Supporting Information

Palladium-Catalyzed [4+2] Cycloaddition of 2-Methylidenetrimethylene Carbonate or Methylene cyclic carbamate with Sulfamate-Derived Cyclic Imines

Li Sun,\leftarrow^{a} Jiyu Li, \ddagger^{a} Yafei Wu, ${ }^{\text {a }}$ Ying Li, ${ }^{\text {a }}$ Junqi Chen, ${ }^{\text {a }}$ Xiaoye Xia, ${ }^{\text {a }}$ Chunhao Yuan, ${ }^{\text {c }}$ Hongchao Guo* ${ }^{* b}$ and Biming Mao*a

a. School of Pharmaceutical Sciences \& Institute of Materia Medica, Shandong First Medical University \& Shandong Academy of Medi cal Sciences, Jinan 250117, Shandong, P. R. China. E-mail: maobiming@sdfmu.edu.cn
${ }^{\text {b. Department of Applied Chemistry, China Agricultural University, Beijing 100193, China. E-mail: hchguo @ cau.edu.cn }}$
c. School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.
$\not \ddagger$ These authors contributed equally to this work.

Table of Contents

General Information S2
General Procedure for Preparation of [4+2] Products S2
Characterization Data of the Products 3, 5 S3
Scaled-up Synthesis of the Product 3aa and 5aa S15
Transformations of the Product 3aa and 5aa S16
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of All Products \quad S18
X-Ray Crystallographic Data of 3aa S64

General Information

All reactions were performed under Ar atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents were purified and dried according to standard methods prior to use. Organic solutions were concentrated under reduced pressure on a rotary evaporator or an oil pump. Reactions were monitored through thin layer chromatography (TLC) on silica gel-precoated glass plates. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm . Flash column chromatography was performed using Qingdao Haiyang flash silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} using a 400,600 or 800 MHz NMR instrument (referenced internally to $\mathrm{Me}_{4} \mathrm{Si}$). ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{q}=$ quartet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad), coupling constant (Hz), and integral. Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift. Melting points were determined by an X-4 digital micro melting point apparatus. Accurate mass measurements were performed using a SCIEX X500r instrument with the ESI-MS technique.

Starting materials and reagents were purchased directly from commercial suppliers and used without further purifications. All solvents used as reaction medium were distilled before the use. The 2-methylidenetrimethylene carbonate $\mathbf{1 a}^{[1]}, N$-tosyl carbamate $\mathbf{4 a}^{[2]}$ and Sulfamate-derived Cyclic Imines $\mathbf{2}^{[3]}$ were synthesized using known literature procedures.

General Procedure for Preparation of [4+2] Products

Under argon atmosphere, to a mixture of 2-methylidenetrimethylene carbonate 1a or N-tosyl carbamate 4a (0.15 mmol), Sulfamate-derived cyclic imines $2(0.10 \mathrm{mmol})$ and catalyst $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(2.5 \mathrm{~mol} \%, 0.0025 \mathrm{mmol}) /$ Xantphos $(7.5 \mathrm{~mol} \%, 0.0075 \mathrm{mmol})$

[^0]in a Schlenk tube, 1 mL of toluene were added at room temperature. The resulting mixture was stirred until the starting material were completely consumed (monitored by TLC) and then was concentrated to dryness. The residue was purified through flash column chromatography (EtOAc / PE) to afford the corresponding cycloaddition product $\mathbf{3}$ or $\mathbf{5}$.

Characterization Data of the Products 3, 5

3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2-c][1,2,3]oxathiazine 6,6dioxide (3aa)

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography $(6.7 \% \mathrm{EtOAc} / \mathrm{PE})$ to afford a white solid. $\mathrm{mp}=120-122{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.51-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}$, $J=19.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,134.4,131.3,127.9,126.0,118.3,118.2,114.3,85.8,67.8$, 49.0; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 254.0482$, found 254.0477.

10-methyl-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3ab)

$3 a b$

Prepared according to the general procedure as described above in 93% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=118-122{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.27$ - 7.07 (m, 2H), 6.90 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (s, 1H), 5.07 (d, $J=18.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.29$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 146.6,134.8,133.5,130.8,126.9,117.0,116.9$, 113.2, 84.9, 66.9, 48.0, 19.8; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 268.0638$, found:268.0636.

9-methyl-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3ac)

Prepared according to the general procedure as described above in 65\% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=130-136{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 1 \mathrm{H})$, $5.99(\mathrm{~s}, 1 \mathrm{H}), 5.14-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{q}, J=$ $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.6,142.1,134.6,127.6,126.8$,
118.4, 115.3, 114.1, 85.8, 67.7, 49.0, 21.2; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 268.0638, found: 268.0639.

8-methyl-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3ad)

3ad

Prepared according to the general procedure as described above in 75\% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=110-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.24-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=19.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.19$ (m, 2H), 3.97 (d, $J=1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.24(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.2,134.6,132.6,127.7,125.4,125.3,118.2,114.2,86.1$, 68.0, 49.1, 15.5; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 268.0638$, found: 268.0635.

