SUPPORTING INFORMATION

PORPHYRIN- AND BODIPY-HELICENE CONJUGATES: SYNTHESES, SEPARATION OF ENANTIOMERS AND CHIROPTICAL PROPERTIES

Vincent Silber,^a Marion Jean,^b Nicolas Vanthuyne,^b Natalia Del Rio,^c Paola Matozzo,^c Jeanne Crassous^{*c} and Romain Ruppert^{*a}

^a Institut de Chimie, UMR CNRS 7177, Institut Le Bel, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg (France).

E-mail : rruppert@unistra.fr

^b Aix-Marseille Université, UMR CNRS 7313, Centrale Marseille, iSm2, 13397 Marseille cedex 20, France. ^c ISCR, UMR CNRS 6226, campus de Beaulieu, Université de Rennes, 35042 Rennes cedex, France. E-mail: jeanne.crassous@univ-rennes1.fr

Table of contents

NMR and MS data of compound 8	3
Analytical chiral HPLC separation for compound 8	8
Kinetic of enantiomerisation of compound 8	9
NMR and MS data of compound 11	10
Analytical chiral HPLC separation for compound 11	13
Preparative separation for compound 11	14
Electronic Circular Dichroism - compound 11	15
NMR and MS data of compound 12	16
Analytical chiral HPLC separation for compound 12	19
Preparative separation for compound 12	20
Electronic Circular Dichroism - compound 12	21
NMR and MS data of compound 13	22
Analytical chiral HPLC separation for compound 13	25
Preparative separation for compound 13	26
Electronic Circular Dichroism - compound 13	27
NMR and MS data of compound 14	28
Analytical chiral HPLC separation for compound 14	31
Preparative separation for compound 14	32
Electronic Circular Dichroism - compound 14	33
NMR and MS data of compound 15	34
Analytical chiral HPLC separation for compound 15	37
Preparative separation for compound 15	38
Electronic Circular Dichroism - compound 15	39

NMR and MS data of compound 8

Figure S02: ¹H NMR spectrum (aromatic area) of compound 8 in CDCl₃ at 298 K (500 MHz).

Figure S03: ¹³C NMR spectrum of compound 8 in CDCl₃ at 298 K (126 MHz).

Figure S05: ¹H NMR spectrum (aromatic area) of compound **8** in $C_2D_2Cl_4$ at different temperatures.

Figure S06: ¹H-¹H COSY NMR spectrum (aromatic area) of compound 8 in CDCl₃.

Figure S07: NOESY ¹H NMR spectrum (useful area for assignement) of compound 8 in CDCl₃.

In compound **8**, all aromatic protons of the three *meso*-aryl groups are well separated and the three pairs of ⁴J coupled protons were found at 7.51-7.31, 7.48-7.29 and 7.44-7.25 ppm (see Figure S06, top right corner). In addition all methyl groups are also well separated. All beta-pyrrolic protons are well separated: three AB systems (at 9.44-8.55, 8.23-8.21 and 8.19-8.16 ppm) and one singlet at 7.98 ppm. These beta-pyrrolic protons are close to methyl groups of the meso-aromatic substituents. From the NOESY spectrum (Figure S07), it can be deduced that the pyrrolic proton at 7.98 ppm is close to the methyl group at 2.41 ppm and the aromatic proton at 7.51 ppm. The pyrrolic protons at 8.16-8.19 ppm are also close to the methyl groups at 2.41 ppm and 2.28 ppm (corresponding to the aromatic proton at 7.44 ppm).

Figure S08. HRMS of compound 8.

 Meas. m/z
 # Ion Formula
 m/z
 err [ppm]
 Mean err [ppm]
 rdb
 N-Rule
 e⁻ Conf
 Msigma
 Std
 Istd
 Mean
 m/z
 Diff
 Std
 Comb
 Dev

 1098.510785
 1
 C76H72N4Ni
 1098.510493
 -0.3
 932.8
 43.0
 ok
 odd
 74.3
 46.9
 n.a.
 <td

Figure S09. HRMS of compound 8 (top: experimental MS, bottom: simulation)

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

Column	lumn Mobile Phase		k1	t2	k2	α	Rs
(<i>S</i> , <i>S</i>)-Whelk-O1	Heptane / dichloromethane (80/20)	5.52 (+)	0.87	8.27 (-)	1.80	2.06	6.34

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
5.52	147	53.22	0.87		
8.27	129	46.78	1.80	2.06	6.34
Sum	276	100.00			

One injection was done on (*S*,*S*)-Whelk-O1 (250 x 10 mm), with hexane / dichloromethane (80/20) as mobile phase, flow-rate = 5 mL/min and UV detection at 254 nm, to obtain an enantio-enriched solution of the second eluted enantiomer in the mobile phase.

