Supporting Information

C3-Functionalization of indoles with α -heteroaryl-substituted methyl alcohols

Ethan J. Pazur,^a Nikhil R. Tasker,^a and Peter Wipf^{a*}

^aDepartment of Chemistry, University of Pittsburgh, Pittsburgh PA 15260, USA.

Table of Contents

1. General information	S2
2. Comparison of oxone® and air oxidation conditions	S2
3. Effects of indole substituent position on reaction rate and bis-indole formation	S3
4. DFT calculations of α -pyridyl methyl alcohol tautomers	S5
5. Synthesis and characterization of C3-substituted indoles	S6
6. Synthesis and characterization of putative intermediate 33	S16
7. Synthesis and characterization of URMC-099	S17
8. References	S19
9. Spectral data	S20

1. General information

Unless stated otherwise, all reactions were performed under an atmosphere of N_2 that was passed through a cartridge (10 x 2 cm) of Drierite[®]. Prior to use, Et₂O and THF were freshly distilled over sodium/benzophenone ketyl radical anion, and CH₂Cl₂ was freshly distilled over CaH₂. DMSO, DMF, MeCN were freshly distilled over CaH₂ and stored over 3 Å molecular sieves. For watersensitive reactions, glassware and stir bars were dried in an oven at 140 °C for at least 16 h prior to use. Reactions were monitored by ¹H-NMR and TLC analysis (pre-coated silica gel 60 F254). TLC spots were visualized by UV light (254 nm and 395 nm), KMnO₄ stain, or a DNP stain. All NMR spectra were recorded on Bruker Avance 300 MHz, Bruker Avance 400 MHz, or Bruker Avance 500 MHz instruments. High resolution mass spectra were obtained on a Micromass UK Limited, Q-TOF Ultima API or a Thermo Scientific Exactive Orbitrap LC-MS. Chemical shifts were reported in parts per million (ppm) with the residual solvent peak (CDCl₃: 7.26 ppm for ¹H, 77.16 ppm for ¹³C; DMSO: 2.50 ppm for ¹H, 39.52 ppm for ¹³C; D₂O: 4.79 ppm for ¹H) as the internal standard. Chemical shifts were tabulated as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, brs = broad singlet, m = multiplet), coupling constant(s), and integration. IR spectra were obtained using neat samples on a PerkinElmer 100 IR-ATR spectrometer. Temperature was monitored with a Chemglass Life Sciences high temperature (-10–260 °C) or a low temperature (-100–50 °C) thermometer. Melting points were obtained using a Mel-Temp instrument and are uncorrected. Listed reaction concentrations refer to the indole component. The products were mostly air- and temperature-sensitive, making rigorous drying conditions difficult and leading, in some cases, to small residual solvent contamination.

2. Comparison of oxone® and air oxidation conditions

Figure S1 Substrates were assessed in parallel under conditions utilizing oxone[®] versus air as the oxidant. Standard reaction conditions: 1 mmol scale, 3 equiv of 2/2a, 1.1 equiv of Cs_2CO_3 , and either: 0.1 equiv of oxone[®], nitrogen atmosphere, concentration 2 M in xylenes, 140 °C, 24 h reaction time, or: air atmosphere, neat, 110 °C, 24 h reaction time. Yields are based on ¹H NMR analysis (CDCl₃) in the presence of an internal standard (1,3,5-trimethoxybenzene). ^{a1}H NMR analysis used DMSO- d_6 as solvent.

3. Effects of indole substituent position on reaction rate and bis-indole formation

Figure S2 Effects of indole substituent position on reaction rate. Standard reaction conditions: 1 mmol scale, 3 equiv of 2, 1.1 equiv of Cs_2CO_3 , 0.1 equiv of $oxone^{\circ}$ and either: neat, 110 °C, or: 2 M in xylenes, 140 °C. Percent conversion measured by ¹H NMR analysis (CDCl₃). ^aAnalysis by ¹H NMR analysis using DMSO- d_6 as solvent.

Figure S3 Changes in molar ratio of mono/bis-addition products during the first 24 h reaction time. Standard reaction conditions: 1 mmol scale, 3 equiv of **2**, 1.1 equiv of Cs₂CO₃, 0.1 equiv of oxone[®], concentration 2 M in xylenes, 140 °C. Molar ratio determined by ¹H NMR analysis (CDCl₃).

4. DFT calculations of α -pyridyl methyl alcohol tautomers

Table S1 Lowest energy tautomers of pyridyl methyl alcohols and corresponding reference reaction yields. Relative energy gap differences between substrates and lowest energy tautomers were calculated as a function of 2-pyridinemethanol and its corresponding tautomer. Density Functional Theory (DFT) calculations were performed with a ω B97X-D functional and 6-311+G** basis set using Spartan v8.02 GUI. Standard reaction conditions: 1 mmol scale, 3 equiv of alcohol, 1.1 equiv of Cs₂CO₃, 0.1 equiv of oxone[®], concentration 2 M in xylenes, 140 °C, 24 h. ^aHeated for 144 h. ^bReaction performed using the following conditions: 1 mmol scale, 3 equiv of alcohol, 1.1 equiv of Cs₂CO₃, air, neat, 110 °C, 24 h.

Reference Reaction:

5. Synthesis and characterization of C3-substituted indoles

General Procedure: A mixture of indole (1 equiv), pyridyl alcohol (3.0 equiv), Cs_2CO_3 (1.1 equiv), and oxone[®] (0.10 equiv) in xylenes (2 M) in a sealed vessel was stirred at 140 °C under an atmosphere of N₂ until starting material was completely consumed by TLC analysis. The reaction mixture was cooled to room temperature, and H₂O (10 mL) was added. The aqueous layer was extracted with CH₂Cl₂/MeOH (9:1, 3 x 10 mL) and the combined organic layers were dried (MgSO₄), filtered, and concentrated. The crude residue was purified by chromatography on SiO₂ (35% EtOAc/CH₂Cl₂) to afford product and bis-addition product.

4-Bromo-3-(pyridin-2-ylmethyl)-1*H*-indole (**3**). Synthesized according to the general procedure utilizing 4-bromoindole (1.00 mL, 7.83 mmol) and 24 h reaction time; volumes of solvents used for extraction were scaled by 10 to give **3** (1.50 g, 5.22 mmol, 67%) as a tan solid: M.p. 185–186 °C; IR (ATR) ν_{max} 3112, 3021, 2917, 1725, 1596, 1559, 1543, 1473, 1434, 1424, 1409, 1331, 1249, 1174, 1042, 1002, 912, 843, 743, 717 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.30 (brs, 1 H), 8.48 (ddd, *J* = 4.8, 1.7, 0.8 Hz, 1 H), 7.63 (td, *J* = 7.7, 1.9 Hz, 1 H), 7.40 (dd, *J* = 8.0, 0.5 Hz, 1 H), 7.21 (d, *J* = 2.0 Hz, 1 H), 7.18 — 7.15 (m, 1 H), 7.13 (dd, *J* = 7.8, 0.8 Hz, 1 H), 7.02 (d, *J* = 7.8 Hz, 1 H), 6.97 (t, *J* = 7.8 Hz, 1 H), 4.44 (s, 2 H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 161.7, 148.7, 137.8, 136.3, 126.5, 124.8, 122.7, 122.3, 122.1, 120.9, 112.9, 112.1, 111.3, 34.3; HRMS (ESI+) *m/z* calcd for C₁₄H₁₂N₂Br ([M+H]⁺) 287.0178, found 287.0175.

5-Bromo-3-(pyridin-2-ylmethyl)-1H-indole (4a) and **3,3'-(pyridin-2-ylmethylene)bis(5-bromo-1H-indole)** (4b). Synthesized according to the general procedure utilizing 5-bromoindole (0.200 g, 1.02 mmol) and 24 h reaction time to give **4a** (0.190 g, 0.663 mmol, 65%) and **4b** (0.0154 g, 0.0320 mmol, 6%) as tan solids. **4a**: M.p. 154.3 °C (dec.); IR (ATR) ν_{max} 3153, 2892, 1593, 1569, 1472, 1455, 1436, 1351, 1337, 1314, 1291, 1249, 1233, 1115, 1091, 1051, 1043, 1000, 879, 861, 792, 765, 776, 757, 719, 664 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.57 (d, *J* = 4.2 Hz, 1 H), 8.12 (brs, 1 H), 7.65 (s, 1 H), 7.57 (td, *J* = 7.7, 1.7 Hz, 1 H), 7.28–7.23 (m, 2 H), 7.20–7.10 (m, 2 H), 7.08 (d, *J* = 2.1 Hz, 1 H), 4.25 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 149.5, 136.7, 135.2, 129.4, 125.1, 124.0, 122.8, 121.9, 121.4, 113.9, 112.9, 112.7, 34.5; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₂N₂Br ([M+H]⁺) 287.0178, found 287.0187.