10-methoxy-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3ae)

3ae

Prepared according to the general procedure as described above in 55% yield. It was purified by flash chromatography (6.7% $\mathrm{EtOAc} / \mathrm{PE}$) to afford a transparency liquid; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.99-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.15-4.98(\mathrm{~m}, 2 \mathrm{H})$, $4.34-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3,143.5,134.4,119.3,119.0,117.4,114.3,111.6,85.8,67.7$, 55.9, 49.0; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 284.0587$, found:284.0578.

9-methoxy-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3af)

3af

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography (6.7% $\mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=124-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ (dd, $J=8.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.76 (dd, J $=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.19-$ $4.98(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,150.6,134.6,128.7,114.2,112.8,110.2,103.0,85.7,67.6,55.7$, 49.0; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 284.0587$, found: 284.0577 .

8-methoxy-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2-

 c][1,2,3]oxathiazine 6,6-dioxide (3ag)

Prepared according to the general procedure as described above in 95% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=136-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.15 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=$ $19.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.05-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 148.5,139.5,134.5,125.7,119.2,118.6,114.2,113.4,85.8$, 67.5, 56.3, 49.0; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 284.0587, found: 284.0578.

10-(tert-butyl)-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c] [1,2,3]oxathiazine 6,6-dioxide (3ah)

3ah

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography (6.7% EtOAc/PE) to afford a white solid. $\mathrm{mp}=120-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{ddd}, J=31.0,8.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=20.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-$ $4.26(\mathrm{~m}, 2 \mathrm{H}), 4.17-3.91(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.7, 138.5, 133.6, 127.7, 125.0, 124.4, 118.5, 113.1, 85.5, 67.9, 48.1, 33.9, 28.9; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 310.1108$, found: 310.1109.

9-(tert-butyl)-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2-

 $\mathbf{c}][1,2,3]$ oxathiazine 6,6-dioxide (3ai)

3ai

Prepared according to the general procedure as described above in 90% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=124-128{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{ddd}, J=18.7,1.6,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.95$ (dd, $J=3.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,148.9,133.9$, 126.7, 122.5, 114.5, 114.4, 113.4, 85.0, 66.9, 48.3, 34.3, 30.3; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 310.1108$, found: 310.1109.

9-isopropyl-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3aj)

3aj

Prepared according to the general procedure as described above in 85% yield. It was purified by flash chromatography (6.7\% EtOAc/PE) to afford a white solid. $\mathrm{mp}=112-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.12-6.98(\mathrm{~m}, 1 \mathrm{H})$, $6.85(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.37-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{q}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 6 H) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.07, 149.76, 134.61, 127.70, 124.35, 115.94, 115.56, 114.11, 85.81, 67.63, 49.01, 33.92, 23.63; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 296.0951$, found: 296.0952.

10-fluoro-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3ak)

Prepared according to the general procedure as described above in 50% yield. It was purified by flash chromatography (6.7% $\mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=132-136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ - $6.96(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.16-$ 5.05 (m, 2H), 4.26 (s, 2H), $4.10-3.77$ (m, 2H); 13C NMR (201 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 159.3(\mathrm{~d}, J=246.7 \mathrm{~Hz}), 145.2,133.5,119.5,119.4,117.9(\mathrm{~d}, J=23.8 \mathrm{~Hz})$, 114.1, $113.9(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 84.8,67.2,48.4 ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.94$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 272.0387$, found: 272.0391 .

9-fluoro-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2$\mathbf{c}][1,2,3]$ oxathiazine 6,6-dioxide (3al)

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=122-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.41$ (ddd, $J=8.7,6.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{t}, J$ $=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 4.06-3.87(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5(\mathrm{~d}, J=252.0 \mathrm{~Hz}), 149.5(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 133.1$, $128.4(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 113.5,112.5(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 105.1(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 84.4,66.5,47.9$; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-107.35. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 272.0387, found: 272.0364 .

8-fluoro-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3am)

3am

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=126-130{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.21 - $7.12(\mathrm{~m}, 3 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=20.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.6$ (d, $J=252.7 \mathrm{~Hz}$), $132.9,124.7(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 121.6(\mathrm{~d}, J=4.0 \mathrm{~Hz})$, $119.3,117.0(\mathrm{~d}, J=17.5 \mathrm{~Hz}), 113.6,84.4(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 66.2,47.9 ;{ }^{19} \mathrm{~F}$ NMR (377 MHz , CDCl_{3}) δ-131.74. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 272.0387$, found: 272.0383.

10-chloro-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3an)

3an

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography (6.7% $\mathrm{EtOAc} / \mathrm{PE})$ to afford a white solid. $\mathrm{mp}=118-122{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~s}$, 1 H), 5.09 (d, $J=17.2 \mathrm{~Hz}, 2 \mathrm{H}$), $4.26(\mathrm{~s}, 2 \mathrm{H}), 4.09-3.83(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13}{ }^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3,134.0,131.4,129.0,127.8,119.9,119.8,114.7,85.2$, 67.7, 49.0; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 288.0092$, found: 288.0091.