Kinetic of enantiomerisation of compound 8

An enantio-enriched solution in the second eluted enantiomer of compound **8** is thermostated at 25°C in the mixture heptane / dichloromethane (80/20). 10 μ L are taken and then injected on (*S*,*S*)-Whelk-O1 (80:20 heptane / dichloromethane, 1 mL/min, UV 254 nm). The percentage decrease of the second eluted enantiomer is monitored.

Time (min)	% second eluted enantiomer	ln ((%t-50%)/(%(t=0)-50%))
0.00	89.953	0.00000
11.45	78.705	-0.33063
22.97	69.134	-0.73624
34.50	62.851	-1.13428
46.05	59.031	-1.48704
57.58	56.402	-1.83109

k _{enantiomerisation} = 2.69.10⁻⁴ s⁻¹ (25°C, heptane / dichloromethane 80:20) ΔG^{\neq} = 93.4 kJ.mol⁻¹ (25°C, heptane / dichloromethane 80:20) t_{1/2} = 21 minutes (25°C, heptane / dichloromethane 80:20)

MM

1.0

3.8

8.0

5.3

8.5

Figure S11: ¹H NMR spectrum (aromatic area) of compound **11** in CDCl₃ at 298 K (500 MHz).

0.9

3.4

7.5

0.9

1.8

'⊤' 1.3

1.9

1.0

1.8

7.0

Figure S13: ¹³C NMR DEPT spectrum of compound 11 in CDCl₃ at 298 K (126 MHz).

Figure S14. HRMS of compound **11** (the peak at 2400 corresponds to the assembly of a neutral molecule with the cationic molecule, at 600 the doubly charged molecule and at 1245 the addition of formate).

Figure S15. HRMS of compound 11 (top: experimental MS, bottom: simulation)

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

Column	Mobile Phase	t1	k1	t2	k2	α	Rs
(<i>S</i> , <i>S</i>)-Whelk-O1	Heptane / dichloromethane (80/20)	6.25 (-)	1.12	8.40 (+)	1.85	1.65	5.15

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.25	575	49.14	1.12		
8.40	595	50.86	1.85	1.65	5.15
Sum	1170	100.00			

Preparative separation for compound 11

• Sample preparation: About 7.2 mg of compound 11 are dissolved in 1.8 mL of a mixture of dichloromethane and hexane (50/50).

• Chromatographic conditions: (*S*,*S*)-Whelk-O1 (250 x 10 mm), hexane / dichloromethane (80/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm.

• Injections (stacked): 18 times 100 µL, every 9 minutes.

• First fraction: 1.6 mg of the first eluted enantiomer with ee > 97.5 %

• Second fraction: 1.7 mg of the second eluted enantiomer with ee > 99.5 %

Electronic Circular Dichroism - compound 11

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at 25.0 ± 0.2 °C. A CD quartz cell of 1 mm of optical pathlength was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted.

The baseline was always measured for the same solvent and in the same cell as the samples. The spectra are presented without smoothing and further data processing.

Compound 11, first eluted on (*S*,*S*)-Whelk-O1: green solid line, concentration = $0.073 \text{ mmol.L}^{-1}$ in dichloromethane.

Compound 11, second eluted on (*S*,*S*)-Whelk-O1: red dotted line, concentration = $0.076 \text{ mmol.L}^{-1}$ in dichloromethane.

Acquisition parameters: 0.1 nm as intervals, scanning speed 50 nm/min, band width 2 nm, and 3 accumulations per sample.

NMR and MS data of compound 12

Figure S16: ¹H NMR spectrum of compound 12 in CDCl₃ at 298 K (500 MHz).

Figure S17: ¹H NMR spectrum (aromatic area) of compound 12 in CDCl₃ at 298 K (500 MHz).

Figure S19: ¹³C NMR DEPT spectrum of compound 12 in CDCl₃ at 298 K (126 MHz).

Figure S20: HRMS (ESI positive) of compound **12**. (The "molecular peak" at 557.14 correspond to Compound $12 + K^+$).

