), 118.1, 60.8, 34.3, 30.2.

1-(2-Iodo-1-(4-methoxyphenyl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole (8a)^[2]: $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 64.4 mg, 85% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13-8.04 (m, 1H), 7.45-7.31 (m, 5H), 6.86 (dd, *J* = 8.8, 1.9 Hz, 2H), 5.96-5.88 (m, 1H), 4.48-4.38 (m, 1H), 4.03-3.95 (m, 1H), 3.76 (d, *J* = 1.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.1, 146.0, 133.0, 129.6, 128.1, 127.6, 124.1, 120.2, 114.5, 109.4, 65.0, 55.3, 5.6.

8. References

[1] R. Damschroder and W. Peterson, Organic Syntheses, 1940, 16-16.

[2] K. Sun, F. Ma, L. Liu, J. Sun, X. Liu, Y. Wang, Z. Zhang, G. Zhang, *RSC Adv.* 2015, 5, 82492–82495.

[3] Y. Su, J. L. Petersen, T. L. Gregg, X. Shi, Org. Lett. 2015, 17, 1208–1211.

[4] X. Wang, Q. Wang, Y. Xue, K. Sun, L. Wu, B. Zhang, Chem. Commun. 2020, 56, 4436–4439.

[5] Y. Li, Y. Li, Y. Li, C. Chen, F. Ying, Y. Dong, D. Liang, *Synth. Commun.* **2019**, *49*, 2053–2065.

9. NMR spectra of products

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3a

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3a

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3b and 3b'

142.3128 138.4372 138.4372 134.896 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 128.3718 119.4828 119.48588 119.48588 119.48588 119.48588 21.9705 8007 60. 4 3b N 3b' 210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) 80 0 -10 70 60 50 40 30 20 10

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3b and 3b'

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3c

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3d

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3d

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3e and 3e'

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3e and 3e'

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3f and 3f'

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3f and 3f'

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3g and 3g'

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3g and 3g'

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3h and 3h'

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3h and 3h'

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3i and 3i'

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3i and 3i'

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3j and 3j'

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3j and 3j'

¹⁹F-NMR Spectrum (565 MHz, CDCl₃) of 3j and 3j'

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3k and 3k'

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3k and 3k'

¹H-NMR Spectrum (600 MHz, CDCl₃) of 31

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 31

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3m

160.2355 [46.1419 [42.3349 128.3240 127.8864 126.9357 124.1173 124.11755 124.11755 124.11755 124.117555 124.117555555555555555555 9950 77.3740 77.0565 76.7385 14.7419 -63.6292 32 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3m

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3n

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3n

841 855 822 822 822 822 822 822 822 822 822	88 1 80	$\infty \infty$
23232677727282 700077776770 7007777 700777 700777 70077 70077 70077 7007 70	305	160
001112022222332449	7.6	5.9
	<u> </u>	5 5

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR Spectrum (600 MHz, CDCl₃) of 30

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 30

Ν Ó

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3p

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3p

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3q

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3q

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3r

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3r

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3s

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3s

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3t

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3t

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3u and 3u'

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3u and 3u'

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3v

S70

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3v

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3w

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3x and 3x'

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3x and 3x'

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3y and 3y'

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3y and 3y'

¹⁹F-NMR Spectrum (376 MHz, CDCl₃) of 3y and 3y'

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3z and 3z'

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3z and 3z'

¹H-NMR Spectrum (400 MHz, CDCl₃) of 3aa

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 3aa

¹H-NMR Spectrum (600 MHz, CDCl₃) of 4a

¹H-NMR Spectrum (600 MHz, CDCl₃) of 6a'

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR Spectrum (400 MHz, CDCl₃) of 8a

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 8a