9-chloro-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3ao)

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography (6.7% $\mathrm{EtOAc} / \mathrm{PE})$ to afford a white solid. $\mathrm{mp}=116-120^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (dt, $J=18.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.24 (t, $J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.85(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.0,135.6,133.0,127.9,125.3,117.6,115.9,113.6$, 84.3, 66.5, 47.9; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 288.0092$, found: 288.0082.

8-chloro-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3ap)

Prepared according to the general procedure as described above in 51% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=1186-120{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.39-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=$ $19.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.24 (s, 2H), $4.01-3.87$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.1,136.7,134.1,128.9,126.3,118.7,116.9,114.6,85.4$, 67.6, 49.0; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 288.0092$, found: 288.0085.

10-bromo-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3aq)

Prepared according to the general procedure as described above in 90% yield. It was purified by flash chromatography (6.7% $\mathrm{EtOAc} / \mathrm{PE})$ to afford a white solid. $\mathrm{mp}=126-128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.07-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~s}$, $1 \mathrm{H}), 5.17-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 4.01-3.82(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.8,142.3,133.2,132.9,129.6,129.4,127.9,127.3,124.3$, $119.2,119.0,117.6,113.6,84.0,66.6,47.9$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 331.9587 , found: 331.9571 .

9-bromo-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2-

 c][1,2,3]oxathiazine 6,6-dioxide (3ar)

Prepared according to the general procedure as described above in 80% yield. It was purified by flash chromatography (6.7\% $\mathrm{EtOAc} / \mathrm{PE})$ to afford a white solid. $\mathrm{mp}=118-124^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=19.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 4.04-3.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.1,134.0,129.2,129.1,124.3,121.5,117.4,114.6,85.4,67.5,49.0$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 331.9587$, found: 331.9575 .

8-bromo-3-methylene-3,4-dihydro-2H,11bH-benzo[e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3as)

Prepared according to the general procedure as described above in 50\% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=130-134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.71-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=41.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H})$, 4.03 (dd, $J=78.7,13.3 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.5$, 133.7, 132.7, 125.6, 125.1, 118.8, 113.3, 110.7, 84.2, 66.1, 47.7; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 331.9587$, found: 331.9574 .

3-methylene-3,4-dihydro-2H,13cH-naphtho[1,2-e][1,3]oxazino[3,2c][1,2,3]oxathiazine 6,6-dioxide (3at)

Prepared according to the general procedure as described above in 83% yield. It was purified by flash chromatography $(6.7 \% \mathrm{EtOAc} / \mathrm{PE})$ to afford a white solid. $\mathrm{mp}=210-216{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.02-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.58$ (dddd, $J=69.9,8.1,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=48.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.74-$ $4.52(\mathrm{~m}, 3 \mathrm{H}), 4.18(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.9,134.9,132.6$, 131.2, 130.6, 128.7, 128.0, 126.0, 123.7, 117.5, 114.2, 112.4, 86.5, 70.9, 49.8; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 304.0638$, found: 304.0634.

3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5aa)

Prepared according to the general procedure as described above in 96% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=168-174{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.77-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.08-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.27$ $(\mathrm{d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 150.4,144.5,135.8,131.5,131.3,129.7,128.1$, 127.6, 126.4, 118.3, 115.6, 115.6, 69.6, 48.7, 45.3, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 407.0730$, found: . 407.0730

10-methyl-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ab)

5ab

Prepared according to the general procedure as described above in 78% yield. It was purified by flash chromatography (6.7\% $\mathrm{EtOAc} / \mathrm{PE})$ to afford a white solid. $\mathrm{mp}=220-226{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (800 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.20(\mathrm{~m}, 4 \mathrm{H})$, 6.95 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.86-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (201 MHz, CDCl_{3}) $\delta 148.3,144.5,136.5,135.9,132.0,131.4,129.7$, 128.1, 127.5, 118.0, 115.4, 115.1, 69.6, 48.7, 45.3, 21.6, 20.8; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 421.0886$, found: 421.0885 .

9-methyl-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ac)

5ac

Prepared according to the general procedure as described above in 53% yield. It was purified by flash chromatography (6.7\% $\mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=170-176{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (800 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.80$ $(\mathrm{m}, 2 \mathrm{H}), 4.79(\mathrm{dt}, J=22.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67 (ddd, $J=17.7,14.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=12.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.38$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (201 MHz, CDCl_{3}) $\delta 150.2,144.5,142.3,135.9,131.5,129.7,128.1$, 127.3, 127.3, 118.5, 115.4, 112.4, 69.5, 48.6, 45.2, 21.6, 21.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 421.0886$, found: 421.0884 .