4b: M.p. 123.8 °C (dec.); IR (ATR) ν_{max} 3420, 3131, 2891, 1592, 1569, 1455, 1432, 1318, 1278, 1213, 1150, 1137, 1093, 1049, 1000, 883, 793, 768, 751, 686, 655 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.57 (d, *J* = 4.0 Hz, 1 H), 8.36 (brs, 2 H), 7.64 (td, *J* = 7.7, 1.7 Hz, 1 H), 7.46 (d, *J* = 1.4 Hz, 2 H), 7.28 (d, *J* = 7.7 Hz, 1 H), 7.22–7.11 (m, 5 H), 6.65 (d, *J* = 1.7 Hz, 2 H), 5.89 (s, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 162.7, 149.5, 137.1, 135.5, 128.7, 125.0, 124.9, 123.1, 122.2, 122.0, 117.5, 112.82, 112.77, 42.8; HRMS (ESI⁻) *m/z* calcd for C₂₂H₁₄N₃Br₂ ([M–H]⁻) 477.9549, found 477.9565.

6-Bromo-3-(pyridin-2-ylmethyl)-1H-indole (**5a**) and **3,3'-(pyridin-2-ylmethylene)bis(6-bromo-1H-indole**) (**5b**). Synthesized according to the general procedure utilizing 6-bromoindole (0.200 g, 1.00 mmol) and 24 h reaction time to give **5a** (0.205 g, 0.714 mmol, 71%) and **5b** (0.0230 g, 0.0478 mmol, 10%) as tan solids. **5a**: M.p. 152.5 °C (dec.); IR (ATR) ν_{max} 3010, 2880, 1594, 1567, 1473, 1455, 1435, 1411, 1346, 1324, 1251, 1233, 1136, 1118, 1091, 1067, 1048, 1004, 925, 893, 830, 807, 761, 750, 742, 719 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.56 (d, *J* = 4.1 Hz, 1 H), 8.14 (brs, 1 H), 7.55 (td, *J* = 7.7, 1.8 Hz, 1 H) 7.49 (d, *J* = 1.7 Hz, 1 H) 7.36 (d, *J* = 8.4 Hz, 1 H), 7.18–7.09 (m, 3 H), 7.05–7.04 (m, 1 H), 4.27 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 149.4, 137.4, 136.7, 126.5, 123.3, 122.92, 122.85, 121.37, 120.6, 115.86, 114.4, 114.2, 34.6; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₂N₂Br ([M+H]⁺) 287.0178, found 287.0192.

5b: M.p. 128.0 °C (dec.); IR (ATR) ν_{max} 3424, 3134, 2929, 2879, 1615, 1592, 1570, 1539, 1470, 1453, 1433, 1398, 1332, 1219, 1134, 1096, 1050, 1040, 1000, 893, 848, 802, 771, 753, 686, 657 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (dd, *J* = 4.8, 0.8 Hz, 1 H), 8.24 (brs, 2 H), 7.62 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.44 (d, *J* = 1.4 Hz, 2 H), 7.27 (d, *J* = 8.3 Hz, 1 H), 7.20–7.15 (m, 3 H), 7.08 (dd, *J* = 8.4, 1.6 Hz, 2 H), 6.65 (d, *J* = 1.6 Hz, 2 H), 5.95 (s, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 162.9, 149.5, 137.6, 137.0, 125.9, 124.2, 123.1, 122.8, 121.9, 121.0, 118.1, 115.7, 114.2, 42.9; HRMS (ESI⁻) *m/z* calcd for C₂₂H₁₄N₃Br₂ ([M–H]⁻) 477.9549, found 477.9564.

7-Bromo-3-(pyridin-2-ylmethyl)-1*H***-indole** (6a) and **3,3'-(pyridin-2-ylmethylene)bis(7-bromo-1***H***-indole**) (6b). Synthesized according to the general procedure utilizing 7-bromoindole (0.200 g, 1.01 mmol) and 96 h reaction time to give **6a** (0.175 g, 0.609 mmol, 60%) and **6b** (0.0139 g, 0.0289 mmol, 6%) as tan solids. **6a**: M.p. 131.0–132.2 °C; IR (ATR) ν_{max} 3090, 2907, 2841, 1646, 1568, 1594, 1495, 1481, 1432, 1356, 1338, 1309, 1285, 1249, 1194, 1149, 1118, 1092, 1059, 1048, 1003, 880, 887, 847, 790, 831, 772, 748, 727, 705 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (dd, *J* = 4.1, 0.8 Hz, 1 H), 8.22 (brs, 1 H), 7.55 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.46 (d, *J* = 7.9 Hz, 1 H), 7.33 (d, *J* = 7.3 Hz, 1 H) 7.16–7.09 (m, 3 H), 6.95 (t, *J* = 7.8 Hz, 1 H), 4.29 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 149.4, 136.6, 135.3, 128.8 124.6, 123.3, 122.8, 121.4, 120.8, 118.7, 115.5, 104.9, 34.8; HRMS (ESI⁺) calcd *m/z* for C₁₄H₁₂N₂Br ([M+H]⁺) 287.0178, found 287.0170.

6b: M.p. 111.4 °C (dec.); IR (ATR) ν_{max} 3676, 3419, 2971, 2901, 1591, 1568, 1488, 1470, 1432, 14051335, 1242, 1192, 1140, 1066, 1046, 880, 792, 777, 752, 732 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.62 (dd, *J* = 4.9, 0.8 Hz, 1 H), 8.21 (brs, 2 H), 7.60 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.33–7.26 (m, 5 H), 7.15 (ddd, *J* = 7.4, 4.9, 0.9 Hz, 1 H), 6.89 (t, *J* = 7.8 Hz, 2 H), 6.84 (d, *J* = 1.7 Hz, 2 H), 6.00 (s, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 162.8, 149.7, 136.8, 135.45, 128.2, 124.6, 124.1, 122.9, 121.8, 120.8, 119.4, 119.1, 104.9, 43.5; HRMS (ESI⁺) *m/z* calcd for C₂₂H₁₆N₃Br₂ ([M+H]⁺) 479.9706, found 479.9683.

4-Fluoro-3-(pyridin-2-ylmethyl)-1H-indole (7). Synthesized according to the general procedure utilizing 4-fluoroindole (0.168 g, 1.22 mmol) and 36 h reaction time to give **7** (0.248 g, 1.09 mmol, 90%) as a tan solid: M.p. 178.3 °C (dec.); IR (ATR) ν_{max} 3117, 3071, 2927, 2877, 1881, 1634, 1595, 1581, 1510, 1456, 1437, 1411, 1350, 1228, 1032, 1002, 831, 780, 754, 733, 723, 658 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (dd, *J* = 4.8, 0.8 Hz, 1 H) 8.20 (brs, 1 H), 7.57 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.24 (d, *J* = 7.9 Hz, 1 H), 7.13–7.04 (m, 3 H), 6.99 (d, *J* = 1.7 Hz, 1 H), 6.72 (ddd, *J* = 11.0, 7.6, 0.8 Hz, 1 H), 4.39 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 158.7, 156.2, 149.3, 139.3 (d, *J*_{C,F} = 11.3 Hz), 136.6, 123.0 (d, *J*_{C,F} = 3.2 Hz), 122.7 (d, *J*_{C,F} = 7.9 Hz), 122.1 (d, *J*_{C,F} = 117.2 Hz), 116.4 (d, *J*_{C,F} = 20.9 Hz), 112.8 (d, *J*_{C,F} = 2.4 Hz), 107.4 (d, *J*_{C,F} = 3.6 Hz), 104.8 (d, *J*_{C,F} = 19.2 Hz), 34.4; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₂N₂F ([M+H]⁺) 227.0979, found 227.0984.

