Direct synthesis of N-functionalized indoles through isomerization of azomethine ylides

Jun-Rong Song^{a, b} Xiong-Jiang Li,^{a, b} Jun Shi,^{a, b} Wei Wu^{a, b} * and Hai Ren^{a, b} * State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China **Email**: wuwei@gmc.edu.cn; renhai@gmc.edu.cn

Supporting Information

Content

1.	General information	2
2.	Optimization of the Reaction Conditions	3
3.	Mechanistic Studies	5
4.	Experimental procedures and characterizations	6
5.	Scale-up experiments	16
6.	Transformations and applications	17
7.	References	19
8.	¹ H NMR and ¹³ C NMR spectra of compounds	20

1. General information

All solvents and reagents were obtained from commercial sources and were purified according to standard procedures before use (unless stated otherwise). Column chromatography was performed on silica gel (Qingdao, 300 - 400 mesh) using the indicated eluents. ¹H and ¹³C NMR data were collected on a Varian Mercury 400 MHz or Agilent Mercury 600 MHz NMR spectrometer at room temperature using chloroform-d, DMSO- d_6 or Acetone- d_6 as a solvent and TMS as an internal standard, and chemical shift (δ) was expressed in parts per million (ppm). ¹H and ¹³C NMR spectra were internally referenced to the proton (¹H) of the internal TMS signal at 0.00 ppm, the solvent residue of DMSO- d_6 at 2.50 ppm or Acetone- d_6 at 2.05 ppm and the residual carbon nuclei (¹³C) of the solvent at 77.0 or 39.5 ppm, respectively. The following abbreviations were used in expressing the multiplicity: s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectra (HRMS-ESI) were recorded on a Bruker ESI-QTOF mass spectrometer. Infrared (IR) spectra were recorded using a Fourier transform infrared spectrometer (IR 200) and the KBr disk method was adopted. The course of the reactions was monitored by thin-layer chromatography (TLC). All reactions that need to be heated were carried out in an oil bath.

2. Optimization of the Reaction Conditions

2.1 Screening of solvents ^a

Table S1				
Entry	Solvent	T (°C)	<i>t</i> (h)	Yield (%)
1	DMF	50	72	Trace
2	H_2O	50	72	Trace
3	THF	50	48	17
4	DCM	50	72	38
5	TFE	50	48	35
6	EtOH	50	22	86
7	ⁱ PrOH	50	24	79
8	^t BuOH	50	24	82
9	DMF/EtOH (1/1)	50	72	21
10	H ₂ O/EtOH (1/1)	50	72	63
11	DCM/EtOH (1/1)	50	72	54
12	THF/EtOH (1/1)	50	72	28

^{*a*} Unless noted otherwise, reactions were carried out with 1a (0.20 mmol), 2a (0.20 mmol), solvent (2.0 mL) and reaction carried out under Ar atmosphere, yields were isolated yields.

2.2 Screening of reaction temperature ^a

Entry	Solvent	T (°C)	<i>t</i> (h)	Yield (%)
1	EtOH	25	22	20
2	EtOH	40	22	55
3	EtOH	50	22	86
4	EtOH	60	22	74
5	EtOH	70	22	74

^{*a*} Unless noted otherwise, reactions were carried out with **1a** (0.20 mmol), **2a** (0.20 mmol), EtOH (2.0 mL) and reaction carried out under Ar atmosphere, yields were isolated yields.

Table S2

3. Mechanistic Studies

3.1 Isotopic experiment using CD₃OD

The **3a** was dissolved in 0.6 mL **CD₃OD**, and after 0.5 hour, the mixture was scanned by ¹H NMR. **3-(1H-indol-1-yl)-1-methylindolin-2-one-3-**d (**D-3a**)

¹**H** NMR (600 MHz, Methanol- d_4) δ 7.55 – 7.54 (m, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.08 – 7.04 (m, 2H), 7.02 – 7.00 (m, 2H), 6.91 (s, 1H), 6.51 (d, J = 3.2 Hz, 1H), 6.16 (s, 0.44H), 3.31 (s, 3H) ppm.

4. Experimental procedures and characterizations

4.1 Procedure for 3-(1H-indol-1-yl)-1-methylindolin-2-one

A mixture of **1** (0.2 mmol) and **2** (0.2 mmol) were added in a dried Schlenk tube, then EtOH (2 mL) was added under Ar atmosphere, and the reaction system was stirred at 50 °C. The reaction was monitored by TLC until 1-methylindoline-2,3-dione was fully consumed. The reaction was extracted with DCM. The combined organic portions were washed with water and brine, dried (Na₂SO₄), filtered, and purified by flash column chromatography (Petroleum ether/Ethyl acetate = 10/1) to afford 2-oxindole **3**.

3-(1H-indol-1-yl)-1-methylindolin-2-one (3a)

Yellow solid, 22 h, 45.1 mg, 86% yield; ¹H NMR (600 MHz, Acetone- d_6) δ 7.59-7.58 (m, 1H), 7.44-7.42 (m, 1H), 7.24 (d, J = 3.0 Hz, 1H), 7.15-7.11 (m, 2H), 7.06-7.03 (m, 4H), 6.52 (d, J = 3.3 Hz, 1H), 6.20 (s, 1H), 3.30 (s, 3H) ppm. All analytical datas are

consistent with literature^[1].