8-methyl-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ad)

5ad

Prepared according to the general procedure as described above in 90% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=180-186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.91$ $(\mathrm{s}, 1 \mathrm{H}), 4.72(\mathrm{dt}, J=23.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ $-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=12.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8,143.4,134.9,131.9,130.4,128.6,127.1,126.7$, 124.6, 124.0, 114.3, 114.2, 68.6, 47.7, 44.2, 20.6, 14.5; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 421.0886$, found: 421.0884 .

10-methoxy-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ae)

Prepared according to the general procedure as described above in 83% yield. It was purified by flash chromatography (6.7% EtOAc/PE) to afford a white solid. $\mathrm{mp}=210-216{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05-6.74(\mathrm{~m}, 4 \mathrm{H}), 4.74(\mathrm{~d}, J=28.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.37 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,143.5,142.9,134.8,130.3,128.6,127.1$, 118.3, 116.3, 115.4, 114.5, 110.3, 68.6, 54.9, 47.7, 44.3, 20.6; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 437.0835$, found: 437.0833.

9-methoxy-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c] [1,2,3]oxathiazine 6,6-dioxide (5af)

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography (6.7% EtOAc/PE) to afford a white solid. $\mathrm{mp}=168-176{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.21(\mathrm{~m}, 3 \mathrm{H})$, $6.90-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.63(\mathrm{~m}, 2 \mathrm{H})$, $4.25(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.37$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,150.1,143.4,134.9,130.4,128.6,127.3$, 127.0, 114.4, 111.8, 106.0, 102.3, 68.3, 54.7, 47.6, 44.1, 20.6; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 437.0835$, found: 437.0831.

8-methoxy-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ag)

$$
\left.\begin{array}{l}
\text { Prepared according to the general procedure as described above in } 98 \% \\
\text { yield. It was purified by flash chromatography }(6.7 \% \mathrm{EtOAc} / \mathrm{PE}) \text { to } \\
\text { afford a white solid. } \mathrm{mp}=190-194{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \text { NMR }(400 \mathrm{MHz}, \mathrm{CDCl}
\end{array} 3\right) \delta, \begin{aligned}
& 7.79-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.27-6.87(\mathrm{~m}, 6 \mathrm{H}), 4.73(\mathrm{dt}, J=10.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), \\
& 4.26(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J \\
& =12.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.4,
\end{aligned}
$$ $144.5,139.9,135.9,131.4,129.7,128.1,125.9,118.2,116.5,115.5,113.7,69.7,56.3,48.7$, 45.3, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 437.0835$, found: 437.0826.

9-(tert-butyl)-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ai)

5ai

Prepared according to the general procedure as described above in 98% yield. It was purified by flash chromatography (6.7% EtOAc/PE) to afford a white solid. $\mathrm{mp}=212-218{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=8.2,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.10-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{dt}, J=$ $25.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.63$ (m, 2H), 3.37 (dd, $J=12.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 155.8, 150.2, 144.4, 136.0, 131.5, 129.7, 129.6, 128.1, 127.1, 123.6, 115.4, 115.2, 112.4, 69.5, 48.7, 45.2, 35.0, 31.0, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 463.1355$, found: 463.1356 .

9-isopropyl-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5aj)

5aj

Prepared according to the general procedure as described above in 80% yield. It was purified by flash chromatography (6.7% EtOAc/PE) to afford a transparency liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 2 \mathrm{H})$, 4.72 (d, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=$ $14.3,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.18$ $(\mathrm{dd}, J=6.9,1.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,149.3,143.4,134.9,130.5$, 128.6, 127.1, 126.3, 123.7, 115.0, 114.3, 111.6, 68.5, 47.6, 44.2, 32.8, 22.6, 22.5, 20.6; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 449.1199$, found: 449.1196 .

10-fluoro-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ak)

Prepared according to the general procedure as described above in 73% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=198-212^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.12-6.81(\mathrm{~m}, 3 \mathrm{H}), 4.76$ (dt, $J=12.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.52$ (m, 2 H), 3.26 (dd, $J=13.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \delta 159.1(\mathrm{~d}, \mathrm{~J}=247.6 \mathrm{~Hz}), 145.1(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 143.7,134.6,130.0,128.7$, $127.0,119.0(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 117.6,117.4,116.6(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}), 114.8,113.1(\mathrm{~d}, \mathrm{~J}=25.5$ Hz), 68.3, 68.3, 47.7, 44.3, 20.6; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.97$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 425.0635$, found: 425.0631.

9-fluoro-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c] [1,2,3]oxathiazine 6,6-dioxide (5al)

5al

Prepared according to the general procedure as described above in 92% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=250-256{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.81-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-6.61(\mathrm{~m}, 3 \mathrm{H})$, $4.75(\mathrm{dt}, J=10.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.49$ $(\mathrm{m}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=12.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7$ $(\mathrm{d}, \mathrm{J}=252.3 \mathrm{~Hz}), 151.0(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}), 144.7,135.7$, 131.1, 129.7, 129.2, 129.1, 128.1, $115.8,113.8(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}), 111.5(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}), 106.2(\mathrm{~d}, \mathrm{~J}=26.3 \mathrm{~Hz}), 69.2,48.6,45.2$, 21.6; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-107.27$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 425.0635$, found: 425.0605.