5-Fluoro-3-(pyridine-2-ylmethyl)-1H-indole (8a) and **3,3'-(pyridin-2-ylmethylene)bis(5-fluoro-1H-indole) (8b)**. Synthesized according to the general procedure utilizing 5-fluoroindole (0.150 g, 1.09 mmol) and 9 h reaction time to give **8a** (0.191 g, 0.845 mmol, 78%) and **8b** (0.0215 g, 0.0598 mmol, 11%) as tan solids. **8a**: M.p. 151.8 °C (dec.); IR (ATR) ν_{max} 3134, 2893, 1569, 1595, 1489, 1466, 1438, 1410, 1340, 1304, 1246, 1234, 1193, 1167, 1050, 1002, 936, 925, 918, 852, 836, 792, 757, 709 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.56 (dd, *J* = 4.8, 0.5 Hz, 1 H) 8.24 (brs, 1 H), 7.56 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.24 (dd, *J* = 8.8, 4.4 Hz, 1 H), 7.17–7.10 (m, 4 H), 6.91 (td, *J* = 9.1, 2.5 Hz, 1 H), 4.25 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 159.1, 156.7, 149.4, 136.7, 133.1, 128.0 (d, *J*_{C,F} = 9.8 Hz), 124.5, 122.1 (d, *J*_{C,F} = 148.9 Hz), 114.3 (d, *J*_{C,F} = 4.5 Hz), 111.8 (d, *J*_{C,F} = 9.7 Hz) 110.6 (d, *J*_{C,F} = 26.2 Hz), 104.3 (d, *J*_{C,F} = 23.2 Hz), 34.7; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₂N₂F ([M+H]⁺) 227.0979, found 227.0973.

8b: M.p. 102.2 °C (dec.); IR (ATR) ν_{max} 3462, 3136, 2919, 2335, 1628, 1584, 1484, 1453, 1435, 1349, 1161, 1092, 937, 845, 793, 750, 718, 667 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.61 (dd, *J* = 4.8, 0.9 Hz, 1 H) 8.09 (brs, 2 H), 7.61 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.29 (d, *J* = 7.9 Hz, 1 H), 7.25 (d, *J* = 5.5 Hz, 1 H), 7.22 (d, *J* = 4.4 Hz, 1 H), 7.16 (ddd, *J* = 7.4, 4.9, 1.1 Hz, 1 H), 7.00 (dd, *J* = 9.7, 2.4 Hz, 2 H), 6.89 (td, *J* = 9.1, 2.5 Hz, 2 H), 6.82 (d, *J* = 2.2 Hz, 2 H), 5.90 (s, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 162.9, 159.3, 156.2, 149.7, 136.8, 133.3, 127.4 (d, *J*_{C,F} = 9.8 Hz), 125.3, 122.4 (d, *J*_{C,F} = 90.5 Hz), 118.2 (d, *J*_{C,F} = 4.7 Hz), 111.9 (d, *J*_{C,F} = 9.7 Hz), 110.6 (d, *J*_{C,F} = 26.3 Hz), 104.8 (d, *J*_{C,F} = 23.5 Hz), 43.2; HRMS (ESI⁺) *m*/*z* calcd for C₂₂H₁₆N₃F₂ ([M+H]⁺) 360.1307, found 360.1288.

6-Fluoro-3-(pyridin-2-ylmethyl)-1*H***-indole** (9a) and **3,3'-(pyridin-2-ylmethylene)bis(6-fluoro-1***H***-indole**) (9b). Synthesized according to the general procedure utilizing 6-fluoroindole (0.150 g, 1.09 mmol) and 36 h reaction time to give **9a** (0.246 g, 0.682 mmol, 63%) and **9b** (0.0275 g, 0.0765 mmol, 14%) as tan solids. **9a**: M.p. 134.5–135.7 °C; IR (ATR) ν_{max} 3151, 3092, 2993, 2913, 2837, 1835, 1625, 1596, 1569, 1559, 1477, 1457, 1435, 1344, 1307, 1227, 1141, 1099, 1051, 1002, 950, 833, 793, 801, 775, 757, 748, 727, 678 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (dd, *J* = 4.8, 0.8 Hz, 1 H) 8.20 (brs, 1 H), 7.56 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.40 (dd, *J* = 8.7, 5.3 Hz, 1 H), 7.16 (d, *J* = 7.8 Hz, 1 H), 7.11 (dd, *J* = 7.4, 5.3 Hz, 1 H), 7.03–7.00 (m, 2 H), 6.83 (tdd, *J* = 8.8, 2.3, 0.9 Hz, 1 H), 4.28 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 161.2, 159.1, 149.4, 136.8, 136.6 (d, *J*_{C,F} = 12.4 Hz), 124.3, 123.1 (d, *J*_{C,F} = 3.6 Hz), 122.2 (d, *J*_{C,F} = 153.1 Hz), 120.2 (d, *J*_{C,F} = 10.2 Hz), 114.3, 108.5 (d, *J*_{C,F} = 24.2 Hz), 97.6 (d, *J*_{C,F} = 26.0 Hz), 34.7; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₂N₂F ([M+H]⁺) 227.0979, found 227.0984.

9b: M.p. 103.2 °C (dec.); IR (ATR) ν_{max} 3416, 3154, 1626, 1591, 1497, 1455, 1434, 1343, 1306, 1252, 1213, 1139, 1118, 1091, 1001, 951, 834, 765, 800, 750, 714, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (dd, *J* = 4.9, 0.9 Hz, 1 H) 8.00 (brs, 2 H), 7.60 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.29–7.26 (m, 3 H), 7.15 (ddd, *J* = 7.4, 4.8, 0.9 Hz, 1 H), 7.02 (dd, *J* = 9.6, 2.3 Hz, 2 H), 6.79–6.74 (m, 4 H), 5.98 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 158.9 (d, *J*_{C,F} = 13.7 Hz), 149.6, 136.75, 136.71 (d, *J*_{C,F} = 12.7 Hz), 123.747 (d, *J*_{C,F} = 7.9 Hz), 123.754, 122.3 (d, *J*_{C,F} = 122.9 Hz), 120.6 (d, *J*_{C,F} = 9.9 Hz), 118.4, 108.3 (d, *J*_{C,F} = 24.2 Hz), 97.5 (d, *J*_{C,F} = 26.1 Hz), 43.2; HRMS (ESI+) *m/z* calcd for C₂₂H₁₆N₃F₂ ([M+H]⁺) 360.1307, found 360.1317.

7-Fluoro-3-(pyridin-2-ylmethyl)-1*H***-indole (10)**. Synthesized according to the general procedure utilizing 7-fluoroindole (0.150 g, 1.08 mmol) and 120 h reaction time to give **10** (0.158 g, 0.698 mmol, 65%) as a tan solid: M.p. 131.2–132.6 °C; IR (ATR) ν_{max} 3078, 3022, 2848, 1719, 1632, 1595, 1578, 1569, 1504, 1481, 1462, 1434, 1353, 1287, 1228, 1219, 1148, 1089, 1049, 964, 828, 774, 749, 722, 708, 680 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 4.5 Hz, 1 H), 8.30 (brs, 1 H), 7.55 (t, *J* = 7.6 Hz, 1 H), 7.27 (d, *J* = 8.5 Hz, 1 H), 7.16–7.11 (m, 3 H), 7.00–6.95 (m, 1 H), 6.91–6.86 (m, 1 H), 4.29 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 150.9, 149.4, 148.5, 136.7, 131.3 (d, *J*_{C,F} = 5.1 Hz), 124.9 (d, *J*_{C,F} = 13.4 Hz), 123.1 (d, *J*_{C,F} = 56.1 Hz), 121.3, 119.8 (d, *J*_{C,F} = 6.1 Hz), 115.1 (d, *J*_{C,F} = 3.5 Hz), 115.0 (d, *J*_{C,F} = 2.2 Hz), 107.1 (d, *J*_{C,F} = 15.9 Hz), 34.7; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₂N₂F ([M+H]⁺) 227.0979, found 227.0978.