3-(1H-indol-1-yl)-5-methoxy-1-methylindolin-2-one (3b)

Yellow solid, mp 155 – 156 °C, 69 h, 30.9 mg, 53% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.64 (d, J = 7.2 Hz, 1H), 7.16 – 7.10 (m, 3H), 7.02 (d, J = 3.2 Hz, 1H), 6.93 (dd, J = 8.6, 2.4 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.78 (d, J = 1.2 Hz,

1H), 6.58 (d, J = 3.2 Hz, 1H), 5.85 (s, 1H), 3.70 (s, 3H), 3.29 (s, 3H) ppm. **IR (KBr):** 3212, 1719, 1620, 1470, 1330, 1207, 908, 716 cm⁻¹. ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 172.2, 156.5, 137.2, 136.2, 129.1, 127.0, 125.8, 122.1, 121.2, 120.1, 114.8, 111.8, 109.6, 109.2, 103.1, 58.7, 55.8, 26.7 ppm. **HRMS-ESI**: Exact mass calcd. for $C_{18}H_{16}N_2O_2Na^+$ [M + Na]⁺: 315.1104, Found: 315.1107.

3-(1H-indol-1-yl)-1,5-dimethylindolin-2-one (3c)

Yellow solid, mp 117 – 118 °C, 45 h, 43.6 mg, 79% yield; ¹H NMR (600 MHz, Acetone- d_6) δ 7.58 – 7.56 (m, 1H), 7.23 – 7.22 (m, 2H), 7.03 – 7.01 (m, 4H), 6.93 (s, 1H), 6.51 (d, J = 3.2Hz, 1H), 6.14 (s, 1H), 3.27 (s, 3H), 2.22 (s, 3H) ppm. ¹³C NMR (150 MHz, Chloroform-d) δ 172.4, 141.4, 136.2, 133.0, 130.3,

129.1, 127.0, 125.7, 124.7, 122.1, 121.2, 120.0, 109.6, 108.5, 103.0, 58.5, 26.6, 21.0 ppm. **IR (KBr):** 3569, 2927, 1719, 1648, 1460, 1330, 1207, 908, 779, 669 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for $C_{18}H_{16}N_2ONa^+$ [M + Na]⁺: 299.1154, Found: 299.1160.

5-fluoro-3-(1H-indol-1-yl)-1-methylindolin-2-one (3d)

Yellow solid, mp 165 – 167 °C, 47 h, 43.4 mg, 77% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.65 – 7.64 (m, 1H), 7.17 – 7.10 (m, 3H), 7.04 (s, 1H), 7.00 (d, J = 3.6 Hz, 1H), 6.93 – 6.89 (m, 2H), 6.59 (d, J = 3.2, 1H), 5.86 (s, 1H), 3.31 (s, 3H) ppm. ¹³C

NMR (150 MHz, Chloroform-*d*) δ 172.1, 159.5 (d, ¹*J* = 243.0 Hz), 139.8 (d, ⁴*J* = 2.4 Hz), 136.1, 129.2, 126.8, 126.2 (d, ³*J* = 8.0 Hz), 122.3, 121.3, 120.2, 116.5 (d, ²*J* = 24.0 Hz), 113.2 (d, ²*J* = 25.3 Hz), 109.4, 109.3, 103.4, 58.5, 26.8 ppm. ¹⁹**F NMR** (564 MHz, Chloroform-d) δ -119.0 ppm, **IR** (**KBr**): 3070, 2925, 1716, 1648, 1363, 1325, 1515, 920, 870, 690 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for C₁₇H₁₃N₂OFNa⁺ [M + Na]⁺: 303.0910, Found: 303.0943.

5-chloro-3-(1H-indol-1-yl)-1-methylindolin-2-one (3e)

Yellow solid, mp 157 – 158 °C, 42 h, 32.8 mg, 55% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.65 – 7.64 (m, 1H), 7.39 – 7.37 (m, 1H), 7.17 – 7.12 (m, 3H), 7.04 (s, 1H), 7.00 (s, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.59 (d, *J* = 3.2 Hz, 1H), 5.86 (s, 1H),

3.31 (s, 3H) ppm. ¹³C NMR (150 MHz, Chloroform-d) δ 172.0, 142.3, 136.1, 130.1,

129.2, 128.8, 126.8, 126.3, 125.4, 122.4, 121.3, 120.3, 109.7, 109.4, 103.5, 58.2, 26.7 ppm. **IR (KBr)**: 3066, 2346, 1735, 1684, 1490, 1364, 1262, 881, 746, 670 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for $C_{17}H_{13}N_2OCINa^+$ [M + Na]⁺: 319.0609; Found: 319.0612.

5-bromo-3-(1H-indol-1-yl)-1-methylindolin-2-one (3f)

Yellow solid, mp 180 – 181 °C, 47 h, 57.1 mg, 84% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.68 (dd, J = 6.6, 1.2 Hz, 1H), 7.55 (dd, J = 8.4, 1.2 Hz, 1H), 7.31 (s, 1H), 7.22 – 7.14 (m, 2H), 7.07 (s, 1H), 7.03 (d, J = 1.8 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H),

6.63 (d, J = 3.0 Hz, 1H), 5.88 (s, 1H), 3.32 (s, 3H) ppm. ¹³ C NMR (150 MHz, Chloroform-*d*) δ 171.8, 142.7, 136.0, 133.0, 129.1, 128.0, 126.8, 126.5, 122.3, 121.3, 120.2, 115.9, 110.2, 109.3, 103.4, 58.1, 26.7 ppm. IR (KBr): 3226, 1735, 1612, 1490, 1364, 1328, 1103, 746, 670 cm⁻¹. HRMS-ESI: Exact mass calcd. for $C_{17}H_{13}N_2OBrNa^+$ [M + Na]⁺: 363.0103; Found: 363.0109.