Figure S21. HRMS of compound 12 (top: experimental MS, bottom: simulation)

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
8.42	2481	49.71	1.85		
9.55	2510	50.29	2.24	1.21	2.74
Sum	4991	100.00			

Preparative separation for compound 12

• Sample preparation: About 4.9 mg of compound **VS458** are dissolved in 3.5 mL of a mixture of dichloromethane and hexane (70/30).

• Chromatographic conditions: Chiralpak IG (250 x 10 mm), hexane / 2-PrOH / dichloromethane (80/10/10) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm.

• Injections (stacked): 43 times 80 µL, every 3 minutes.

• First fraction: 1.5 mg of the first eluted enantiomer with ee > 99.5 %

• Second fraction: 1.7 mg of the second eluted enantiomer with ee > 99.5 %

Intermediate: 1.2 mg

Electronic Circular Dichroism - compound 12

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at 25.0 ± 0.2 °C. A CD quartz cell of 1 mm of optical pathlength was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted.

The baseline was always measured for the same solvent and in the same cell as the samples. The spectra are presented without smoothing and further data processing.

Compound 12, first eluted on Chiralpak IG: green solid line, concentration = $0.210 \text{ mmol}.\text{L}^{-1}$ in acetonitrile.

Compound 12, second eluted on Chiralpak IG: red dotted line, concentration = $0.175 \text{ mmol}.L^{-1}$ in acetonitrile.

Acquisition parameters: 0.1 nm as intervals, scanning speed 50 nm/min, band width 2 nm, and 3 accumulations per sample.

NMR and MS data of compound 13

Chemical Formula: C₈₄H₈₀N₄O₂ Molecular Weight: 1177.5900

Figure S22: ¹H NMR spectrum of compound **13** in CDCl₃ at 298 K, residual ether present (500 MHz).

Figure S23: ¹H NMR spectrum (aromatic area) of compound 13 in CDCl₃ at 298 K (500 MHz).

Figure S25: ¹³C NMR DEPT spectrum of compound **13** in CDCl₃ at 298 K (126 MHz), residual ether present.

Figure S26. HRMS of compound 13.

 Meas. m/z # lon Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e⁻ Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 1177.640480 1 C84H81N4O2 1177.635404
 -4.3
 -4.5 46.5
 ok even
 13.4
 9.0
 n.a.
 n.a.
 n.a.
 n.a.

Figure S27. HRMS of compound 13 (top: experimental MS, bottom: simulation)

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

Column	Mobile Phase	t1	k1	t2	k2	α	Rs
(<i>S</i> , <i>S</i>)-Whelk-O	Heptane / dichloromethane (80/20)	7.25 (-)	1.46	9.12 (+)	2.09	1.43	4.27

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
7.25	653	51.93	1.46		
9.12	605	48.07	2.09	1.43	4.27
Sum	1258	100.00			

Preparative separation for compound 13

• Sample preparation: About 2.65 mg of compound 13 are dissolved in 1.8 mL of a mixture of dichloromethane and hexane (50/50).

• Chromatographic conditions: (*S*,*S*)-Whelk-O1 (250 x 10 mm), hexane / dichloromethane (80/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm.

• Injections (stacked): 18 times 100 µL, every 10.2 minutes.

• First fraction: 0.8 mg of the first eluted enantiomer with ee > 99.5 %

RT [min]	Area	Area%
7.23	1258	100.00
Sum	1258	100.00

• Second fraction: 0.9 mg of the second eluted enantiomer with ee > 99.5 %

Intermediate: 0.3 mg

Electronic Circular Dichroism - compound 13

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at 25.0 ± 0.2 °C. A CD quartz cell of 1 mm of optical pathlength was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted.

The baseline was always measured for the same solvent and in the same cell as the samples. The spectra are presented without smoothing and further data processing.

Compound 13, first eluted on (*S*,*S*)-Whelk-O1: green solid line, concentration = $0.057 \text{ mmol.L}^{-1}$ in dichloromethane.

Compound 13, second eluted on (*S*,*S*)-Whelk-O1: red dotted line, concentration = $0.039 \text{ mmol.L}^{-1}$ in dichloromethane.

Acquisition parameters: 0.1 nm as intervals, scanning speed 50 nm/min, band width 2 nm, and 3 accumulations per sample.

NMR and MS data of compound 14

Figure S28: ¹H NMR spectrum of compound 14 in CDCl₃ at 298 K (500 MHz).

Figure S29: ¹H NMR spectrum (aromatic area) of compound 14 in CDCl₃ at 298 K (500 MHz).