5-Bromo-4-fluoro-3-(pyridin-2-ylmethyl)-1H-indole (11). A mixture of 5-bromo-4-fluoroindole (0.200 g, 0.916 mmol), 2-pyridinemethanol (0.270 mL, 2.75 mmol), Cs_2CO_3 (0.328 g, 1.00 mmol), and oxone[®] (0.0563 g, 0.0916 mmol) in xylenes (0.46 mL) in a sealed vessel was stirred at 110 °C under an atmosphere of N₂ for 96 h. The reaction mixture was cooled to room temperature, and H₂O (10 mL) was added. The aqueous layer was extracted with $CH_2Cl_2/MeOH$ (9:1, 3 x 10 mL), and the combined organic layers were dried (MgSO₄), filtered, and concentrated. The crude residue was purified by chromatography on SiO₂ (3% MeOH/CH₂Cl₂) to afford **11** (0.122 g, 0.400 mmol, 44%) as a brown solid: M.p. 168.0 °C (dec.); IR (ATR) ν_{max} 3098, 3045, 2894, 2926, 2305, 1981, 1628, 1595, 1570, 1494, 1455, 1477, 1435, 1346, 1257, 1196, 1145, 1124, 1044, 1003, 850, 787, 748, 690 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.55 (d, *J* = 4.3 Hz, 1 H), 8.34 (brs, 1 H), 7.62 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.29–7.26 (m, 1 H), 7.22 (dd, *J* = 8.6, 6.5 Hz, 1 H), 7.14 (dd, *J* = 7.2, 5.5 Hz, 1 H), 7.04–6.98 (m, 2 H), 4.37 (s, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.0, 153.2, 150.7, 148.9, 138.3 (d, *J*_{C,F} = 11.5 Hz), 136.5, 125.1 (d, *J*_{C,F} = 135.4 Hz), 122.1, 121.2, 116.5 (d, *J*_{C,F} = 19.7 Hz), 110.5 (d, *J*_{C,F} = 3.4 Hz), 109.6 (d, *J*_{C,F} = 3.6 Hz), 95.6 (d, *J*_{C,F} = 19.1 Hz), 34.4; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₁N₂BrF ([M+H]⁺) 305.0084, found 305.0085.

4-Chloro-3-(pyridin-2-ylmethyl)-1*H***-indole (12)**. Synthesized following the general procedure utilizing 4-chloroindole (0.160 g, 1.03 mmol) and 24 h reaction time; **12** (0.244 g, 1.00 mmol, 97%), light-tan solid: M.p. 181.4 °C (decomp); IR (ATR) ν_{max} 3081, 3008, 2917, 2859, 1893, 1685, 1597, 1567, 1547, 1474, 1449, 1435, 1409, 1333, 1300, 1275, 1243, 1177, 1092, 1072, 1044, 1003, 934, 922, 805, 781, 750, 734, 718 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.57 (dd, *J* = 4.8, 0.75 Hz, 1 H), 8.32 (brs, 1 H), 7.56 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.24 (dd, *J* = 6.5, 2.6 Hz, 1 H), 7.16–7.03 (m, 4 H), 6.98 (d, *J* = 2.4 Hz, 1 H), 4.57 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 162.0, 149.2, 138.1, 136.6, 126.6, 124.7, 124.4, 123.1, 122.8, 121.1, 120.7, 114.1, 110.1, 35.3; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₂N₂Cl ([M+H]⁺) 243.0684, found 243.0678.

3-(Pyridin-2-ylmethyl)-1*H***-indole** (13a) and **3,3'-(pyridin-2-ylmethylene)bis(1***H***-indole)** (13b). Synthesized according to the general procedure utilizing indole (0.120 g, 1.01 mmol) and 24 h reaction time to give **13a** (0.169 g, 0.811 mmol, 80%) and **13b** (0.0123 g, 0.0380 mmol, 8%) as yellow solids. **13a**: ¹H NMR (300 MHz, CDCl₃) δ 8.57 (dd, *J* = 4.9, 0.8 Hz, 1 H), 8.23 (brs, 1 H), 7.56–7.51 (m, 2 H), 7.35 (d, *J* = 8.1 Hz, 1 H), 7.21–7.16 (m, 2 H), 7.12–7.05 (m, 3 H), 4.32 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 161.4, 149.2, 136.5, 127.6, 122.9, 122.8, 122.2, 121.2, 119.5, 119.3, 114.0, 111.3, 34.7; HRMS (ESI+) *m/z* calcd for C₁₄H₁₃N₂ ([M+H]⁺) 209.1073, found 209.1067. Spectral data were consistent with previously reported properties.¹

13b: ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 4.2 Hz, 1 H), 8.01 (brs, 2 H), 7.59 (t, *J* = 7.4 Hz, 1 H), 7.40 (d, *J* = 7.9 Hz, 2 H), 7.36–7.32 (m, 3 H), 7.18–7.12 (m, 3 H), 7.00 (t, *J* = 7.4 Hz, 2 H), 6.79 (s, 2 H), 6.07 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 136.8, 136.7, 127.2, 123.6, 123.1, 122.1, 121.5, 120.0, 119.4, 118.5, 111.2, 43.4. Spectral data were consistent with previously reported properties.²

3-(Pyridin-2-ylmethyl)-1*H***-indole (13a)**. Preparation from 2-aminophenylethyl alcohol: A mixture of 2-aminophenylethyl alcohol (0.200 mL, 1.52 mmol), 2-pyridinemethanol (0.450 mL, 4.57 mmol), Cs₂CO₃ (0.546 g, 1.68 mmol) and oxone[®] (0.0937 g, 0.152

mmol) in xylenes (0.76 mL) in a sealed vessel was stirred at 140 °C under an atmosphere of N₂ for 264 h. The reaction mixture was cooled to room temperature, and H₂O (10 mL) was added. The aqueous layer was extracted with $CH_2Cl_2/MeOH$ (9:1, 3 x 10 mL), and the combined organic layers were dried (MgSO₄), filtered, and concentrated. The crude residue was purified by chromatography on SiO₂ (35% EtOAc/CH₂Cl₂) to afford **13a** (0.0434 g, 0.208 mmol, 14%) as a brown solid.

3-(Pyridin-2-ylmethyl)-1H-pyrrolo[3,2-b]pyridine (14). A mixture of 4-azaindole (0.120 g, 1.02 mmol), 2-pyridinemethanol (0.300 mL, 3.04 mmol), $C_{s_2}CO_3$ (0.364 g, 1.12 mmol) and oxone[®] (0.0625 g, 0.102 mmol) in xylenes (0.5 mL) in a sealed vessel was stirred under an atmosphere of N₂ at 140 °C for 120 h. The reaction mixture was cooled to room temperature, and H₂O/MeOH (1:1, 20 mL) was added. The aqueous layer was extracted with CH₂Cl₂ (4 x 30 mL), and the combined organic layers were dried (MgSO₄), filtered through a celite plug, and concentrated. The crude residue was purified by reverse-phase chromatography on C18-SiO₂ (30 g, 10% MeCN/H₂O to 100% MeCN). Fractions containing the desired product were combined and extracted with CH₂Cl₂/MeOH (9:1, 3 x 30 mL). The combined organic extracts were dried (MgSO₄), filtered, and concentrated to afford **14** (0.186 g, 0.889 mmol, 88%) as a yellow-tan solid: M.p. 157.9 °C (dec.); IR (ATR) ν_{max} 3045, 2891, 2851, 2818, 1714, 1590, 1568, 1505, 1473, 1439, 1410, 1368, 1301, 1292, 1218, 1109, 1098, 1086, 894, 810, 783, 772, 761, 750, 717, 648, 624 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.11 (brs, 1 H), 8.46 (dd, *J* = 4.8, 0.9 Hz, 1 H), 8.29 (dd, *J* = 4.6, 1.4 Hz, 1 H), 7.72 (dd, *J* = 8.1, 1.4 Hz, 1 H), 7.62 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.45 (d, *J* = 2.6 Hz, 1 H), 7.28 (d, *J* = 7.8 Hz, 1 H), 7.16 (ddd, *J* = 7.3, 4.9, 0.8 Hz, 1 H), 7.08 (dd, *J* = 8.2, 4.6 Hz, 1 H), 4.24, (s, 2 H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 161.2, 148.7, 144.8, 141.8, 136.3, 128.6, 127.2, 122.6, 121.0, 118.3, 116.2, 112.7, 32.5; HRMS (ESI⁺) *m/z* calcd for C₁₃H₁₂N₃ ([M+H]⁺) 210.1031, found 210.1025.

4-Methyl-3-(pyridin-2-ylmethyl)-1H-indole (15). Synthesized according to the general procedure utilizing 4-methylindole (0.130 mL, 1.01 mmol) and 14 h reaction time to give **15** (0.214 g, 0.963 mmol, 95%) as a light-tan solid: M.p. 159.1 °C (dec.); IR (ATR) ν_{max} 3148, 3112, 2997, 2938, 1680, 1594, 1568, 1472, 1436, 1412, 1345, 1299, 1245, 1153, 1065, 841, 752, 740, 721, 661 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (dd, *J* = 4.8, 0.7 Hz, 1 H), 8.15 (brs, 1 H), 7.52 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.21 (d, *J* = 8.1 Hz, 1 H), 7.12–7.02 (m, 3H), 6.97 (d, *J* = 2.3 Hz, 1 H), 6.81 (d, *J* = 7.1 Hz, 1 H), 4.48 (s, 2 H), 2.48 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 149.2, 137.2, 136.6, 131.2, 126.2, 123.6, 122.8, 122.4, 121.2, 121.1, 114.2, 109.2, 36.3, 20.2; HRMS (ESI⁺) *m/z* calcd for C₁₅H₁₅N₂ ([M+H]⁺) 223.1230, found 223.1240.