6-chloro-3-(1H-indol-1-yl)-1-methylindolin-2-one (3g)

Yellow solid, mp 153 – 155 °C, 40 h, 45.0 mg, 76% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 7.2 Hz, 1H), 7.18 – 7.10 (m, 2H), 7.08 (d, *J* = 7.8 Hz, 1H), 7.04 – 7.03 (m, 2H), 6.98 (d, *J* = 1.8 Hz, 2H), 6.58 (d, *J* = 3.2 Hz, 1H), 5.84 (s,

1H), 3.30 (s, 3H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 172.4, 145.0, 136.1, 136.1, 129.2, 126.8, 125.9, 123.2, 122.9, 122.3, 121.3, 120.2, 109.6, 109.5, 103.3, 58.0, 26.7 ppm. **IR (KBr):** 1735, 1612, 1535, 1459, 1305, 1200, 1115, 739, 652 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for C₁₇H₁₃N₂OClNa⁺ [M + Na]⁺: 319.0614; Found: 319.0619.

6-bromo-3-(1H-indol-1-yl)-1-methylindolin-2-one (3h)

Yellow solid, mp 158 – 159 °C, 40 h, 57.8 mg, 90% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.65 – 7.63 (m, 1H), 7.20 – 7.12 (m, 4H), 7.05 – 6.98 (m, 3H), 6.58 (d, *J* = 3.0 Hz, 1H), 5.79 (s, 1H), 3.28 (s, 3H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 172.2, 145.1, 136.0, 129.1, 126.8, 126.2, 126.1, 123.8, 123.4, 122.2, 121.2, 120.2, 112.3, 109.4, 103.3, 58.0, 26.7 ppm. **IR (KBr):** 3066, 1773, 1604, 1559, 1460, 13118, 1253, 1088, 745, 652 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for $C_{17}H_{13}N_2OBrNa^+$ [M + Na]⁺: 363.0103; Found: 363.0109.

7-chloro-3-(1H-indol-1-yl)-1-methylindolin-2-one (3i)

Yellow solid, mp 150 – 151 °C, 45 h, 35.0 mg, 60% yield; ¹H NMR (600 MHz, Acetone- d_6) δ 7.59 (d, J = 8.2 Hz, 1H), 7.39 (d, J = 7.7 Hz, 1H), 7.28 (s, 1H), 7.10 – 6.99 (m, 5H), 6.54 (d, J =3.6 Hz, 1H), 6.27 (s, 1H), 3.65 (d, J = 1.3 Hz, 3H) ppm. ¹³C NMR (150 MHz, Chloroform-d) δ 172.7, 1139.6, 136.1, 132.4,

129.2, 127.4, 126.8, 124.1, 123.4, 122.3, 121.3, 120.2, 116.2, 109.4, 103.4, 58.1, 30.1 ppm. **IR (KBr):** 1735, 1654, 1608, 1459, 1363, 1340, 1205, 1108, 739, 669 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for $C_{17}H_{13}N_2OCINa^+$ [M + Na]⁺: 319.0614; Found: 319.0608.

7-bromo-3-(1H-indol-1-yl)-1-methylindolin-2-one (3j)

Yellow solid, mp 184 – 185 °C, 45 h, 46.2 mg, 68% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.21 – 7.14 (m, 2H), 7.08 (dt, *J* = 8.4, 1.2 Hz, 1H), 7.01 (d, *J* = 2.4 Hz, 1H), 6.90 (dd, *J* = 8.4, 7.2 Hz, 1H), 6.61

(dd, J = 3.0, 0.6 Hz, 1H), 5.87 (s, 1H), 3.73 (s, 3H) ppm. ¹³ C NMR (150 MHz, Chloroform-*d*) δ 172.9, 141.1, 136.1, 135.7, 129.1, 127.7, 126.8, 124.4, 124.0, 122.3, 121.3, 120.2 109.4, 103.4, 103.0, 58.0, 30.3 ppm. IR (KBr): 1719, 1607, 1559, 1459, 1334, 1220, 1101, 735, 652 cm⁻¹. HRMS-ESI: Exact mass calcd. for C₁₇H₁₃N₂OBrNa⁺ [M + Na]⁺: 363.0103; Found: 363.0109.

3-(1H-indol-1-yl)-1,5,7-trimethylindolin-2-one (3k)

White solid, mp 124 – 125 °C, 40 h, 45.1 mg, 78% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 7.6 Hz, 1H), 7.19 – 7.07 (m, 3H), 7.01 (d, *J* = 3.2 Hz, 1H), 6.93 (s, 1H), 6.80 (s, 1H), 6.57 (d, J = 3.2 Hz, 1H), 5.79 (s, 1H), 3.57 (s, 3H), 2.61 (s, 3H), 2.19 (s, 3H) ppm. ¹³ C NMR (150 MHz, Chloroform-*d*) δ 173.2, 139.0, 136.2, 134.2, 132.8, 129.1, 127.0, 125.4, 123.4, 122.0, 121.1, 120.1, 120.0, 109.6, 102.8, 58.2, 30.0, 20.6, 18.8 ppm. IR (KBr): 2919, 1735, 1608, 1559, 1469, 1345, 1331, 1080, 756, 699 cm⁻¹. HRMS-ESI: Exact mass calcd. for C₁₉H₁₈N₂ONa⁺ [M + Na]⁺: 313.1311; Found: 313.1316.