8-fluoro-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5am)

5am

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=158-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.78(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 4.88-$ $4.77(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.7(\mathrm{~d}, J=252.7 \mathrm{~Hz}$), $144.7,138.8(\mathrm{~d}, J=13.5$ $\mathrm{Hz}), 135.7,131.0,129.8,128.1,125.9(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 122.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 118.3(\mathrm{~d}, J=$ $17.8 \mathrm{~Hz}), 118.0,115.9,69.6,69.6,48.8,45.3,21.6 ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-131.51; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 425.0635$, found: 425.0636.

10-chloro-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5an)

5 an

Prepared according to the general procedure as described above in 50% yield. It was purified by flash chromatography (6.7% $\mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=250-252{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (800 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.10-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.83$ (dt, $J=29.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.55(\mathrm{~m}$, $2 \mathrm{H}), 3.33(\mathrm{dd}, J=13.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8$, 144.7, 135.6, 131.9, 131.6, 130.9, 129.8, 128.1, 127.3, 119.8, 117.5, 115.9, 69.3, 48.7, 45.4, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 441.0340$, found: 441.0339.

9-chloro-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ao)

$5 a 0$

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography (6.7% $\mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=140-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (800 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.17-$ $6.85(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{dt}, J=19.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.6,144.7,136.9,135.7,131.0,129.8,128.7,128.1,126.7,118.6,115.9,114.3,69.3$, 48.7, 45.2, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 441.0340$, found: 441.0350 .

8-chloro-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ap)

Prepared according to the general procedure as described above in 74% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=186-192{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.96-6.88(\mathrm{~m}, 8 \mathrm{H}), 4.95-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.3,144.7,135.7$, 132.2, 130.9, 129.8, 128.1, 126.2, 125.9, 123.5, 117.6, 115.9, 69.6, 48.8, 45.3, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 441.0340$, found: 441.0353 .

10-bromo-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c] [1,2,3]oxathiazine 6,6-dioxide (5aq)

5aq

Prepared according to the general procedure as described above in 52% yield. It was purified by flash chromatography (6.7\% $\mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=250-256{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (800 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~d}$, $J=31.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=25.2,14.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.33(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4$, 144.7, 135.6, 134.5, 130.9, 130.2, 129.8, 128.1, 120.0, 119.2, 117.8, 115.9, 69.2, 48.7, 45.4, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 484.9835$, found: 484.9821 .

9-bromo-3-methylene-1-tosyl-1,3,4,11b-tetrahydro-2H-benzo[e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5ar)

5ar

Prepared according to the general procedure as described above in 99% yield. It was purified by flash chromatography (6.7% $\mathrm{EtOAc} / \mathrm{PE})$ to afford a white solid. $\mathrm{mp}=200-204{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.13(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{dt}, J=9.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.6,144.7,135.7,131.0,129.8,129.6,128.9,128.1,124.5,121.5,115.9$, 114.8, 69.3, 48.7, 45.2, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 484.9835$, found: 484.9799 .

3-methylene-1-tosyl-1,3,4,13c-tetrahydro-2H-naphtho[1,2-e]pyrimido[1,2c][1,2,3]oxathiazine 6,6-dioxide (5at)

Prepared according to the general procedure as described above in 67% yield. It was purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid. $\mathrm{mp}=212-216{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.02(\mathrm{~m}, 9 \mathrm{H}), 4.76(\mathrm{~d}, J=58.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.30(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J$ $=15.2,12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7,144.8,135.6$, 132.7, 131.9, 131.7, 130.5, 129.7, 128.8, 128.5, 128.3, 126.1, 124.1, 117.7, 114.9, 109.1, 70.7, 49.2, 45.8, 21.7; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 457.0886$, found: 457.0880.

Scaled-up Synthesis of the Product 3aa and 5aa

1a
$7.5 \mathrm{mmol}, 855 \mathrm{mg}$

2a
$5 \mathrm{mmol}, 915 \mathrm{mg}$

$1.12 \mathrm{~g}, 89 \%$ yield

Under argon atmosphere, to a mixture of 2-methylidenetrimethylene carbonate 1a (7.5 $\mathrm{mmol})$, Sulfamate-derived cyclic imine 2a $(5.0 \mathrm{mmol})$ and catalyst $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(2.5$ $\mathrm{mol} \%, 0.125 \mathrm{mmol}) /$ Xantphos $(7.5 \mathrm{~mol} \%, 0.375 \mathrm{mmol})$ in a Schlenk tube, 75 mL of toluene were added at room temperature. The resulting mixture was stirred until the starting
material were completely consumed (monitored by TLC) and then was concentrated to dryness. The residue was purified through flash column chromatography ($6.7 \% \mathrm{EtOAc} /$ PE) to afford the corresponding cycloaddition product 3aa with 89% yield (1.12 g).