16a

16b

5-Methoxy-3-(pyridin-2-ylmethyl)-1*H***-indole (16a) and 3,3'-(pyridin-2-ylmethylene)bis(5-methoxy-1***H***-indole) (16b). Synthesized according to the general procedure utilizing 5-methoxyindole (0.150 g, 1.02 mmol) and 24 h reaction time to give 16a** (0.197 g, 0.826 mmol, 81%) and **16b** (0.0159 g, 0.0415 mmol, 8%) as tan solids. **16b**: M.p. 109.6–110.7 °C; IR (ATR) ν_{max} 3036, 2998, 2878, 2824, 1625, 1595, 1583, 1569, 1488, 1474, 1436, 1411, 1303, 1256, 1236, 1217, 1172, 1109, 1029, 1003, 914, 829, 795, 759, 708 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 4.2 Hz, 1 H), 8.00 (brs, 1 H), 7.54 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.25 (d, *J* = 9.3 Hz, 1 H), 7.16 (d, *J* = 7.8 Hz, 1 H), 7.10 (dd, *J* = 5.3, 1.6 Hz, 1 H), 7.06 (d, *J* = 2.0 Hz, 1 H), 6.95 (d, *J* = 2.3 Hz, 1 H), 6.84 (dd, *J* = 8.8, 2.4 Hz, 1 H), 4.28 (s, 2 H), 3.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 154.2, 149.2, 136.6, 131.7, 128.0, 123.6, 122.9, 121.2, 113.8, 112.4, 111.9, 101.2, 56.0, 34.7; HRMS (ESI⁺) *m/z* calcd for C₁₅H₁₅ON₂ ([M+H]⁺) 239.1179, found 239.1184. **16b**: M.p. 91.3 °C (dec.); IR (ATR) ν_{max} 3401, 2931, 1624, 1587, 1483, 1435, 1292, 1210, 1171, 1093, 1042, 926, 830, 795, 753, 715, 671 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 4.0 Hz, 1 H), 8.03 (brs, 2 H), 7.58 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.30 (d, *J* = 7.8 Hz, 1 H), 7.22–7.19 (m, 2 H), 7.13 (dd, *J* = 6.6, 5.1 Hz, 1 H), 6.83–6.80 (m, 4 H), 6.72 (d, *J* = 2.0 Hz, 2 H), 5.96 (s, 1 H), 3.69 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 153.9, 149.4, 136.7, 132.0, 127.6, 124.5, 123.1, 121.5, 118.0, 112.2, 111.9, 101.8, 56.0, 43.3; HRMS (ESI⁺) *m/z* calcd for C₂₄H₂₂O₂N₃ ([M+H]⁺) 384.1707, found 384.1713.

3-(Pyridin-2-ylmethyl)-1*H*-indol-5-ol (17). A mixture of 5-hydroxyindole (0.150 g, 1.10 mmol), 2-pyridinemethanol (0.326 mL, 3.31 mmol), Cs₂CO₃ (0.755 g, 2.32 mmol) and oxone[®] (0.0679 g, 0.110 mmol) in xylenes (0.55 mL) was stirred in a sealed vessel under an atmosphere of N₂ at 140 °C for 36 h. The reaction mixture was cooled to room temperature, and H₂O/MeOH (1:1, 20 mL) was added. The aqueous layer was extracted with CH₂Cl₂ (4 x 30 mL), and the combined organic layers were dried (MgSO₄), filtered, and concentrated. The crude residue was dissolved in 5% MeOH/CH₂Cl₂ (3 mL) and loaded onto a SiO₂ column. The column was washed with CH₂Cl₂ (20 mL) and then the mixture was eluted with 100% EtOAc to afford **17** (0.188 g, 0.838 mmol, 76%) as a light-brown solid: M.p. 63.5 °C (dec.); IR (ATR) ν_{max} 3285, 3050, 2854, 2607, 1837, 1595, 1583, 1570, 1469, 1436, 1403, 1310, 1197, 1092, 1051, 1009, 937, 831, 794, 784, 774, 749, 696, 667 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.55 (brs, 1 H), 8.53 (brs, 1 H), 8.47 (ddd, *J* = 4.7, 1.7, 1.1 Hz, 1 H), 7.63 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.18–7.15 (m, 2 H), 7.12–7.10 (m, 2 H), 6.72 (d, *J* = 2.3 Hz, 1 H), 6.56 (dd, *J* = 8.6, 2.3 Hz, 1 H), 4.07 (s, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.4, 150.2, 148.7, 136.3, 130.9, 127.7, 123.9, 122.4, 121.0, 111.7, 111.34, 111.28, 102.6, 34.2; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₃ON₂ ([M+H]⁺) 225.1022, found 225.1021.

3,5,7-Tris(pyridin-2-ylmethyl)-1H-indol-4-ol (18). A mixture of 4-hydroxyindole (0.150 g, 1.12 mmol), 2-pyridinemethanol (0.329 mL, 3.35 mmol), Cs_2CO_3 (0.763 g, 2.34 mmol) and oxone[®] (0.0686 g, 0.112 mmol) in xylenes (0.56 mL) in a sealed vessel was stirred at 140 °C under an atmosphere of N₂ for 24 h. The reaction mixture was cooled to room temperature, and H₂O/MeOH (1:1, 20 mL) was added. The aqueous layer was extracted with CH₂Cl₂ (4 x 30 mL), and the combined organic layers were dried (MgSO₄), filtered, and concentrated. The crude residue was purified by chromatography on SiO₂ (3% MeOH/CH₂Cl₂) to afford **18**

(0.248 g, 0.610 mmol, 55%) as a reddish-brown solid: M.p. 70.6 °C (dec.); IR (ATR) ν_{max} 3007, 2901, 2573, 1591, 1568, 1494, 1473, 1433, 1354, 1317, 1256, 1223, 1148, 1092, 1050, 1012, 995, 935, 748, 706, 658 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.81 (brs, 1 H), 10.66 (brs, 1 H), 8.45–8.43 (m, 3 H), 7.81 (td, *J* = 7.6, 1.6 Hz, 1 H), 7.65 (td, *J* = 7.7, 1.7 Hz, 1 H), 7.60 (td, *J* = 7.7, 1.8 Hz, 1 H), 7.45 (d, *J* = 7.8 Hz, 1 H), 7.27 (dd, *J* = 6.7, 5.2 Hz, 1 H), 7.22 (d, *J* = 7.8 Hz, 1 H), 7.18–7.12 (m, 3 H), 7.06 (d, *J* = 2.1 Hz, 1 H), 6.71 (s, 1 H), 4.26 (s, 2 H), 4.13 (s, 2 H), 4.09 (s, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.2, 161.4, 160.6, 148.8, 148.3, 147.7, 147.1, 138.5, 136.6, 136.54, 136.51, 125.0, 123.3, 122.6, 122.5, 122.3, 121.7, 121.1, 121.0, 117.8, 115.3, 114.2, 111.7, 39.0, 38.5, 34.3; HRMS (ESI⁺) *m/z* calcd for C₂₆H₂₃ON₄ ([M+H]⁺) 407.1866, found 407.1861.