3-(5-fluoro-1H-indol-1-yl)-1-methylindolin-2-one (3l)

Yellow solid, m.p. 119.6-120.4 °C, 38 h, 13.9 mg, 25% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.42 (t, J = 7.8 Hz, 1H), 7.27 – 7.25 (m, 1H), 7.18 – 7.17 (m, 1H), 7.07 (t, J = 7.4 Hz, 1H), 7.05 (d, J = 3.2 Hz, 1H), 6.98 – 6.91 (m, 2H), 6.89 – 6.86 (m, 1H), 6.52

(d, J = 3.4 Hz, 1H), 5.82 (s, 1H), 3.31 (s, 3H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 172.3, 158.1 (d, ¹ $J_{C-F} = 234.8$ Hz), 143.9, 132.7, 130.3, 129.5 (d, ³ $J_{C-F} = 10.0$ Hz), 128.6, 125.0, 124.2, 123.4, 110.5 (d, ² $J_{C-F} = 26.6$ Hz), 110.3 (d, ³ $J_{C-F} = 9.8$ Hz), 108.8, 106.0 (d, ² $J_{C-F} = 23.4$ Hz), 103.0 (d, ⁴ $J_{C-F} = 4.6$ Hz), 58.6, 26.6 ppm. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -124.6. IR (neat) v : 2922, 1700, 11614, 1147, 1199, 754, 722 cm⁻¹. HRMS (ESI) *m*/*z*: [M + Na]⁺ Calcd for C₁₇H₁₃ON₂FNa 303.0904; Found 303.0892.

3-(6-chloro-1H-indol-1-yl)-1-methylindolin-2-one (3m)

CI

The **3I** was performed with the use of TFE as solvent instead of EtOH in 0.1 mmol scale. Yellow solid, mp 160 – 161 °C, 70 h, 13.0 mg, 44% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 1.8 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.13 – 7.04 (m, 3H), 7.00 (d, *J* = 7.8 Hz, 2H),

6.53 (d, J = 3.6 Hz, 1H), 5.85 (s, 1H), 3.33 (s, 3H) ppm. ¹³ C NMR (150 MHz, Chloroform-*d*) δ 172.2, 143.8, 134.6, 130.4, 130.2, 128.3, 125.8, 125.0, 124.1, 123.4, 122.4, 120.6, 120.7, 108.9, 102.6, 58.5, 26.6 ppm. **IR** (**KBr**): 3069, 1727, 1621, 1477, 1458, 1320, 1199, 732 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for C₁₇H₁₃N₂OClNa⁺ [M + Na]⁺: 319.0614; Found: 319.0619.

1-methyl-3-(5-methyl-1H-indol-1-yl)indolin-2-one (3n)

Grey solid, m.p. 119.0-121.1 °C 24 h, 12.8 mg, 23% yield.¹H NMR (600 MHz, Chloroform-*d*) δ 7.41 – 7.38 (m, 2H), 7.16 (d, J = 7.2 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 6.97 – 6.91 (m, 4H), 6.48 (d, J = 3.2 Hz, 1H), 5.83 (s, 1H), 3.31 (s, 3H), 2.41 (s, 3H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 172.5, 143.8, 134.6,

130.1, 129.4, 129.3, 127.0, 125.0, 124.7, 123.7, 123.3, 120.9, 109.2, 108.7, 102.5, 58.5, 26.6, 21.3 ppm. IR (neat) v : 2921, 1703, 1612 , 1470, 1199,1125 , 750, 714 cm⁻¹. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₆ON₂Na 299.1155; Found 299.1145.

1-benzyl-3-(1H-indol-1-yl) indolin-2-one (30)

Yellow solid, 68 h, 51.4 mg, 76% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.66 – 7.65 (m, 1H), 7.40 – 7.35 (m, 4H), 7.33 – 7.29 (m, 2H), 7.18 (d, *J* = 7.4 Hz, 1H), 7.14 – 7.10 (m, 2H), 7.06 – 7.00 (m, 3H), 6.90 (d, *J* = 7.8 Hz, 1H), 6.60 (d, *J* = 3.0 Hz, 1H), 5.96 (s, 1H), 5.06 (d, *J* = 15.6 Hz, 1H), 4.93 (d, *J* = 15.6 Hz, 1H)

ppm. All analytical data are consistent with literature^[1].

3-(1H-indol-1-yl) indolin-2-one (3p)

Yellow solid, 48 h, 36.7 mg, 74% yield; ¹H NMR (600 MHz, DMSO- d_6) δ 10.89 (s, 1H), 7.59 – 7.57 (m, 1H), 7.36 – 7.29 (m, 2H), 7.04 – 6.94 (m, 6H), 6.53 (d, J = 3.2 Hz, 1H), 6.36 (s, 1H). ppm. ¹³C NMR (150 MHz, DMSO- d_6) δ 174.2, 142.2, 135.6,

129.7, 128.7, 125.9, 124.4, 122.2, 121.5, 120.8, 119.6, 110.3, 109.9, 101.8, 58.8 ppm. All analytical data are consistent with literature ^[1].