Under argon atmosphere, to a mixture of N-tosyl carbamate $\mathbf{4 a}(3.0 \mathrm{mmol})$, Sulfamatederived cyclic imine 2a (2.0 mmol) and catalyst $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(2.5 \mathrm{~mol} \%, 0.075 \mathrm{mmol})$ / Xantphos ($7.5 \mathrm{~mol} \%, 0.225 \mathrm{mmol}$) in a Schlenk tube, 30 mL of toluene were added at room temperature. The resulting mixture was stirred until the starting material were completely consumed (monitored by TLC) and then was concentrated to dryness. The residue was purified through flash column chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford the corresponding cycloaddition product $\mathbf{5 a a}$ with 99% yield $(0.80 \mathrm{~g})$.

Transformations of the Product 3aa and 5aa

To a dry tube equipped with a stirring bar added 3aa (0.10 mmol), KOt - $\mathrm{Bu}(0.33 \mathrm{mmol})$ and anhydrous DMSO $(1 \mathrm{~mL})$. The reaction mixture was stirred under an atmosphere of argon at r.t. for 5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM three times. The organic phase was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. Then, the crude mixture was purified by flash chromatography ($16.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a white solid $6(6.6 \mathrm{mg}, 35 \%$ yield). 6: 2-(5-methyl-6H-1,3-oxazin-2-yl)phenol, $\mathrm{mp}=110-114{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.46(\mathrm{~s}, 1 \mathrm{H}), 7.68$ (dd, $J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (ddd, $J=8.7,7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.26-$ $6.23(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{q}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (201 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 161.0,158.1,133.1,127.2,124.5,118.2,117.4,117.2,113.6,67.6,16.1 . H R M S$ (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 190.0863$, found: 190.0861.

A solution of $\mathrm{NaIO}_{4}(85 \mathrm{mg}, 0.4 \mathrm{mmol})$ in water $(0.6 \mathrm{~mL})$ was added to a solution of $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(3.1 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in $\mathrm{MeCN}(0.8 \mathrm{~mL})$. This mixture was stirred 2 minutes and then a solution of the $\mathbf{5 a a}(0.1 \mathrm{mmol})$ in EA $(0.8 \mathrm{~mL})$ was added. The mixture was stirred for 10 minutes until TLC indicates complete consumption of the starting material. MgSO_{4} was added and the resulting heterogeneous mixture was washed with EA, and finally evaporated under reduced pressure. Purified by flash chromatography ($6.7 \% \mathrm{EtOAc} / \mathrm{PE}$) to afford a transparency liquid 7 ($22.4 \mathrm{mg}, 55 \%$ yield). 7: 1-tosyl-1,11b-dihydro-2Hbenzo[e]pyrimido $[1,2-c][1,2,3]$ oxathiazin-3(4H)-one 6,6-dioxide, ${ }^{1} \mathrm{H}$ NMR (800 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.01(\mathrm{~m}, 6 \mathrm{H}), 4.35(\mathrm{~d}, J=19.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.8,150.6,145.7,134.4,132.1,130.4,127.9$, 127.3, 126.9, 118.9, 115.0, 68.9, 52.6, 49.3, 21.7; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 409.0523$, found: 409.0519.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of All Products

		$\stackrel{7}{\text { \% }}$				$\stackrel{\text { \% }}{\substack{+\stackrel{+}{+} \\ 1}}$	荷

[^1]

[^2]

```
    N
        \
        8% 58%59898989%
```


[^3]

í

[^4]

[^5]

5aj

		¢		$\begin{aligned} & \text { श영 } \\ & y x_{8}^{8} \end{aligned}$		\%

[^6]

[^7]

5an

X-Ray Crystallographic Data of 3aa

Crystallographic data for 3aa have been deposited with the Cam-bridge Crystallographic Data Centre as deposition number CCDC 2278928. These data can be obtained free of charge via www.ccdc.cam. ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Table 1. Crystal data and structure refinement for 3aa.

Identification code	3 aa
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$
Formula weight	253.27
Temperature	$298(2) \mathrm{K}$
Wavelength	0.71073 A

Crystal system, space group Orthorhombic, Pbca
Unit cell dimensions $\quad \mathrm{a}=12.9083(11) \mathrm{A}$ alpha $=90$ deg.
$\mathrm{b}=8.1492(7) \mathrm{A} \quad \mathrm{beta}=90$ deg.
$\mathrm{c}=20.8706(18) \mathrm{A}$ gamma $=90 \mathrm{deg}$.
Volume 2195.4(3) A^3