Figure S31: ¹³C NMR DEPT spectrum of compound 14 in CDCl₃ at 298 K (126 MHz).

Figure S32. HRMS of compound 14.

Figure S33. HRMS of compond 14 (top: experimental MS, middle and bottom: simulation).

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
7.23	986	51.05	1.45		
9.50	945	48.95	2.22	1.53	4.89
Sum	1931	100.00			

Preparative separation for compound 14

• Sample preparation: About 2.0 mg of compound 14 are dissolved in 1.8 mL of a mixture of dichloromethane and hexane (50/50).

• Chromatographic conditions: (*S*,*S*)-Whelk-O1 (250 x 10 mm), hexane / dichloromethane (80/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm.

• Injections (stacked): 12 times 160 µL, every 10.8 minutes.

• First fraction: 0.8 mg of the first eluted enantiomer with ee > 99.5 %

420

100.00

100.00

• Second fraction: 0.9 mg of the second eluted enantiomer with ee > 99.5 %

Sum

Sum

1010

Intermediate: 0.2 mg

Electronic Circular Dichroism

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at 25.0 ± 0.2 °C. A CD quartz cell of 1 mm of optical pathlength was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted.

The baseline was always measured for the same solvent and in the same cell as the samples. The spectra are presented without smoothing and further data processing.

Compound 14, first eluted on (*S*,*S*)-Whelk-O1: green solid line, concentration = $0.074 \text{ mmol.L}^{-1}$ in dichloromethane.

Compound 14, second eluted on (*S*,*S*)-Whelk-O1: red dotted line, concentration = $0.077 \text{ mmol.L}^{-1}$ in dichloromethane.

Acquisition parameters: 0.1 nm as intervals, scanning speed 50 nm/min, band width 2 nm, and 3 accumulations per sample.

NMR and MS data of compound 15

Figure S34: ¹H NMR spectrum of compound 15 in CDCl₃ at 298 K (500 MHz).

Figure S35: ¹H NMR spectrum (aromatic area) of compound 15 in CDCl₃ at 298 K (500 MHz).

Figure S36: ¹³C NMR spectrum of compound 15 in CDCl₃ at 298 K (126 MHz).

Figure S37: ¹³C NMR DEPT spectrum of compound 15 in CDCl₃ at 298 K (126 MHz).

Figure S38. HRMS of compound 15.

 Meas. m/z
 # Ion Formula
 m/z
 err [ppm]
 Mean err [ppm]
 rdb
 N-Rule
 e⁻ Conf
 mSigma
 Std I
 Std Mean m/z
 Std I / VarNorm
 Std m/z
 Diff
 Std Comb
 Dev

 1147.622132
 1
 C83H79N40
 1147.624840
 2.4
 2.2
 46.5
 ok
 even
 13.3
 10.3
 n.a.
 n.a.
 n.a.
 n.a.

Figure S39. HRMS of compound 15 (top: experimental MS, bottom: simulation).

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.56	4002	49.73	1.22		
7.71	4046	50.27	1.61	1.32	2.99
Sum	8047	100.00			

Preparative separation for compound 15

• Sample preparation: About 10.5 mg of compound **15** are dissolved in 1.8 mL of a mixture of dichloromethane and hexane (56/44).

• Chromatographic conditions: (*S*,*S*)-Whelk-O1 (250 x 10 mm), hexane / dichloromethane (80/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 310 nm.

• Injections (stacked): 36 times 50 µL, every 8 minutes.

• First fraction: 4.5 mg of the first eluted enantiomer with ee > 99.5 %

• Second fraction: 4.5 mg of the second eluted enantiomer with ee > 99 %

Intermediate: 1.5 mg

Electronic Circular Dichroism - compound 15

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at 25.0 ± 0.2 °C. A CD quartz cell of 1 mm of optical pathlength was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted.

The baseline was always measured for the same solvent and in the same cell as the samples. The spectra are presented without smoothing and further data processing.

Compound 15, first eluted on (*S*,*S*)-Whelk-O1: green solid line, concentration = $0.047 \text{ mmol.L}^{-1}$ in dichloromethane.

Compound 15, second eluted on (*S*,*S*)-Whelk-O1: red dotted line, concentration = $0.045 \text{ mmol}.\text{L}^{-1}$ in dichloromethane.

Acquisition parameters: 0.1 nm as intervals, scanning speed 50 nm/min, band width 2 nm, and 3 accumulations per sample.