3-(1H-indol-1-yl)-5-methylindolin-2-one (3q)

Yellow solid, 28 h, 35.6 mg, 68% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 9.03 (s, 1H), 7.70 – 7.66 (m, 1H), 7.20 – 7.15 (m, 3H), 7.12 – 7.08 (m, 2H), 6.96 (s, 1H), 6.80 (d, *J* = 7.8 Hz, 1H), 6.63 (d, *J* = 3.0 Hz, 1H), 5.88 (s, 1H), 2.25 (s, 3H) ppm.

All analytical data are consistent with literature ^[1].

3-(1H-indol-1-yl)-5-methoxyindolin-2-one (3r)

yellow solid, 48 h, 50.6 mg, 91% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 9.42 (s, 1H), 7.68 (d, *J* = 6.6 Hz, 1H), 7.20 – 7.15 (m, 3H), 7.09 (s, 1H), 6.78 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.73 (d, *J* = 2.4 Hz, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 6.63 (d, *J* = 3.0

Hz, 1H), 5.86 (s, 1H), 3.69 (s, 3H) ppm. All analytical data are consistent with literature ^[1].

5-fluoro-3-(1H-indol-1-yl) indolin-2-one (3s)

Brown solid, 48 h, 43.1 mg, 81% yields; ¹H NMR (600 MHz, Chloroform-*d*) δ 9.31 (s, 1H), 7.68 – 7.63 (m, 1H), 7.33 (d, *J* = 6.5 Hz, 1H), 7.24 – 6.96 (m, 5H), 6.62 – 6.55 (m, 2H), 5.84 (s, 1H) ppm. ¹⁹F NMR (564 MHz, Chloroform-d) δ -118.8 ppm,

All analytical data are consistent with literature^[1].

5-chloro-3-(1H-indol-1-yl) indolin-2-one (3t)

Pale yellow solid, 48 h, 49.9 mg, 88% yields; ¹H NMR (600 MHz, Chloroform-*d*) δ 9.39 (s, 1H), 7.70 – 7.66 (m, 1H), 7.20 – 7.17 (m, 3H), 7.10 – 7.04 (m, 3H), 7.10 – 7.04 (m, 2H), 5.85 (s, 1H) ppm. All analytical data are consistent with literature ^[1].

5-bromo-3-(1H-indol-1-yl) indolin-2-one (3u)

Brown solid, 42 h, 34.6 mg, 53% yields; **1 H NMR** (600 MHz, acetone-d6): δ 9.92 (s, br, 1H), 7.61-7.58 (m, 1H), 7.54-7.50 (m, 1H), 7.31 (d, J = 3.3 Hz, 1H), 7.25 (s, br, 1H), 7.10-7.04 (m, 4H), 6.55 (d, J = 3.3 Hz, 1H), 6.28 (s, 1H); All analytical

data are consistent with literature^[1].

3-(1H-indol-1-yl)-5-iodoindolin-2-one (3v)

Yellow solid, mp 184 – 185 °C, 46 h, 60.6 mg, 81% yield; ¹H NMR (600 MHz, DMSO- d_6) δ 11.01 (s, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.35 (s, 1H), 7.26 (s, 1H), 7.07 – 6.96 (m, 3H), 6.86 (d, J = 8.4 Hz, 1H), 6.53 (d, J = 3.6 Hz, 1H),

6.39 (s, 1H) ppm. ¹³ C NMR (150 MHz, DMSO- d_6) δ 173.5, 141.9, 138.2, 132.4, 128.7, 128.6, 121.7, 120.8, 119.7, 112.8, 109.7, 102.0, 84.5, 58.4 ppm. IR (KBr): 1710, 1664, 1624, 1559, 1515, 1469, 1314, 1216, 853, 792, 669 cm⁻¹. HRMS-ESI: Exact mass calcd. for C₁₆H₁₁N₂OINa⁺ [M + Na]⁺: 396.9811; Found: 396.9808.

3-(1H-indol-1-yl)-6-methoxyindolin-2-one (3w)

Yellow solid, mp 144 – 145 °C, 48 h, 39.5 mg, 71% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 9.03 (s, 1H), 7.67 (d, *J* = 7.2 Hz, 1H), 7.19 – 7.13 (m, 3H), 7.08 – 7.05 (m, 2H), 6.61 (d, *J* = 3.0 Hz, 1H), 6.56 – 6.53 (m, 2H), 5.87 (s, 1H), 3.80 (s,

3H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 175.8, 161.5, 142.3, 136.1, 129.2, 127.0, 126.1, 122.2, 121.2, 120.1, 116.6, 109.7, 108.3, 103.0, 97.8, 58.6, 55.6 ppm. **IR (KBr):** 1773, 1719, 1630, 1508, 1457, 1344, 1304, 1157, 738, 652 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for C₁₇H₁₄N₂O₂Na⁺ [M + Na]⁺: 301.0948; Found: 301.0953.

6-chloro-3-(1H-indol-1-yl) indolin-2-one (3x)

Yellow solid, mp 174 – 175 °C, 48 h, 47.3 mg, 84% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.64 (s, 1H), 7.67 (d, J =7.2 Hz, 1H), 7.20 – 7.14 (m, 2H), 7.11 – 7.02 (m, 4H), 6.97 (d, J = 1.8 Hz, 1H), 6.62 (d, J = 3.0 Hz, 1H), 5.88 (s, 1H) ppm.

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 174.5, 141.9, 135.9, 129.2, 126.3, 123.5, 123.4, 122.4, 121.4, 120.3, 111.3, 109.5, 103.5, 29.7 ppm. **IR** (**KBr**): 2963, 1697, 1608, 1509, 1469, 1261, 1019, 756, 652 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for C₁₆H₁₁N₂OClNa⁺ [M + Na]⁺: 305.0452; Found: 305.0453.

6-bromo-3-(1H-indol-1-yl) indolin-2-one (3y)

Yellow solid, mp 183 – 185 °C, 72 h, 57.6 mg, 88% yield; ¹H NMR (600 MHz, DMSO- d_6) δ 11.02 (s, 1H), 7.61 – 7.57 (m, 1H), 7.52 – 7.50 (m, 1H), 7.35 (br, 1H), 7.14 (s, 1H), 7.07 – 7.02 (m, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.54 (dd, J = 3.6, 0.6

Hz, 1H), 6.42 (s, 1H). ¹³ C NMR (150 MHz, DMSO- d_6) 173.7, 141.5, 132.4, 128.7, 128.3, 127.0, 121.7, 120.8, 119.7, 113.8, 112.3, 109.7, 102.1, 58.6 ppm. **IR (KBr):** 3040, 1717, 1620, 1470, 1327, 1196, 897, 866, 748 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for C₁₆H₁₁N₂OBrNa⁺ [M + Na]⁺: 348.9947; Found: 348.9952.

7-chloro-3-(1H-indol-1-yl) indolin-2-one (3z)

Yellow solid, 72 h, 51.3 mg, 91% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.96 (s, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.21 – 7.14 (m, 3H), 7.08 – 7.05 (m, 2H), 7.03 – 7.00 (m, 1H), 6.62 (d, *J* = 3.0 Hz, 1H), 5.99 (s, 1H) ppm. All analytical

data are consistent with literature^[1].

7-bromo-3-(1H-indol-1-yl) indolin-2-one (3aa)

White solid, 28 h, 44.3 mg, 68% yield; ¹**H** NMR (600 MHz, Acetone- d_6) δ 9.98 (s, 1H), 7.61 (d, J = 7.2 Hz, 1H), 7.55 (d, J = 7.2 Hz, 1H), 7.32 (d, J = 3.0 Hz, 1H), 7.14 – 7.05 (m, 4H), 6.98 (t, J = 7.2 Hz, 1H), 6.57 (d, J = 3.6 Hz, 1H), 6.36 (s, 1H) ppm. All analytical data are consistent with literature ^[1].

3-(1H-indol-1-yl)-5,7-dimethylindolin-2-one (3ab)

Yellow solid, mp 114 – 115 °C, 48 h, 46.4 mg, 84% yield; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.83 (s, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.15 – 7.09 (m, 3H), 7.06 (d, *J* = 3.0 Hz, 1H), 6.93 (s, 1H), 6.80 (s, 1H), 6.59 (d, *J* = 3.6 Hz, 1H), 5.87 (s, 1H), 2.20 (s,

6H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 175.1, 137.0, 136.2, 132.9, 131.9, 129.1, 127.2, 124.9, 123.1, 122.1, 121.2, 120.0, 119.8, 109.7, 102.9, 59.3, 20.9, 16 ppm; **IR (KBr):** 2974, 2925, 1716, 1648, 1492, 1325, 1126, 834, 761, 690 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for C₁₈H₁₆N₂ONa⁺ [M + Na]⁺: 299.1155; Found: 299.1160.

3-(1H-indol-1-yl)-7-nitroindolin-2-one (3ac)

Yellow solid, mp 134 – 135 °C, 72 h, 37.0 mg, 63% yield; ¹H NMR (600 MHz, DMSO- d_6) δ 11.59 (s, 1H), 8.12 (d, J = 9.0 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.40 (d, J = 7.2 Hz, 2H), 7.16 (dd, J =9.0, 7.2 Hz, 1H), 7.06 – 7.05 (m, 3H), 6.58 – 6.56 (m, 2H) ppm. ¹³ C NMR (150 MHz, DMSO- d_6) δ 174.7, 138.7, 131.6, 130.5,

129.3, 128.7, 124.5, 122.4, 121.8, 120.9, 119.8, 109.8, 102.4, 79.2, 57.6 ppm. **IR** (**KBr**): 1773, 1725, 1671, 1654, 1459, 1196, 739, 646 cm⁻¹. **HRMS-ESI**: Exact mass calcd. for $C_{16}H_{11}N_3O_3Na^+$ [M + Na]⁺: 316.0698; Found: 316.0688.

5. Scale-up experiments

Procedure: A mixture of **1a** (1.13 g, 7.0 mmol) and **2a** (1.14 g, 7.0 mmol) were added in a dried Schlenk tube, then EtOH (70 mL) was added under Ar atmosphere, and the reaction system was stirred at 50 °C. The reaction was monitored by TLC until 1-methylindoline-2,3-dione was fully consumed. The reaction was extracted with DCM. The combined organic portions were washed with water and brine, dried (Na₂SO₄), filtered, and purified by flash column chromatography (Petroleum ether/Ethyl acetate = 10/1) to afford 2-oxindole **3a** (1.65 g, 90% yield).

Procedure: A mixture of **1p** (1.03 g, 7.0 mmol) and **2a** (1.14 g, 7.0 mmol) were added in a dried Schlenk tube, then EtOH (70 mL) was added under Ar atmosphere, and the reaction system was stirred at 50 °C. The reaction was monitored by TLC until compound **1** was fully consumed. The reaction was extracted with DCM. The combined organic portions were washed with water and brine, dried (Na₂SO₄), filtered, and purified by flash column chromatography (Petroleum ether/Ethyl acetate = 10/1) to afford 2-oxindole **3p** (1.36 g, 78% yield).

6. Transformations and applications

To a solution of 1,1-dimethylamino-2-nitroethylene (0.2 mmol) in trifluoroacetic acid (1 mL) was added **3a** (0.2 mmol) at 0 °C. The mixture was allowed to warm to room temperature and stirred for 0.5 hours. The reaction mixture was treated to pH 9~10 using saturated NaHCO₃ and extracted with DCM. The combined organic layers were washed with saturated brine, dried over Na₂SO₄, the filtrate was concentrated under reduced pressure, purified by flash chromatography (Petroleum ether/ethyl acetate = 2/1) to give product **5** (45.5 mg, 71% yield).

Yellow solid, 45.5 mg, 71% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 11.02 (s, 1H), 8.41 (d, J = 13.6 Hz, 1H), 8.27 (s, 1H), 8.07 (d, J = 13.6 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.38 – 7.24 (m, 4H), 7.12 (d, J = 7.4 Hz, 1H), 7.04 (d, J = 7.8 Hz, 1H), 7.00 (t, J = 7.4 Hz, 1H), 6.53 (s, 1H) ppm. ¹³C NMR (150 MHz, DMSO- d_6) δ 173.3, 142.3, 133.6, 132.5,

130.2, 125.6, 124.8, 124.7, 123.9, 122.5, 122.5, 121.1, 111.2, 110.6, 108.6, 79.2 ppm. **HRMS (ESI)** *m*/*z*: [M + H]⁺ Calcd for C₁₈H₁₃O₃N₃Na 342.0849; Found 342.0839.

To a solution of compound **3b** (124 mg, 0.5 mmol) in toluene (5.0 mL) at -10 $^{\circ}$ C was added BH₃.SMe₂ (2 M THF solution, 625 µL, 1.25 mmol) under Ar. The resulting mixture was then allowed to warm to room temperature and continued to stir for about

4 h before a saturated aqueous solution of NH₄Cl was added to quench the reaction. The aqueous layer was separated and extracted with DCM. The combined organic layers were dried over Na₂SO₄ and concentrated. Silica gel column chromatography (petroleum ether/ethyl acetate = 20/1) afforded bi-indole **6** in 61% yield as colorless oil; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.84 – 7.78 (m, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.42 (dd, *J* = 9.6, 4.5 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.30 – 7.24 (m, 2H), 6.79 (d, *J* = 3.1 Hz, 1H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 137.4, 134.7, 129.6, 128.5, 12.7, 123.1, 122.0, 120.8, 120.4, 120.0, 119.2, 118.5, 117.5, 111.6, 110.8, 102.4 ppm. Analytical datas were consistent with previously reported data.^[1]

7. References

- [1] Y. H. Wang, J. S. Tian, W. P. Tan, Q. Cao, X. X. Zhang, Z. Y. Cao, F. Zhou, X. Wang and J. Zhou, Angew. Chem., Int. Ed. 2020, 50, 1634-1643.
- [2] M. B. Chaudhari, Y. Sutar, S. Malpathak, A. Hazra and B. Gnanaprakasam, Org. Lett. 2017, 19, 3628–3631
- [3] X. Y, Zhou and X. Chen, Org. Biomol. Chem., 2021,19, 548-551.

8. 1H NMR and 13C NMR spectra of compounds

Value
RS-0932.1.fid
Bruker BioSpin GmbH
CDC13
298.0
4
2022-08-25T02:28:44
ency600
1H

100 90 f1 (ppm)

Parameter	Value
1 title	RS-0922.1.1.1r
2 Origin	Bruker BioSpin GmbI
3 Solvent	Acetone
4 Temperature	298.0
5 Number of Scans	4
6 Acquisition Date	2022-08-17T09:26:00
7 Spectrometer Freque	ency600
8 Nucleus	1H

 $\begin{array}{c} 141,434 \\ 136,230 \\ 136,230 \\ 133,331 \\ 122,033 \\ 122,039 \\ 122,038 \\ 122,038 \\ 122,0018 \\ 122,103 \\ 122,102$ - 172.419 -26.619-20.955 $\bigwedge^{77.211}_{76.788}$ - 58.497

7,649 7,169 7,165 7,165 7,154 7,154 7,154 7,154 7,154 7,154 7,154 7,154 7,1230 7,112 7,120 7,110 7,110 7,120 7,110 7,100 7,100 7,100 7,100 7,100 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 6,020 6,020 6,000 7,0000 7,0000 7,0000 7,0000 7,0000 7,00007,0

LRS-0925.2.fid

 Parameter
 value

 l title
 LRS-0925.2.fid

 2 Origin
 Bruker BioSpin GmbH

 3 Solvent
 CDC13

 4 Temperature
 295.2

 5 Nubber of Scans
 16

 6 Acquisition Date
 2023-09-20T15:01:57

 7 Spectrometer Prequency564.63
 8 Nucleus

 $F \xrightarrow{N} O$

io o -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

7.653 7.651 7.651 7.651 7.651 7.651 7.333 7.333 7.333 7.3375 7.3775 7.7715 7.7715 7.7715 7.77119 7.

Parameter	Value
1 title	RS-0921.1.fid
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	8
6 Acquisition Date	2022-08-16T10:04:36
7 Spectrometer Freque	ency600
8 Nucleus	1H

-3.313

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

Parameter value Parameter 1 title 2 Origin 3 Solvent 4 Temporature 5 Number of Scans 6 Acquisition Date 7 Spectrometer Freque 8 Nucleus LRS-0820.1.fid Bruker BioSpin Gmb CDC13 295.0 295.0 4 2023-09-26T01:41:12 ency600.13 1H

-3.319

f1 (ppm)

ľ

f1 (ppm)

3.648 3.645 3.645 2.060 2.056 2.056 2.053 2.050 2.043

Parameter	Value	
1 title	RS-0931.1.fid	
2 Origin	Bruker BioSpin Gmbl	н
3 Solvent	CDCI3	
4 Temperature	298.0	
5 Number of Scans	4	
6 Acquisition Date	2022-08-25T01:50:31	
7 Spectrometer Frequence	y600	
8 Nucleus	1H	

- 3.727

Parameter	Value
1 title	RS-0931.2.fid
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDCI3
4 Temperature	298.0
5 Number of Scans	512
6 Acquisition Date	2022-08-25T16:53:28
7 Spectrometer Freque	ncy151
8 Nucleus	13C

- 2.609

- 3.566

- 2.192

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 (ppm)

7.661 7.660 7.648 7.548 7.548 7.548 7.548 7.541 7.361 7.361 7.361 7.331 7.361 7.331 7.331 7.331 7.331 7.331 7.331 7.331 7.331 7.331 7.331 7.331 7.331 7.331 7.331 7.331 7.332 7.331 7.332 7.331 7.331 7.332 7.332 7.332 7.331 7.332 7.331 7.332 7.331 7.332 7.331 7.332 7.331 7.331 7.332 7.332 7.331 7.331 7.331 7.332 7.332 7.332 7.331 7.332 7.332 7.331 7.332 7.332 7.332 7.331 7.332 7.332 7.332 7.331 7.3327 7.332 7.332 7.332 7.3327 7.3327 7.3327 7.3327 7.3327 7.3327 7.3327 7.3327 7.3327 7.

Parameter	Value
1 title	RS-0933.1.fid
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDCl3
4 Temperature	298.0
5 Number of Scans	8
6 Acquisition Date	2022-09-03T17:35:03
7 Spectrometer Freque	ncy 600
8 Nucleus	1H

RS-0838-1.1.fid 516

7,588 7,568 7,568 7,568 7,117,

Parameter	value
¹ title	RS-0838-1.1.fid
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	295.0
5 Number of Scans	4
6 Acquisition Date	2023-10-20T19:21:56
7 Spectrometer Freque	ncy600.13
8 Nucleus	1H

-90 -100 f1 (ppm)

Parameter	Value
1 title	RS-0915.1.fid
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	8
6 Acquisition Date	2022-08-26T18:21:19
7 Spectrometer Frequency	y600
8 Nucleus	1H

-8.640 -8.640 -8.640 -8.640 -8.640 -8.640 -8.640 -8.640 -8.640 -8.640 -8.640

Parameter	Value
1 title	RS-0907.1.fid
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDCl3
4 Temperature	298.0
5 Number of Scans	4
6 Acquisition Date	2022-08-09T19:03:22
7 Spectrometer Freque	ncy600
8 Nucleus	1H

Parameter	value	
¹ title	LRS-0825.1.fid	
20rigin	Bruker BioSpin GmbH	
3 Solvent	DMSO	
4 Temperature	295.0	
5 Number of Scans	4	
6 Acquisition Date	2023-10-15T17:30:18	
7 Spectrometer Frequency600.13		
8 Nucleus	1H	

 $\underbrace{ \left\{ \begin{array}{c} 2.503 \\ 2.500 \\ 2.497 \end{array} \right. }$

LRS-0826.2.fid 9. 2. 1 — 141.493 $\int_{12.8.724}^{132.440} 128.721$ $\int_{128.292}^{128.292} 121.677$ $\int_{1120.691}^{120.691} 113.768$ ~ 112.319 ~ 109.679 - 102.057 - 58.622 39.915 39.776 39.638 39.60 39.220 39.220 value LRS-0825.2.fid Parameter ¹title
 1 title
 LKS-0852.5.71d

 20rigin
 Bruker BioSpin Gmbl

 3Solvent
 DMS0

 4 Temperature
 295.0

 5 Number of Scans
 512

 6Acquisition Date
 2023-10-1517:55:24

 7 Spectrometer Frequency150.92
 8Nucleus
 O Br `N H 3y 180 170 160 150 140 130 40 20 120 110 100 70 60 50 30 10 Ъ 80

90 f1 (ppm)

7.960 7.664 7.567 7.564 7.359 7.3359 7.285 7.135 7.1159 7.1155 7.1155 7.1155 7.11567 7.11567 7.11567 7.1156

Parameter	Value	
1 title	RS-0792.1.fid	
2 Origin	Bruker BioSpin GmbH	
3 Solvent	CDC13	
4 Temperature	298.0	
5 Number of Scans	8	
6 Acquisition Date	2022-08-02T03:14:35	
7 Spectrometer Frequency 600		
8 Nucleus	1H	

- 1.611

│ H Br

3aa

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 F1 (ppm)

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)