Z, Calculated density $\quad 8,1.533 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient $\quad 0.297 \mathrm{~mm}^{\wedge}-1$
F(000)
1056
Crystal size $\quad 0.45 \times 0.33 \times 0.14 \mathrm{~mm}$
Theta range for data collection 2.51 to 25.02 deg.
Limiting indices $\quad-14<=\mathrm{h}<=15,-9<=\mathrm{k}<=9,-24<=1<=18$
Reflections collected / unique $10188 / 1931[\mathrm{R}(\mathrm{int})=0.1011]$
Completeness to theta $=25.02 \quad 99.8 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9596 and 0.8780

Refinement method Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters 1931/0/154
Goodness-of-fit on $\mathrm{F}^{\wedge} 21.048$
Final R indices [I>2sigma(I)] R1 $=0.0592, \mathrm{wR} 2=0.1499$
R indices (all data) $\quad \mathrm{R} 1=0.0880, \mathrm{wR} 2=0.1648$
Largest diff. peak and hole 0.306 and -0.424 e. $\mathrm{A}^{\wedge}-3$

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \mathrm{x}$ $10^{\wedge} 3$) for 3 aa .
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{N}(1)$	$6043(2)$	$-486(3)$	$6548(1)$	$34(1)$
$\mathrm{O}(1)$	$5544(2)$	$885(4)$	$5574(1)$	$56(1)$
$\mathrm{O}(2)$	$7667(2)$	$627(3)$	$6876(1)$	$40(1)$
$\mathrm{O}(3)$	$5682(2)$	$2555(3)$	$6523(1)$	$52(1)$
$\mathrm{O}(4)$	$4294(2)$	$593(4)$	$6389(1)$	$62(1)$
$\mathrm{S}(1)$	$5332(1)$	$1008(1)$	$6308(1)$	$41(1)$
$\mathrm{C}(1)$	$6584(3)$	$970(5)$	$5387(2)$	$41(1)$
$\mathrm{C}(2)$	$6776(3)$	$1631(6)$	$4800(2)$	$56(1)$
$\mathrm{C}(3)$	$7775(4)$	$1767(6)$	$4601(2)$	$66(1)$
$\mathrm{C}(4)$	$8564(4)$	$1260(6)$	$4981(2)$	$64(1)$
$\mathrm{C}(5)$	$8362(3)$	$564(5)$	$5568(2)$	$51(1)$
$\mathrm{C}(6)$	$7352(3)$	$402(4)$	$5777(2)$	$36(1)$
$\mathrm{C}(7)$	$7151(3)$	$-341(4)$	$6416(2)$	$34(1)$
$\mathrm{C}(8)$	$7569(3)$	$-81(6)$	$7500(2)$	$54(1)$
$\mathrm{C}(9)$	$6463(3)$	$-177(5)$	$7683(2)$	$46(1)$
$\mathrm{C}(10)$	$5835(3)$	$-1092(5)$	$7206(2)$	$41(1)$
$\mathrm{C}(11)$	$6085(4)$	$447(6)$	$8197(2)$	$74(2)$

Table 3. Bond lengths [A] and angles [deg] for 3aa.

$\mathrm{N}(1)-\mathrm{C}(7)$	$1.461(4)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.484(4)$
$\mathrm{N}(1)-\mathrm{S}(1)$	$1.604(3)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.400(4)$
$\mathrm{O}(1)-\mathrm{S}(1)$	$1.560(3)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.410(4)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.430(4)$
$\mathrm{O}(3)-\mathrm{S}(1)$	$1.412(3)$
$\mathrm{O}(4)-\mathrm{S}(1)$	$1.392(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.360(5)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.363(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.360(5)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9300
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.356(6)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.374(5)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9300
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.381(5)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9300
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.489(5)$
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9800
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.480(5)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9700
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9700
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.283(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.485(5)$

$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9700
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9700
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9300
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9300
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(10)$	112.2(3)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)$	116.1(2)
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)$	115.9(2)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{S}(1)$	116.1(2)
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	110.6(3)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{O}(3)$	119.08(18)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{O}(1)$	105.78(16)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{O}(1)$	108.24(16)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{N}(1)$	109.16(17)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{N}(1)$	113.35(15)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	99.05(15)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	122.6(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	116.5(3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1)$	120.9(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	118.8(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	120.6
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	120.6
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.6(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.3(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	119.8
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.8
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.0(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	120.0
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	120.0

$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	117.8(3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	123.1(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.1(3)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	112.4(3)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	107.5(3)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	111.8(3)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{H}(7)$	108.3
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{H}(7)$	108.3
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	108.3
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	109.9(3)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.7
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.7
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.7
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.7
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.2
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(8)$	124.1(4)
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(10)$	123.5(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	112.4(3)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	110.8(3)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.1
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	120.0
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	120.0
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	120.0

[^8]Table 4. Anisotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for 3 aa.