5-(4-((4-Methylpiperazin-1-yl)methyl)phenyl)-3-(3-(pyridin-2-ylmethyl)-1H-indol-5-yl)-1H-pyrrolo[2,3-b]pyridine (19). А mixture of URMC-099 (0.100 g, 0.237 mmol), 2-pyridinemethanol (0.0701 mL, 0.712 mmol), Cs₂CO₃ (0.162 g, 0.498 mmol) and oxone® (0.0146 g, 0.0237 mmol) in xylenes (0.24 mL) in a sealed vessel was stirred at 140 °C under an atmosphere of N₂ for 24 h. The reaction mixture was cooled to room temperature and MeOH (5 mL) was added. The suspension was sonicated in a warm water bath at 50 °C for 30 min. The supernatant was pipetted into a round-bottom flask containing 1.0 g of celite. The residual grey solid in the reaction vessel was extracted with MeOH (3 x 5 mL) and the combined organic extracts were added to the MeOH/celite suspension. Separately, a short silica plug was washed with MeOH (100 mL). The celite suspension was concentrated in vacuo and the celite was added on top of the washed silica plug. The plug was washed with MeOH (100 mL), and the yellow filtrate was discarded. The plug was then washed with additional MeOH (500 mL), and the colorless filtrate was collected, concentrated, and dried in vacuo to afford 19 (0.106 g, 0.206 mmol, 87%) as a light-tan solid: M.p. 138.2 °C (dec.); IR (ATR) ν_{max} 3400, 3126, 3021, 2928, 2801, 1592, 1568, 1472, 1456, 1435, 1418, 1370, 1349, 1292, 1250, 1161, 1139, 1103, 1050, 1008, 912, 885, 802, 777, 748 cm⁻¹; ¹H NMR (500 MHz, DMSO-d₆) δ 11.81 (brs, 1 H), 10.90 (brs, 1 H), 8.52 (d, J = 2.0 Hz, 1 H), 8.33 (bd, J = 3.9 Hz, 1 H), 8.25 (d, J = 2.0 Hz, 1 H), 7.79 (s, 1 H), 7.71 (s, 1 H), 7.64 (d, J = 8.1 Hz, 2 H), 7.57 (td, J = 7.6, 1.6 Hz, 1 H), 7.44–7.41 (m, 4 H), 7.30 (d, J = 7.9 Hz, 1 H), 7.27 (s, 1 H), 7.03 (dd, J = 6.6, 4.8 Hz, 1 H), 4.22 (s, 2 H), 3.52 (s, 2 H), 2.47–2.21 (m, 8 H), 2.15 (s, 3 H); 13 C NMR (125 MHz, DMSO- d_6) δ 161.4, 148.6, 148.5, 141.7, 137.9, 137.0, 136.3, 135.2, 129.5, 128.4, 127.6, 126.9, 125.2, 125.1, 125.2, 125.1, 125.2, 125.2, 125.1, 125.2, 125. 123.8, 123.3, 122.6, 121.0, 120.8, 117.7, 116.6, 116.4, 112.6, 111.9, 61.7, 54.8, 52.6, 45.7, 34.3; HRMS (ESI⁺) *m/z* calcd for C₃₃H₃₃N₆ ([M+H]⁺) 513.2761, found 513.2761.

4-Bromo-3-(pyridin-4-ylmethyl)-1*H***-indole (25).** Synthesized according to the general procedure utilizing 4-bromoindole (0.150 mL, 1.17 mmol), 4-pyridinemethanol (0.388 g, 3.52 mmol), a 24 h reaction time, and 3% MeOH/CH₂Cl₂ as eluent for purification by chromatography on SiO₂ gave **25** (0.273 g, 0.951 mmol, 81%) as a tan solid: M.p. 184–186 °C; IR (ATR) ν_{max} 3072, 3021, 2919, 2857, 1684, 1604, 1558, 1542, 1495, 1417, 1331, 1260, 1121, 1088, 1064, 1040, 1005, 806, 774, 747, 730 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.49 (dd, *J* = 4.5, 1.5 Hz, 2 H), 8.38 (brs, 1 H), 7.33 (dd, *J* = 8.5, 1.0 Hz, 1 H), 7.27 (dd, *J* = 0.5 Hz, 1 H), 7.16 (d, *J* = 6.0 Hz, 2 H), 7.03 (t, *J* = 8.0 Hz, 1 H), 6.93 (d, *J* = 2.0 Hz, 1 H), 4.42 (s, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 151.6. 149.6. 138.0. 125.5. 125.0. 124.4. 124.2. 123.3. 114.3. 114.0. 110.9. 31.9; HRMS (ESI+) *m/z* calcd for C₃₃H₃₃N₆ ([M+H]⁺) 287.0184, found 287.0157.

4-Bromo-3-(pyridin-3-ylmethyl)-1*H***-indole (26).** Synthesized according to the general procedure utilizing 4-bromoindole (0.150 mL, 1.17 mmol), 3-pyridinemethanol (0.343 mL, 3.52 mmol), a 144 h reaction time, and 3% MeOH/CH₂Cl₂ as eluent for purification by chromatography on SiO₂ gave **26** (0.0472 g, 0.164 mmol, 14%) as a tan solid: M.p. 171.3–173.0 °C; IR (ATR) ν_{max} 3056, 2850, 2342, 2102, 1578, 1561, 1478, 1427, 1419, 1337, 1306, 1290, 1198, 1163, 1100, 1071, 1043, 1030, 916, 801, 773, 750, 728, 709, 657, 635 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.32 (brs, 1 H), 8.45 (d, *J* = 1.6 Hz, 1 H), 8.37 (dd, *J* = 4.7, 1.4 Hz, 1 H), 7.53 (dt, *J* = 7.8, 1.7 Hz, 1 H), 7.39 (dd, *J* = 8.1, 0.7 Hz, 1 H), 7.27 (dd, *J* = 7.5, 4.5 Hz, 1 H), 7.22 (d, *J* = 2.4 Hz, 1 H), 7.14 (dd, *J* = 7.5, 0.7 Hz, 1 H), 6.98 (t, *J* = 7.8 Hz, 1 H), 4.32 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 147.4, 137.9, 137.3, 136.5, 125.4, 124.8, 124.2, 123.4, 123.3, 115.5, 114.4, 110.8, 29.9; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₂N₂Br ([M+H]⁺) 287.0184, found 287.0179.

4-Bromo-3-((6-methylpyridin-2-yl)methyl)-1*H***-indole (27)**. Synthesized according to the general procedure utilizing 4-bromoindole (0.150 mL, 1.17 mmol), 6-methyl-2-pyridinemethanol (0.442 g, 3.52 mmol), a 24 h reaction time, and 20% EtOAc/CH₂Cl₂ as eluent for purification by chromatography on SiO₂ gave **27** (0.212 g, 0.704 mmol, 60%) as a tan solid: M.p. 165–167 °C; IR (ATR) ν_{max} 3121, 2916, 1675, 1597, 1577, 1459, 1408, 1334, 1290, 1251, 1195, 1170, 1155, 1113, 1096, 1069, 1044, 993, 915 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (brs, 1 H), 7.44 (t, *J* = 8.0 Hz, 1 H), 7.31 (d, *J* = 8.0 Hz, 1 H), 7.50 (overlap with CDCl₃ residual solvent peak, 1 H), 7.01 (t, *J* = 8.0 Hz, 1 H), 6.97 (d, *J* = 7.5 Hz, 1 H), 6.95 (d, *J* = 2.5 Hz, 1 H), 6.86 (d, *J* = 7.5 Hz, 1 H), 4.58 (s, 2 H), 2.58 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 157.7, 137.8, 136.8, 125.9, 125.0, 124.1, 123.0, 120.6, 120.1, 114.8, 114.6, 110.6, 35.3, 24.7; HRMS (ESI+) *m/z* calcd for C₁₅H₁₄N₂Br ([M+H]+) 301.0335, found 301.0327.

2-((4-Bromo-1*H***-indol-3-yl)methyl)quinoline (28)**. Synthesized according to the general procedure utilizing 4-bromoindole (0.150 mL, 1.17 mmol), 2-quinolinylmethanol (0.561 g, 3.52 mmol), a 24 h reaction time, and 15% EtOAc/CH₂Cl₂ as eluent for purification by chromatography on SiO₂ gave **28** (0.203 g, 0.602 mmol, 51%) as an orange-tan solid: M.p. 185–187 °C; IR (ATR) ν_{max} 3149, 1617, 1598, 1561, 1505, 1423, 1411, 1334, 1249, 1217, 1200, 1173, 1141, 1114, 1075, 1044, 955, 909 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.18 (brs, 1 H), 8.09 (d, *J* = 8.5 Hz, 1 H), 8.03 (d, *J* = 8.5 Hz, 1 H), 7.78 (d, *J* = 8.0 Hz, 1 H), 7.70 (td, *J* = 7.0, 1.0 Hz, 1 H), 7.50 (td, *J* = 8.0, 1.0 Hz, 1 H), 7.32 (t, *J* = 8.0 Hz, 1 H), 7.28 (dd, *J* = 7.5, 0.5 Hz, 1 H), 7.03 (t, *J* = 8.0 Hz, 1 H), 6.95 (d, *J* = 2.0 Hz, 1 H), 4.82 (s, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 147.8, 137.9, 136.7, 129.6, 128.8, 127.7, 127.0, 126.0, 125.7, 125.3, 124.2, 123.1, 121.9, 114.5, 114.3, 110.8, 35.9; HRMS (ESI⁺) *m/z* calcd for C₁₈H₁₄N₂Br ([M+H]⁺) 337.0328, found 337.0335.

4-Bromo-3-(pyrimidin-2-ylmethyl)-1*H***-indole (29).** A mixture of 4-bromoindole (0.150 mL, 1.17 mmol), 2-pyrimidinemethanol (0.396 g, 3.52 mmol), Cs₂CO₃ (0.421 g, 1.29 mmol) and oxone[®] (0.0721 g, 0.117 mmol) in xylenes (0.59 mL) in a sealed vessel was stirred at 140 °C under an atmosphere of N₂ for 96 h. The reaction mixture was cooled to room temperature, and additional xylenes (0.50 mL) was added. After another 48 h at 140 °C, the solution was cooled to room temperature and H₂O/MeOH (1:1, 20 mL) was added. The aqueous layer was extracted with CH₂Cl₂ (4 x 30 mL), and the combined organic layers were dried (MgSO₄), filtered through a celite plug, and concentrated. The crude residue was purified by reverse-phase chromatography on C18 SiO₂ (30 g, 10% MeCN/H₂O to 100% MeCN). Fractions containing the desired product were combined and extracted with CH₂Cl₂/MeOH (9:1, 3 x 30 mL). The combined organic extracts were dried (MgSO₄), filtered, and concentrated to afford **29** (0.177 g, 0.614 mmol, 52%) as a brown solid: M.p. 196.8 °C (dec.); IR (ATR) ν_{max} 3156, 2914, 2329, 1573, 1559, 1487, 1422, 1403, 1329, 1226, 1200, 1171, 1140, 1118, 1073, 1042, 912, 815, 802, 762, 726, 638 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.24 (brs, 1 H), 8.69 (d, *J* = 4.9 Hz, 2 H), 7.38 (d, *J* = 7.2 Hz, 1 H), 7.30 (t, *J* = 4.8 Hz, 1 H), 7.20 (d, *J* = 2.1 Hz, 1 H), 7.10 (d, *J* = 7.5 Hz, 1 H), 6.95 (t, *J* = 7.8 Hz, 1 H), 4.58 (s, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.0, 157.1, 137.7, 126.4, 125.2, 122.5, 122.0, 118.8, 113.0, 111.3, 111.2, 35.8; HRMS (ESI⁺) *m/z* calcd for C₁₃H₁₁N₃Br ([M+H]⁺) 288.0136, found 288.0130.

4-Bromo-3-(pyrazin-2-ylmethyl)-1H-indole (30). A mixture of 4-bromoindole (0.150 mL, 1.17 mmol), pyrazin-2-ylmethanol (0.315 mL, 3.52 mmol), Cs₂CO₃ (0.421 g, 1.29 mmol) and oxone[®] (0.0721 g, 0.117 mmol) in xylenes (0.59 mL) was stirred at 140 °C in a sealed vessel under an atmosphere of N₂ for 24 h. The reaction mixture was cooled to room temperature and H₂O (10 mL) was added. The aqueous layer was extracted with CH₂Cl₂/MeOH (9:1, 3 x 10 mL) and the combined organic layers were dried (MgSO₄), filtered through a celite plug, and concentrated. The crude residue was purified by reverse-phase chromatography on C18 SiO2 (30 g, 10% MeCN/H₂O to 100% MeCN). Fractions containing the desired product were combined and diluted with brine (10 mL). The aqueous layer was extracted with CH₂Cl₂/MeOH (9:1, 3 x 30 mL) and the combined organic extracts were dried (MgSO₄), filtered, and concentrated to afford **30** (0.298 g, 1.03 mmol, 88%) as an orange-brown solid: M.p. 148.0–149.3 °C; IR (ATR) ν_{max} 3191, 3039, 2903, 1615, 1548, 1531, 1489, 1477, 1439, 1403, 1333, 1300, 1283, 1250, 1205, 1176, 1133, 1111, 1074, 1057, 1043, 1025, 944, 913, 831, 802, 773, 757, 739, 731, 666 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.37 (brs, 1 H), 8.55 (dd, *J* = 2.5 1.6 Hz, 1 H), 8.44 (d, *J* = 2.5 Hz, 1 H), 8.38 (d, *J* = 1.3 Hz, 1 H), 7.41 (dd, *J* = 8.1, 0.7 Hz, 1 H), 7.28 (d, *J* = 2.5 Hz, 1 H), 7.14 (dd, *J* = 7.5, 0.7 Hz, 1 H), 6.98 (t, *J* = 7.8 Hz, 1 H), 4.50 (s, 2 H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 157.1, 144.2, 143.8, 142.0, 137.8, 126.8, 124.7, 122.7, 122.3, 112.7, 111.4, 110.9, 31.8; HRMS (ESI+) *m/z* calcd for C₁₃H₁₁N₃Br ([M+H]+) 288.0131, found 288.0124.

3,3'-(Pyridin-2-ylmethylene)bis(4-bromo-1H-indole) (**32**). A mixture of 4-bromoindole (0.100 mL, 0.783 mmol), 2pyridinemethanol (0.227 mL, 2.35 mmol) and Cs₂CO₃ (0.281 g, 0.861 mmol) was stirred at 110 °C in a sealed vessel under an atmosphere of O₂ for 24 h. The reaction mixture was cooled to room temperature, and H₂O (10 mL) and CH₂Cl₂/MeOH (9:1, 20 mL) were added. The phases were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were washed with brine (30 mL), dried (MgSO₄), filtered, and concentrated. The crude residue was triturated with CH₂Cl₂ and filtered off. The filtrate was concentrated, and the residue was purified by chromatography on SiO₂ (35% EtOAc/CH₂Cl₂). The triturated solid was combined with the purified filtrate and dried in vacuo to afford **32** (0.131 g, 0.260 mmol, 70%) as a light-tan solid: M.p. >250 °C; IR (ATR) ν_{max} 3433, 3116, 1593, 1570, 1472, 1432, 1416, 1333, 1283, 1181, 1141, 1093, 1034, 1004 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.17 (d, *J* = 1.8 Hz, 2 H), 8.49 (d, *J* = 4.5 Hz, 1 H), 7.66 (td, *J* = 6.0, 1.5 Hz, 1 H), 7.39 (d, *J* = 7.5 Hz, 2 H), 7.21–7.17 (m, 2 H), 7.09 (d, *J* = 6.9 Hz, 2 H), 7.03 (d, *J* = 7.8 Hz, 1 H), 6.96 (t, *J* = 7.8 Hz, 2 H), 6.54 (d, *J* = 2.1 Hz, 2 H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 164.7, 148.9, 138.1, 136.2, 126.7, 124.0, 122.8, 122.7, 122.0, 121.0, 118.6, 113.1, 111.3; HRMS (ESI⁺) *m/z* calcd for C₂₂H₁₆N₃Br₂ ([M+H]⁺) 479.9706, found 479.9710.

6. Synthesis and characterization of putative intermediate 33

(4-Bromo-1*H*-indol-3-yl)(pyridin-2-yl)methanol (33). To a solution of 4-bromoindole (0.128 mL, 1.00 mmol) and tetramethylguanidine (0.00775 g, 0.0667 mmol) in H₂O (1.7 mL) was added 2-pyridinemethanol (0.0320 mL, 0.333 mmol). The solution was stirred at room temperature for 24 h before it was diluted with EtOAc (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 x 10 mL). The combined organic layers were treated with Et₃N (0.5 mL), dried (MgSO₄), filtered, and concentrated. The crude residue was purified by chromatography on SiO₂ (60% EtOAc/CH₂Cl₂) to afford **40** (0.0510 g, 0.168 mmol, 50%) as a tan solid: M.p. 132–134 °C; IR (ATR) ν_{max} 3159, 1592, 1571, 1425, 1339, 1184, 1145, 1096, 1066, 1044, 1017, 996 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, *J* = 4.5 Hz, 1 H), 8.49 (brs, 1 H), 7.64 (td, *J* = 7.5, 1.5 Hz, 1 H), 7.36 (d, *J* = 8.0 Hz, 1 H), 7.32 (d, *J* = 7.5 Hz, 1 H), 7.30 (d, *J* = 8.0 Hz, 1 H), 7.22 (dd, *J* = 7.8, 5.8 Hz, 1 H), 7.02 (app t, *J* = 8.0 Hz, 1 H), 6.77 (s, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 161.9, 148.0, 137.8, 136.9, 125.2, 124.8, 123.2, 122.4, 122.0, 119.7, 113.8, 110.9, 67.8; HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₂O₂N₂Br ([M+H]⁺) 303.0128; found 303.0119.

7. Synthesis and characterization of URMC-099

Scheme S1 Synthesis of URMC-099 (48) according to a literature protocol.³

5-Bromo-3-iodo-1H-pyrrolo[2,3-*b***]pyridine (41)**. To a solution of 5-bromo-7-azaindole (5.00 g, 24.9 mmol) in acetone (124 mL) at room temperature was added *N*-iodosuccinimide (6.15 g, 27.4 mmol). The solution was stirred at room temperature for 1.5 h before being cooled to 0 °C. The resulting precipitate was filtered off and collected. The filtrate was concentrated in vacuo and redissolved in acetone (50 mL). The solution was cooled to 0 °C and the resulting precipitate was filtered off and collected. The filtrate was filtered off and collected. The combined crops of precipitate were dried in vacuo to afford **41** (7.47 g, 23.1 mmol, 93%) as a pink solid: ¹H NMR (500 MHz, DMSO- d_6) δ 12.35 (brs, 1 H), 8.31 (d, *J* = 2.5 Hz, 1 H), 7.86 (d, *J* = 2.0 Hz, 1 H), 7.80 (d, *J* = 2.5 Hz, 1 H). Spectral data were consistent with previously reported properties.³

5-Bromo-3-iodo-1-tosyl-1H-pyrrolo[2,3-b]pyridine (42). To a stirred suspension of NaH (1.39 g, 34.7 mmol, 60% in mineral oil) in THF (116 mL) at 0 °C was added portionwise **41** (7.47 g, 23.1 mmol). After 20 min, *p*-TsCl (4.95, 25.4 mmol) was added portionwise. The solution was stirred at 0 °C for 2 h and then quenched with saturated aqueous NH₄Cl (100 mL). The solution was extracted with CH_2Cl_2 (3 x 100 mL), and the combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated to afford **42** (11.0, 23.1 mmol) as a pinkish-white solid. The material was used for the next step without additional purification.

5-Bromo-3-(1*H***-indol-5-yl)-1-tosyl-1***H***-pyrrolo[2,3-***b***]pyridine (44). To a mixture of 42 (11.0 g, 23.1 mmol), indole-5-boronic acid (43, 4.17 g, 25.4 mmol), and MeCN (115 mL) at room temperature was added aqueous Na₂CO₃ (1 M, 58 mL) followed by bis(triphenylphosphine)palladium(II) chloride (1.62 g, 2.31 mmol). The reaction mixture was stirred under an atmosphere of N₂ at room temperature for 6 h, treated with EtOAc (200 mL) and quenched with H₂O (100 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 x 200 mL). The combined organic extracts were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated. The crude residue was purified by chromatography on SiO₂ (CH₂Cl₂) to afford 44** (4.61 g, 9.89 mmol, 43% over two steps) as a light-brown foam which was gently crushed into a fine powder with a spatula: ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 2.0 Hz, 1 H), 8.26 (d, *J* = 2.0 Hz, 2 H), 8.08 (d, *J* = 8.4 Hz, 2 H), 7.85 (s, 1 H), 7.81 (brs, 1 H), 7.51 (d, *J* = 8.4 Hz, 1 H), 7.36 (dd, *J* = 8.4, 1.4 Hz, 1 H), 7.30–7.28 (m, 3 H), 6.63 (brs, 1 H), 2.39 (s, 3 H). Spectral data were consistent with previously reported properties.³

4-(3-(1*H***-Indol-5-yl)-1-tosyl-1***H***-pyrrolo[2,3-***b***]pyridin-5-yl)benzaldehyde (46). To a mixture of 44 (2.50 g, 5.36 mmol) and 4-formylphenylboronic acid (45, 0.964 g, 6.43 mmol) in MeCN (27 mL) was added aqueous Na₂CO₃ (1 M, 13 mL) at room temperature followed by bis(triphenylphosphine)palladium(II) chloride (0.376 g, 0.536 mmol). The reaction mixture was stirred in a sealed vessel under an atmosphere of N₂ at 85 °C for 4 h, cooled to room temperature, and treated with saturated aqueous NH₄Cl (50 mL). The solution was extracted with CH₂Cl₂ (3 x 50 mL), and the combined organic extracts were dried (MgSO₄), filtered, and concentrated. The crude residue was purified by chromatography on SiO₂ (5% EtOAc/CH₂Cl₂) to afford 46** (1.27 g, 2.58 mmol, 48%) as a yellow-tan solid: ¹H NMR (300 MHz, CDCl₃) δ 10.07 (s, 1 H), 8.73 (d, *J* = 2.1 Hz, 1 H), 8.34 (d, *J* = 2.2 Hz, 1 H), 8.30 (d, *J* = 2.0 Hz, 1 H), 8.16 (d, *J* = 8.4 Hz, 2 H), 7.98 (d, *J* = 8.3 Hz, 2 H), 7.91 (s, 1 H), 7.88 (brs, 1 H), 7.75 (d, *J* = 8.2 Hz, 2 H), 7.53 (d, *J* = 8.4 Hz, 1 H), 7.43 (dd, *J* = 8.4, 1.6 Hz, 1 H), 7.33–7.29 (m, 3 H), 6.64–6.63 (m, 1 H), 2.39 (s, 3 H). Spectral data were consistent with previously reported properties.³

3-(1*H***-Indol-5-yl)-5-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1-tosyl-1***H***-pyrrolo[2,3-***b***]pyridine (47). To a solution of 46 (1.27 g, 2.58 mmol) in CH₂Cl₂ (26 mL) at room temperature was added 1-methylpiperazine (1.16 mL, 10.3 mmol). After 15 min, sodium**

triacetoxyborohydride (0.847 g, 3.87 mmol) was added portionwise. The solution was stirred at room temperature for 1 h before brine (20 mL) was added. The layers were separated, and the aqueous layer was extracted with $CH_2Cl_2/MeOH$ (9:1, 2 x 20 mL). The combined organic extracts were dried (MgSO₄), filtered, and concentrated to afford **47** (1.49 g, 2.58 mmol) as a brown solid. The material was used for the next step without additional purification.

3-(1*H***-Indol-5-yl)-5-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1***H***-pyrrolo[2,3-***b***]pyridine (URMC-099, 48). To a solution of 47 (1.49 g, 2.58 mmol) in MeOH/CH₂Cl₂ (3:1, 9 mL) at room temperature was added NaOH (0.310 g, 7.75 mmol). The solution was stirred in a sealed vessel at 50 °C for 2 h, cooled to room temperature and treated with H₂O (15 mL. The aqueous layer was extracted with CH₂Cl₂ (3 x 15 mL), and the combined organic layers were dried (MgSO₄), filtered, and concentrated. The crude residue was purified by chromatography on SiO₂ (100% MeOH) to afford 48** (0.497 g, 1.18 mmol, 46% over two steps) as a colorless solid: ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.82 (brs, 1 H), 11.07 (brs, 1 H), 8.54 (d, *J* = 1.9 Hz, 1 H), 8.41 (d, *J* = 2.0 Hz, 1 H), 7.90, (s, 1 H), 7.76 (s, 1 H), 7.69 (d, *J* = 8.0 Hz, 2 H), 7.40 (d, *J* = 8.0 Hz, 2 H), 7.36–7.34 (m, 1 H), 6.49 (brs, 1 H), 3.50 (s, 2 H), 2.45–2.26 (m, 8 H), 2.15 (s, 3 H). Spectral data were consistent with previously reported properties.³

8. References

- 1. R. Cano, M. Yus and D. J. Ramon, Tetrahedron Lett., 2013, 54, 3394-3397.
- 2. S. Rinkam, W. Senapak, S. Watchasit, R. Saeeng and U. Sirion, Synlett., 2022, 33, 1383–1390.
- 3. V. S. Goodfellow, C. J. Loweth, S. B. Ravula, T. Wiemann, T. Nguyen, Y. Xu, D. E. Todd, D. Sheppard, S. Pollack, O. Polesskaya, D. F. Marker, S. Dewhurst and H. Gelbard, *J. Med. Chem.*, 2013, **56**, 8032–8048

26*L*•9 9°682 £00°L. .7.022 LTT'L S₽T.7 £91'L 181.7-097'L-9TE'L-888.7-098'*L* ₽6E'L £T₽.73 L95'L 985 · L-S09.77 800.87 ₽09**.**8

S78

L67.7 828.7 208.7 208.7 208.7 208.7 208.7 208.7

5.496 2.500 2.503

_____J2.350