The anisotropic displacement factor exponent takes the form: $-2 \mathrm{pi}^{\wedge} 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}^{* \wedge} 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U} 12\right]$

	U11	U22	U33	U23	U13	U12
$\mathrm{N}(1)$	$34(2)$	$33(2)$	$35(2)$	$0(1)$	$0(1)$	$-3(1)$
$\mathrm{O}(1)$	$40(2)$	$93(2)$	$34(2)$	$5(2)$	$-4(1)$	$-2(1)$
$\mathrm{O}(2)$	$39(1)$	$40(2)$	$40(1)$	$4(1)$	$-10(1)$	$-10(1)$
$\mathrm{O}(3)$	$58(2)$	$41(2)$	$58(2)$	$1(1)$	$8(1)$	$12(1)$
$\mathrm{O}(4)$	$33(2)$	$99(3)$	$53(2)$	$18(2)$	$1(1)$	$3(2)$
$\mathrm{S}(1)$	$32(1)$	$56(1)$	$36(1)$	$8(1)$	$1(1)$	$6(1)$
$\mathrm{C}(1)$	$43(2)$	$49(2)$	$32(2)$	$1(2)$	$3(2)$	$1(2)$
$\mathrm{C}(2)$	$67(3)$	$67(3)$	$34(2)$	$5(2)$	$5(2)$	$7(2)$
$\mathrm{C}(3)$	$74(3)$	$77(4)$	$48(3)$	$13(2)$	$23(2)$	$2(3)$
$\mathrm{C}(4)$	$58(3)$	$70(3)$	$63(3)$	$6(3)$	$22(2)$	$-1(2)$
$\mathrm{C}(5)$	$41(2)$	$53(3)$	$60(3)$	$7(2)$	$6(2)$	$-1(2)$
$\mathrm{C}(6)$	$41(2)$	$30(2)$	$36(2)$	$-5(2)$	$7(2)$	$-2(2)$
$\mathrm{C}(7)$	$34(2)$	$29(2)$	$39(2)$	$1(2)$	$-1(2)$	$2(1)$
$\mathrm{C}(8)$	$58(3)$	$58(3)$	$44(2)$	$16(2)$	$-21(2)$	$-13(2)$
$\mathrm{C}(9)$	$60(3)$	$48(3)$	$31(2)$	$14(2)$	$-4(2)$	$-10(2)$
$\mathrm{C}(10)$	$46(2)$	$37(2)$	$41(2)$	$13(2)$	$2(2)$	$-6(2)$
$\mathrm{C}(11)$	$107(4)$	$71(4)$	$45(3)$	$-1(2)$	$7(3)$	$-28(3)$

Table 5. Hydrogen coordinates (x $10^{\wedge} 4$) and isotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for 3aa.

x		y	z	U(eq)
$H(2)$	6235	1984	4541	67
$H(3)$	7919	2210	4200	79

$\mathrm{H}(4)$	9246	1385	4845	76
$\mathrm{H}(5)$	8905	203	5824	61
$\mathrm{H}(7)$	7455	-1443	6422	41
$\mathrm{H}(8 \mathrm{~A})$	7942	584	7810	64
$\mathrm{H}(8 \mathrm{~B})$	7870	-1172	7502	64
$\mathrm{H}(10 \mathrm{~A})$	6000	-2252	7231	50
$\mathrm{H}(10 \mathrm{~B})$	5105	-960	7304	50
$\mathrm{H}(11 \mathrm{~A})$	6515	1002	8481	89
$\mathrm{H}(11 \mathrm{~B})$	5382	345	8284	89

Table 6. Torsion angles [deg] for 3aa.

$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(4)$	$-169.2(3)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	$62.1(3)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	$-56.3(3)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(4)$	$172.0(2)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(4)$	$-53.1(3)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	$-52.7(3)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	$82.2(3)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	$61.8(3)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	$-163.4(2)$
$\mathrm{S}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-149.8(3)$
$\mathrm{S}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$30.7(5)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-1.6(7)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$178.9(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-0.4(7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$1.6(7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-1.0(7)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$2.1(6)$

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-178.3(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$-179.3(4)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$0.2(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$-0.8(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-179.4(4)$
$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{N}(1)$	$60.6(4)$
$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$-175.9(3)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	$-54.1(4)$
$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	$82.4(3)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$-175.1(3)$
$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$-38.6(4)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(2)$	$-119.7(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(2)$	$58.8(4)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$4.1(5)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$-177.4(3)$
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$-60.7(4)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	$-124.7(4)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$55.7(4)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$47.6(4)$
$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$-89.0(3)$
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)$	$131.3(4)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)$	$-49.1(4)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 3aa [A and deg.].

D-H...A	d(D-H)	d(H...A)	d(D...A)	$<($ DHA $)$

[^0]: ${ }^{[1]}$ R. Shintani, K. Moriya, T. Hayashi, Chem. Commun. 2011, 47, 3057.
 ${ }^{[2]}$ Allen, B. D. W.; Connolly, M. J.; Harrity, J. P. A. Chem. Eur. J. 2016, 22, 13000.
 ${ }^{[3]}$ Wang, H.; Jiang, T.; Xu, M.-H. J. Am. Chem. Soc. 2013, 135, 971.

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]:

[^8]: Symmetry transformations used to generate equivalent atoms:

