Electronic Supplementary Information

Nickel-catalyzed mild synthesis of functional γ -amino butyric acid esters via direct α -C(sp³)–H allylation of N-alkyl anilines with allyl sulfones

He Zhao,^{‡ab} Xiu Li,^{‡a} and Min Zhang*a

^{*a.*} Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641 People's Republic of China

^{b.} Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.

Table of content

1. General information	S2
2. Substrate preparation	S2-S4
3. Detailed optimization studies	S4
4. Typical procedure for the synthesis of 3	S5
5. Mechanistic Studies	S5
6. Analytic data of the obtained compound	S6-S17
7. References	S18
8. NMR spectra of products	S19-S50

1. General information

All the obtained products were characterized by melting points (m.p.), ¹H-NMR, ¹³C-NMR, and mass spectra (MS), the NMR spectra of the known compounds were found to be identical with the ones reported in the literatures. Additionally, all the new compounds were further characterized by high resolution mass spectra (HRMS). ¹H-NMR, ¹³C-NMR spectra were obtained on Bruker-400. Mass spectra were recorded on Trace ISQ GC/MS. High-resolution mass spectra (HRMS) were recorded on a thermo scientific Q Exactive Ultimate 3000 UPLC spectrometer. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m). Column chromatography was performed on silica gel (200-300 mesh). Reactions were monitored by using thin layer chromatography (TLC) (Qingdao Jiyida silica gel reagent factory GF254). All the reagents were purchased from Bide Pharmatech Ltd. and Energy Chemical, all the solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification. All the reactions were heated by metal sand bath (WATTCAS, LAB-500, https://www.wattcas.com).

2. Substrate preparation

(1) Synthesis of aniline

To a solution of aniline **S1** (10 mmol) and Alkyl iodide **S2** (10 mmol) in 20 mL EtOH was added K_2CO_3 (2.7 g, 20 mmol). After 2.5 h of reflux, the mixture was cooled down and monitored by TLC. Upon completion, the mixture was concentrated under reduced pressure, the obtained residue was dissolved in EtOAc and the mixture was washed with water, brine, dried with Na₂SO₄, filtered and the filtrate was evaporated and purified by chromatography (10% EtOAc/hexanes) to give **1**.

(2) Synthesis of Allyl Sulfones¹

To a solution of paraformaldehyde (1.99 g, 66.6 mmol) and acrylic ester (A1, B1, C1) (50 mmol) in 40 mL dioxane-water (1:1, v/v) was added DABCO (7.48 g, 66.7 mmol) and the reaction progress was monitored by TLC. Upon completion, the reaction mixture was partitioned with EtOAc (200 mL) and water (100 mL). The organic layer was separated and washed with brine (100 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (50% EtOAc/hexanes) to afford (A2, B2, C2).

ÇOOR	PBr ₃ , dry ether	ÇOOR
ОН	-10 -20 °C	Br
A2 : R = <i>t</i> -Bu		A3 : R = <i>t</i> -Bu
B2 : R = Cy		B3 : R = Cy
C2 : R = Bn		C3 : R = Bn

To a solution of A2 or B2 or C2 (23.0 mmol) was added phosphorus (III) bromide (0.76 mL, 8.0 mmol) in dry ether (20 mL) at -10 °C. The temperature was allowed to rise to room temperature, and stirring was continued for 3 h. Water (10 mL) was then added and the mixture was extracted with petroleum ether (3 x 50 mL). The organic phase was washed with saturated sodium chloride solution (50 mL), dried with sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% hexanes/EtOAc) to give A3 or B3 or C3.

ÇOOR	PhSO ₂ Na	ÇOOR
Br	MeOH, reflux	SO ₂ Ph
A3 : R = <i>t</i> -Bu		2c : R = <i>t</i> -Bu
B3 : R = Cy		2d: R = Cy
C3 : R = Bn		2e : R = Bn
D1 : R = Et		2a : R = Et
E1 : R = Me		2b : R = Me

To a solution of A3 or B3 or C3 or D1 or E1 (10.4 mmol) in dry methanol (25 mL) was added sodium phenylsulfinate (2.50 g, 15.2 mmol) and refluxed. After 2.5 h, the mixture was concentrated under reduced pressure, the obtained residue was dissolved in EtOAc and the mixture was washed with water, brine, dried with Na₂SO₄, filtered and the filtrate was evaporated and purified by chromatography (50% EtOAc/hexanes) to give 2a-2e.

A solution of a-methyl styrene **F1** (8.3 mL, 64 mmol) and N-bromosuccinimide (NBS, 15.0 g, 84 mmol) in chloroform (15 mL) was heated to reflux for 3 h. The mixture was cooled down after reflux and the filtrated was evaporated and purified by chromatography (100% hexanes) to afford l-bromo-2-phenyl-2-propene **F2**.

Then to a solution of the l-bromo-2-phenyl-2-propene (2.61 g, 13.2 mmol) in dry DMF (40 mL) was added sodium benzenesulfinate. This mixture was heated to 80 °C for 4 h, cooled, and diluted with EtOAc (100 mL). The mixture was washed with water (3 x 50 mL), brine, dried with Na₂SO₄, filtered and the filtrate was evaporated and purified by chromatography (20% hexane/ EtOAc) afforded **2f** as a white solid.

3. Detailed Optimization Studies

Table S1	Optimization	of reaction	conditions ^a	

			COOEt			
	N + PhO	2S COOEt	[O], cat.			COOEt
	1a	2a		3aa	3aa'	
Entry	Catalyst	[O]	Additive	Solvent	3aa (%) ^b	3aa' (%)
1	Ni(OAc) ₂ ·4H ₂ O	TBHP	-	DMF	33	0
2	NiCl ₂ ·6H ₂ O	TBHP	-	DMF	20	0
3	Ni(OTf) ₂	TBHP	-	DMF	25	0
4	NiI ₂	TBHP	-	DMF	19	0
5	Ni(OAc) ₂ ·4H ₂ O	TBHP	-	CH ₃ CN	trace	0
6	Ni(OAc) ₂ ·4H ₂ O	TBHP	-	dioxane	0	0
7	Ni(OAc) ₂ ·4H ₂ O	TBHP	-	DCE	23	0
8	Ni(OAc) ₂ ·4H ₂ O	TBHP	-	EtOAc	39	0
9	Ni(OAc) ₂ ·4H ₂ O	TBHP	-	EtOH	42	0
10	Ni(OAc) ₂ ·4H ₂ O	$K_2S_2O_8$		EtOH	0	0
11	Ni(OAc) ₂ ·4H ₂ O	DDQ		EtOH	0	12
12	Ni(OAc) ₂ ·4H ₂ O	m-CPBA		EtOH	0	0
13	Ni(OAc)2.4H2O	DCP		EtOH	trace	trace
14	Ni(OAc) ₂ ·4H ₂ O	O ₂		EtOH	0	18

^{*a*}Reaction conditions: unless otherwise stated, all the reactions were conducted with **1a** (0.1 mmol), **2a** (0.2 mmol), catalyst (30 mol %), oxidant (1.5 eq.) and solvent (1.5 mL) at 70 °C for 18 h under N₂ atmosphere. ^{*b*}Isolated yield.

4. Typical procedure for the synthesis of 3

The mixture of amine 1 (0.3 mmol), allyl sulfone 2 (3 eq., 0.9 mmol), TBHP (2.5 eq.,

0.75 mmol, 70 wt % in water), and Ni(OAc)₂·4H₂O (20 mmol %) in EtOH (1.5 mL) was introduced into a Schlenk tube (25 mL) was stirred at 70 °C for 18 h under N₂ atmosphere. After cooling down to room temperature, the resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel eluting with petroleum ether / ethyl acetate (20:1), which afforded **3** as a yellow oil.

5. Mechanistic Studies

6. Analytic data of the obtained compound(1) ethyl 2-methylene-4-(phenylamino)pentanoate (3aa)²

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.17 (t, J = 7.6 Hz, 2H), 6.71 – 6.64 (m, 3H), 6.23 (s, 1H), 5.60 (s, 1H), 4.22 (q, J = 7.0 Hz, 2H), 3.71 (q, J = 6.4 Hz, 1H), 2.75 (dd, J = 13.8, 6.0 Hz, 1H), 2.33 (dd, J = 13.8, 7.0 Hz, 1H), 1.31 (t, J = 7.0 Hz, 3H), 1.19 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.2, 147.5, 138.4, 129.4, 127.2, 117.3, 113.4, 61.0, 48.2, 39.4, 20.8, 14.3. MS (EI, m/z): 233.1 [M]⁺.

(2) ethyl 2-methylene-4-(phenylamino)butanoate (3ba)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.18 (t, J = 7.6 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 8.0 Hz, 2H), 6.26 (s, 1H), 5.63 (s, 1H), 4.24 (q, J = 7.0 Hz, 2H), 3.30 (t, J = 6.8 Hz, 2H), 2.64 (t, J = 6.8 Hz, 2H), 1.32 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.2, 148.1, 138.4, 129.4, 126.7, 117.5, 113.0, 61.0, 43.0, 32.1, 14.3. MS (EI, m/z): 219.1 [M]⁺.

(3) ethyl 2-methylene-4-(phenylamino)hexanoate (3ca)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (t, J = 7.4 Hz, 2H), 6.65 (t, J = 7.4 Hz, 1H), 6.60 (d, J = 7.8 Hz, 2H), 6.20 (s, 1H), 5.58 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 3.60 (s, 1H), 3.52 (q, J = 6.4 Hz, 1H), 2.61 (dd, J = 13.8, 7.0 Hz, 1H), 2.44 (dd, J = 13.8, 6.0 Hz, 1H), 1.62 (dd, J = 13.8, 6.8 Hz, 1H), 1.47 (dt, J = 14.0, 7.0 Hz, 1H), 1.30 (t, J = 7.0 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.6, 147.9, 138.3, 129.4, 127.2, 116.9, 113.1, 61.0, 53.9, 37.1, 27.4, 14.3, 10.3. HRMS (ESI): Calcd. for [M+H]⁺: 248.1641; Found: m/z 248.1645.

(4) ethyl 2-methylene-4-(phenylamino) heptanoate (3da)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.14 (t, J = 7.5 Hz, 2H), 6.64 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 7.8 Hz, 2H), 6.20 (s, 1H), 5.57 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 3.61 – 3.57 (m, 1H), 2.62 (dd, J = 13.8, 6.8 Hz, 1H), 2.43 (dd, J = 13.8, 6.2 Hz, 1H), 1.51 (dd, J = 14.0, 7.0 Hz, 2H), 1.46 – 1.39 (m, 2H), 1.30 (t, J = 7.0 Hz, 3H), 0.91 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.6, 147.9, 138.3, 129.4, 127.2, 116.9, 113.0, 61.0, 52.3, 37.6, 37.1, 19.3, 14.3, 14.2. HRMS (ESI): Calcd. for [M+H]⁺: 262.1798; Found: m/z 262.1802.

(5) ethyl 2-methylene-4-(phenylamino)octanoate (3ea)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (t, J = 7.4 Hz, 2H), 6.65 (t, J = 7.4 Hz, 1H), 6.60 (d, J = 7.8 Hz, 2H), 6.20 (s, 1H), 5.57 (s, 1H), 4.21 (q, J = 7.0 Hz, 2H), 3.59 – 3.56 (m, 1H), 2.62 (dd, J = 13.8, 6.6 Hz, 1H), 2.44 (dd, J = 13.8, 6.0 Hz, 1H), 1.56 (d, J = 10.4 Hz, 1H), 1.42 (dd, J = 13.8, 6.0 Hz, 2H), 1.31 (t, J = 7.0 Hz, 6H), 0.89 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.6, 147.9, 138.3, 129.4, 127.2, 116.8, 113.0, 61.0, 52.5, 37.6, 34.6, 28.2, 22.9, 14.3, 14.2. HRMS (ESI): Calcd. for [M+H]⁺: 276.1955; Found: m/z 276.1958.

(6) ethyl 2-methylene-4-(phenylamino)hexanoate (3fa)

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.15 (t, *J* = 7.4 Hz, 2H), 6.65 (t, *J* = 7.4 Hz, 1H), 6.61 (d, *J* = 7.6 Hz, 2H), 6.21 (d, *J* = 1.4 Hz, 1H), 5.6 – 5.56 (m, 1H), 4.21 (qd, *J* = 7.0, 2.6 Hz, 2H), 3.59 – 3.56 (m, 1H), 2.63 (dd, *J* = 13.8, 6.6 Hz, 1H), 2.43 (dd, *J* = 13.8, 6.2 Hz, 1H), 1.56 (dtd, *J* = 11.8, 6.6, 2.0 Hz, 1H), 1.43 (ddt, *J* = 12.8, 9.0, 3.4 Hz, 2H), 1.39 – 1.34 (m, 1H), 1.31 (d, *J* = 7.0 Hz, 4H), 2.27 (s, 7H), 0.88 (t, *J* = 6.8 Hz, 1H), 1.43 (ddt, *J* = 6.8 Hz), 1.44 (ddt), 1.44 (d

3H). ¹³C NMR (126 MHz, CDCl₃): δ 167.6, 147.9, 138.3, 129.4, 127.2, 116.8, 113.0, 60.9, 52.5, 37.6, 34.9, 31.9, 29.8, 29.4, 26.1, 22.8, 14.3, 14.2. HRMS (ESI): Calcd. for [M+H]⁺: 318.2424; Found: m/z 318.2428.

(7) diethyl 2-methylene-4-(phenylamino) pentanedioate (3ga)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (t, J = 7.6 Hz, 2H), 6.73 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 7.8 Hz, 2H), 6.25 (s, 1H), 5.65 (s, 1H), 4.32 (d, J = 7.0 Hz, 1H), 4.23 (d, J = 7.0 Hz, 2H), 4.15 (q, J = 7.0 Hz, 2H), 2.90 (dd, J = 13.8, 6.8 Hz, 1H), 2.72 (dd, J = 13.8, 6.2 Hz, 1H), 1.31 (t, J = 7.0 Hz, 3H), 1.23 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.3, 166.9, 146.6, 136.5, 129.4, 128.2, 118.4, 113.6, 61.3, 56.3, 35.7, 14.3. HRMS (ESI): Calcd. for [M+H]⁺: 292.1539; Found: m/z 292.1543.

(8) ethyl 4-((4-(tert-butyl)phenyl)amino)-2-methylenepentanoate (3ha)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.21 (d, J = 8.2 Hz, 2H), 6.61 (d, J = 8.2 Hz, 2H), 6.24 (s, 1H), 5.62 (s, 1H), 4.24 (q, J = 6.4 Hz, 2H), 3.69 (q, J = 6.4 Hz, 1H), 3.54 (s, 1H), 2.76 (dd, J = 13.6, 6.2 Hz, 1H), 2.32 (dd, J = 13.6, 6.8 Hz, 1H), 1.33 (t, J = 7.2 Hz, 3H), 1.29 (s, 9H), 1.19 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.5, 145.0, 139.8, 138.3, 127.3, 126.1, 112.9, 60.9, 48.1, 39.4, 33.9, 31.7, 20.8, 14.3. HRMS (ESI): Calcd. for [M+H]⁺: 290.2111; Found: m/z 290.2115.

(9) ethyl 4-((3-methoxyphenyl) amino)-2-methylenepentanoate (3ia)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.06 (t, *J* = 8.0 Hz, 1H), 6.25 (s, 1H), 6.22 (d, *J* = 5.8 Hz, 3H), 5.60 (s, 1H), 4.22 (q, *J* = 7.0 Hz, 2H), 3.77 (s, 3H), 3.71 – 3.66 (m, 1H), 2.73 (dd, *J* = 13.8, 6.4 Hz, 1H), 2.31 (dd, *J* = 13.8, 6.8 Hz, 1H), 1.31 (t, *J* = 7.1

Hz, 3H), 1.18 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.5, 161.0, 148.8, 138.2, 130.1, 127.3, 106.4, 102.3, 99.2, 61.0, 55.2, 48.1, 39.3, 20.7, 14.3. HRMS (ESI): Calcd. for [M+H]⁺: 264.1592; Found: m/z 264.1594.

(10) ethyl 4-(mesitylamino)-2-methylenepentanoate (3ja)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.80 (s, 2H), 6.20 (s, 1H), 5.58 (s, 1H), 4.19 (q, J = 7.0 Hz, 2H), 3.44 (q, J = 6.6 Hz, 1H), 2.61 (dd, J = 13.2, 6.2 Hz, 1H), 2.32 (dd, J = 13.4, 7.8 Hz, 1H), 2.22 (s, 9H), 1.28 (t, J = 7.0 Hz, 3H), 1.04 (d, J = 6.3Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.5, 142.1, 138.9, 130.8, 129.6, 126.6, 60.8, 52.2, 40.8, 21.2, 20.7, 19.0, 14.3. HRMS (ESI): Calcd. for [M+H]⁺: 276.1955; Found: m/z 276.1958.

(11) ethyl 4-((3-chlorophenyl) amino)-2-methylenepentanoate (3ka)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.05 (t, J = 7.9 Hz, 1H), 6.61 (d, J = 8.5 Hz, 2H), 6.48 (d, J = 8.0 Hz, 1H), 6.25 (s, 1H), 5.60 (s, 1H), 4.24 (q, J = 7.0 Hz, 2H), 3.77 (s, 1H), 3.67 (q, J = 6.4 Hz, 1H), 2.70 (dd, J = 13.6, 6.4 Hz, 1H), 2.32 (dd, J = 13.8, 6.6 Hz, 1H), 1.32 (t, J = 7.0 Hz, 3H), 1.18 (d, J = 6.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.3, 148.6, 138.0, 135.1, 130.3, 127.6, 116.8, 112.7, 111.5, 61.1, 48.1, 39.3, 20.6, 14.4. HRMS (ESI): Calcd. for [M+H]⁺: 268. 1095; Found: m/z 268.1099.

(12) ethyl 2-((1,2,3,4-tetrahydroquinolin-2-yl)methyl)acrylate (3la)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.96 (t, *J* = 6.8 Hz, 2H), 6.62 (t, *J* = 7.2 Hz, 1H), 6.49 (d, *J* = 8.0 Hz, 1H), 6.29 (s, 1H), 5.66 (s, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 3.45

(d, J = 3.4 Hz, 1H), 2.79 (dt, J = 18.6, 5.2 Hz, 2H), 2.65 (dd, J = 13.4, 4.8 Hz, 1H), 2.41 (dd, J = 13.4, 8.0 Hz, 1H), 2.02 – 1.96 (m, 1H), 1.67 (dd, J = 13.2, 4.0 Hz, 1H), 1.31 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.2, 144.3, 137.6, 129.4, 127.6, 126.9, 121.3, 117.3, 114.4, 61.1, 49.8, 39.4, 28.1, 26.2, 14.4. HRMS (ESI): Calcd. for C₁₅H₂₀NO₂ [M+H]⁺: 246.1486; found: 246.1489.

(13) ethyl 2-((8-methyl-1,2,3,4-tetrahydroquinolin-2-yl)methyl)acrylatem (3ma)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.86 (t, J = 6.8 Hz, 2H), 6.56 (t, J = 7.2 Hz, 1H), 6.30 (s, 1H), 5.66 (s, 1H), 4.24 (q, J = 6.8 Hz, 2H), 3.82 (s, 1H), 3.51 – 3.48 (m, 1H), 2.87 – 2.77 (m, 2H), 2.71 (dd, J = 13.6, 4.4 Hz, 1H), 2.42 (dd, J = 13.2, 7.8 Hz, 1H), 2.02 – 1.96 (m, 3H), 1.99 (d, J = 12.8, 1H), 1.73 – 1.63 (m, 1H), 1.32 (t, J = 12.0 Hz, 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.3, 142.3, 137.9, 128.0, 127.3, 127.2, 121.2, 120.5, 116.6, 61.1, 50.2, 39.4, 28.0, 26.5, 17.2, 14.3. HRMS (ESI): Calcd. for [M+H]⁺: 260.1643; Found: m/z 260.1645.

(14) ethyl 2-((8-bromo-1,2,3,4-tetrahydroquinolin-2-yl)methyl)acrylate (3na)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 7.8 Hz, 1H), 6.89 (d, J = 7.4 Hz, 1H), 6.46 (t, J = 7.6 Hz, 1H), 6.33 (s, 1H), 5.69 (s, 1H), 4.24 (q, J = 7.0 Hz, 2H), 3.56 – 3.48 (m, 1H), 2.88 – 2.75 (m, 2H), 2.71 (dd, J = 13.6, 4.4 Hz, 1H), 2.40 (dd, J = 13.4, 8.2 Hz, 1H), 2.02 – 1.96 (m, 1H), 1.70 – 1.61 (m, 1H), 1.32 (t, J = 16.0 Hz, 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.1, 141.2, 137.3, 130.2, 128.3, 127.8, 122.9, 117.4, 109.1, 61.2, 50.2, 39.2, 27.7, 26.5, 14.4. HRMS (ESI): Calcd. for [M+H]⁺: 324.0588; Found: m/z 324.0594.

(15) ethyl 4-(methyl(phenyl)amino)-2-methylenebutanoate (30a)²

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.24 (t, *J* = 8.2 Hz, 2H), 6.76 (d, *J* = 8.0 Hz, 2H), 6.70 (t, *J* = 7.2 Hz, 1H), 6.20 (s, 1H), 5.59 (s, 1H), 4.25 (q, *J* = 7.0 Hz, 2H), 3.53 – 3.47 (m, 2H), 2.96 (s, 3H), 2.63 – 2.56 (m, 2H), 1.34 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.1, 149.1, 138.7, 129.3, 126.6, 116.4, 112.4, 60.9, 52.5, 38.4, 29.8, 14.4. MS (EI, m/z): 233.1 [M]⁺.

(16) the mixture of ethyl 4-(ethyl(phenyl)amino)-2-methylenebutanoate (3pa-1) and ethyl 4-(methyl(phenyl)amino)-2-methylenepentanoate (3pa-2)

Yellow oil. The molar ratio of **3pa-1** and **3pa-2** is 4:1. **3pa-1**: ¹H NMR (400 MHz, CDCl₃): δ 6.75 (d, J = 8.2 Hz, 2H), 6.23 (s, 1H), 5.62 (s, 1H), 4.26 (q, J = 7.0 Hz, 2H), 3.46 – 3.41 (m, 2H), 3.41 – 3.34 (m, 2H), 2.62 – 2.54 (m, 2H), 1.35 (t, J = 7.0 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.1, 147.7, 138.6, 129.4, 126.8, 115.7, 111.9, 61.0, 50.2, 45.1, 30.6, 14.4, 12.6. **3pa-2**: ¹H NMR (400 MHz, CDCl₃): δ 6.79 (t, J = 8.2 Hz, 0.5H), 6.15 (s, 0.25H), 5.56 (s, 0.25H), 4.19 (q, J = 7.0 Hz, 0.5H), 2.65 (dd, J = 13.8, 6.8 Hz, 0.25H), 2.46 (dd, J = 13.8, 6.8 Hz, 0.25H), 1.28 (t, J = 7.0 Hz, 0.77H), 1.14 (d, J = 8.0 Hz, 0.77H). ¹³C NMR (101 MHz, CDCl₃): δ 167.3, 150.4, 138.5, 129.2, 126.8, 116.6, 113.3, 60.9, 52.7, 37.0, 30.0, 17.2, 14.3. ¹H NMR of mixture: 7.25 – 7.21 (m, 2.3H), 6.70 – 6.65 (m, 1.25H). HRMS (ESI): Calcd. for [M+H]⁺: 248.1645; Found: m/z 248.1643.

(17) ethyl 2-methylene-4-(phenyl(propyl)amino)hexanoate (3qa)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.20 (t, J = 7.8 Hz, 2H), 6.77 (d, J = 8.2 Hz, 2H), 6.65 (t, 7.0 Hz, 1H), 6.13 (s, 1H), 5.55 (s, 1H), 4.18 (q, J = 7.0 Hz, 2H), 4.00 (p, J = 7.2 Hz, 1H), 3.09 (t, J = 6.2 Hz, 2H), 5.27 (dq, J = 15.2, 7.6 Hz, 2H), 1.60 (dt, J = 14.2, 7.4 Hz, 4H), 1.28 (t, J = 7.0 Hz, 3H), 0.93 (q, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 167.3, 149.6, 138.6, 129.1, 126.9, 116.1, 113.8, 60.8, 59.8, 45.6,

36.1, 26.0, 21.2, 14.3, 11.8, 11.7. HRMS (ESI): Calcd. for [M+H]⁺: 290.2111; Found: m/z 290.2115.

(18) ethyl 4-(methyl(m-tolyl)amino)-2-methylenebutanoate (3ra)

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.13 (t, *J* = 7.8 Hz, 1H), 6.59 – 6.52 (m, 3H), 6.21 (s, 1H), 5.59 (s, 1H), 4.25 (q, *J* = 7.0 Hz, 2H), 3.50 – 3.46 (m, 2H), 2.94 (s, 3H), 2.59 – 2.55 (m, 2H), 2.32 (s, 3H), 1.34 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 167.1, 149.1, 139.0, 138.7, 129.2, 126.7, 117.3, 113.0, 109.5, 60.9, 52.5, 38.5, 29.7, 22.1, 14.4. HRMS (ESI): calcd. for [M+H]⁺: 248.1641; Found: m/z 248.1645.

(19) ethyl 4-(methyl(p-tolyl)amino)-2-methylenebutanoate (3sa)

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.05 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.6 Hz, 2H), 6.20 (d, J = 1.2 Hz, 1H), 5.59 (d, J = 1.2 Hz, 1H), 4.25 (q, J = 7.0 Hz, 2H), 3.48 – 3.44 (m, 2H), 2.92 (s, 3H), 2.58 – 2.54 (m, 2H), 2.26 (s, 3H), 1.34 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 167.1, 150.0, 138.7, 129.9, 126.7, 125.5, 112.7, 60.9, 52.7, 38.6, 29.5, 20.3, 14.4. HRMS (ESI): Calcd. for [M+H]⁺: 248.1641; Found: m/z 248.1645.

(20) (S)-ethyl 4-((4-(tert-butyl)phenyl)(ethyl)amino)-2-methylenepentanoate (3ta)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.27 (d, *J* = 8.6 Hz, 2H), 6.79 (d, *J* = 8.4 Hz, 2H), 6.21 (s, 1H), 5.61 (s, 1H), 4.24 (q, *J* = 7.0 Hz, 2H), 4.22-4.15 (m, 1H), 3.33-3.22 (m, 2H), 2.71 (dd, *J* = 13.8, 6.2 Hz, 1H), 2.42 (dd, *J* = 13.6, 8.2 Hz, 1H), 1.35(s, 3H), 1.32 (s, 9H), 1.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 167.3, 146.2, 138.8,

128.6, 126.9, 126.0, 113.1, 60.9, 52.5, 38.2, 37.0, 33.8, 31.7, 18.0, 14.9, 14.4. HRMS (ESI): Calcd. for [M+H]⁺: 318.2428; Found: m/z 318.2425.

(21) ethyl 4-((3-chlorophenyl)(methyl)amino)-2-methylenebutanoate (3ua)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.12 (t, *J* = 8.0 Hz, 1H), 6.68 (s, 1H), 6.62 (dd, *J* = 16.0, 8.0 Hz, 2H), 6.21 (s, 1H), 5.59 (d, *J* = 1.2 Hz, 1H), 4.25 (q, *J* = 7.0 Hz, 2H), 3.47 (t, *J* = 7.5Hz, 2H), 2.94 (s, 3H), 2.56 (t, *J* = 7.4 Hz, 2H), 1.33 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 167.0, 150.0, 138.2, 135.3, 130.2, 127.1, 116.0, 111.9, 110.2, 61.0, 52.3, 38.5, 29.8, 14.4. HRMS (ESI): Calcd. for [M+H]⁺: 268.1095; Found: m/z 268.1099.

(22) methyl 2-methylene-4-(phenylamino)pentanoate (3vb)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.17 (t, J = 7.4 Hz, 2H), 6.67 (dd, J = 18.6, 7.6 Hz, 3H), 6.23 (s, 1H), 5.62 (s, 1H), 3.77 (s, 3H), 3.74 – 3.70 (m, 1H), 2.73 (dd, J = 13.8, 6.2, 1H), 2.34 (dd, J = 13.6, 6.8 Hz, 1H), 1.19 (d, J = 6.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 166.9, 147.2, 137.9, 129.4, 127.6, 117.3, 113.4, 52.1, 48.2, 39.4, 20.6. HRMS (ESI): Calcd. for [M+H]⁺: 220.1329; Found: m/z 220.1329.

(23) tert-butyl 2-methylene-4-(phenylamino) pentanoate (3ac)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (t, *J* = 7.6 Hz, 2H), 6.66 (t, *J* = 7.2 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 2H), 6.12 (s, 1H), 5.52 (s, 1H), 3.69 (q, *J* = 6.4 Hz, 1H), 2.67 (dd, *J* = 13.8, 6.8 Hz, 1H), 2.33 (dd, *J* = 13.8, 6.4, 1H), 1.51 (s, 9H), 1.19 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 166.9, 147.5, 139.7, 129.4, 126.3, 117.0, 113.2, 81.0, 48.4, 39.2, 28.2, 20.8. HRMS (ESI): Calcd. for [M+H]⁺: 262.1799; Found: m/z 262.1802.

(24) cyclohexyl 2-methylene-4-(phenylamino) pentanoate (3ad)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (t, J = 7.4 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 8.0 Hz, 2H), 6.22 (s, 1H), 5.58 (s, 1H), 4.86 (tt, J = 8.6, 3.6 Hz, 1H), 3.72 (q, J = 6.4 Hz, 1H), 3.68 (s, 1H), 2.75 (dd, J = 13.8, 6.2 Hz, 1H), 2.32 (dd, J = 13.8, 6.8 Hz, 1H), 1.93 – 1.85 (m, 2H), 1.78 – 1.71 (m, 2H), 1.60 – 1.47 (m, 3H), 1.42 – 1.27 (m, 3H), 1.19 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 166.9, 147.5, 138.7, 129.4, 127.1, 117.1, 113.3, 73.3, 48.1, 39.4, 31.8, 31.7, 25.6, 23.9, 20.7. HRMS (ESI): Calcd. for [M+H]+: 288.1953; Found: m/z 288.1958.

(25) benzyl 2-methylene-4-(phenylamino) pentanoate (3ae)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.35 (m, 5H), 7.13 (t, *J* = 7.6 Hz, 2H), 6.67 (t, *J* = 7.2 Hz, 1H), 6.58 (d, *J* = 8.0 Hz, 2H), 6.29 (s, 1H), 5.64 (s, 1H), 5.22 (d, *J* = 2.2 Hz, 2H), 3.73 (q, *J* = 6.4 Hz, 1H), 2.76 (dd, *J* = 13.8, 6.4 Hz, 1H), 2.36 (dd, *J* = 13.8, 6.8 Hz, 1H), 1.19 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.3, 147.3, 138.0, 136.0, 129.4, 128.7, 128.4, 127.9, 117.1, 113.3, 66.8, 48.1, 39.4, 20.7. HRMS (ESI): Calcd. for [M+H]+: 296.1641; Found: m/z 296.1645.

(26) N-(4-phenylpent-4-en-2-yl) aniline (3af)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 7.4 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.30 (d, J = 6.4 Hz, 1H), 7.14 (t, J = 7.2 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 6.51 (d, J = 7.8 Hz, 2H), 5.31 (s, 1H), 5.13 (s, 1H), 3.53 (q, J = 6.2 Hz, 1H), 2.93 (dd, J = 14.0, 5.4 Hz, 1H), 2.51 (dd, J = 14.0, 7.6, 1H), 1.16 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 146.2, 141.2, 129.4, 128.5, 127.7, 126.5, 117.5, 115.2, 113.7, 47.4, 43.2, 20.6. HRMS (ESI): Calcd. for C₁₇H₂₀N [M+H]⁺: 238.1586; found: 238.1590.

(27) 2,6-di-tert-butyl-4-((ethyl(phenyl)amino)methyl)phenol (4)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.22 (t, *J* = 7.8 Hz, 2H), 7.06 (s, 2H), 6.77 (d, *J* = 8.2 Hz, 2H), 6.69 (t, *J* = 7.2 Hz, 1H), 5.11 (s, 1H), 4.45 (s, 2H), 3.45 (q, *J* = 7.0 Hz, 2H), 1.43 (s, 18H), 1.23-1.21 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 152.7, 149.1, 136.0, 129.6, 129.2, 123.5, 116.0, 112.7, 54.4, 44.8, 34.5, 30.5, 12.2. HRMS (ESI): Calcd. for [M+H]⁺: 340.2635; Found: m/z 340.2631.

(28) ethyl 2-methyl-4-(phenylamino)pentanoate (3aa'')

Yellow oil. The ratio of diastereomers is 1:1. The mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.18 – 7.11 (m, 4H), 6.67 (t, J = 7.2 Hz, 2H), 6.59 – 6.53 (m, 4H), 4.16 – 4.05 (m, 4H), 3.55 (dq, J = 14.2, 6.4 Hz, 2H), 3.36 (s, 1.5H), 2.71 – 2.62 (m, 1H),, 2.61 – 2.55 (m, 1H), 2.00 (ddd, J = 13.8, 8.4, 5.6 Hz, 1H), 1.90 (ddd, J = 14.0, 8.4, 5.6 Hz, 1H), 1.60 (ddd, J = 13.6, 7.6, 5.4 Hz, 1H), 1.49 (dt, J = 14.0, 5.8 Hz, 1H), 1.24 – 1.16 (m, 18H). One of the diastereomers : ¹³C NMR (101 MHz, CDCl₃): δ 177.1, 147.5, 129.4, 117.1, 113.2, 60.5, 47.1, 41.4, 37.4, 21.2, 18.0, 14.3. HRMS (ESI): Calcd. for [M+H]⁺: 340.2635; Found: m/z 340.2631.

(29) 2-methylene-3,3a,4,5-tetrahydropyrrolo[1,2-a]quinolin-1(2H)-one (6)³

White solid. ¹H NMR (400 MHz, CDCl₃): δ 8.73 (d, J = 8.4 Hz, 1H), 7.26 (t, J = 8.0 Hz, 1H), 7.17 (d, J = 7.4 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.13 (s, 1H), 5.43 (s, 1H), 3.95 – 3.88 (m, 1H), 3.08 (dd, J = 16.8, 7.4 Hz, 1H), 3.00 (dd, 12.4, 5.6 Hz, 1H), 2.92 (dd, J = 16.8, 5.0 Hz, 1H), 2.56 – 2.49 (m, 1H), 2.25 – 1.19 (m, 1H), 1.78 (dq, J = 12.6, 7.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 166.3, 139.7, 136.8, 129.3, 126.9, 126.3, 124.2, 120.0, 116.6, 54.8, 31.4, 29.6, 27.7. MS (EI, m/z): 199.0 [M]⁺.

7. References

1. (a) Y. Li, J. Zhang, D. Li and Y. Chen, Metal-Free C(sp³)–H Allylation via Aryl Carboxyl Radicals Enabled by Donor–Acceptor Complex, *Org. Lett.* 2018, **20**, 3296–3299; (b) M. Zhang and F. Liu, Visible-light-mediated allylation of alkyl radicals with allylic sulfones via a deaminative strategy, *Org. Chem. Front.*, 2018, **5**, 3443; (c) K. Wu, L. Wang, C-R. Sonivette, G-U Flechsig and T. Wang, Amidyl Radical Directed Remote Allylation of Unactivated sp³ C–H Bonds by Organic Photoredox Catalysis, *Angew. Chem. Int. Ed.*, 2019, **58**, 1774–1778.

2. Y. Duan, M. Zhang, R Ruzi, Z. Wu and C. Zhu. The direct decarboxylative allylation of N-arylglycine derivatives by photoredox catalysis, *Org. Chem. Front.*, 2017, **4**, 525–528.

3. J. A. Sirvent, F. Foubelo, M. Yus, Stereoselective Synthesis of Indoline, Tetrahydroquinoline, and Tetrahydrobenzazepine Derivatives from o-Bromophenyl N-tert-Butylsulfinyl Aldimines, *J. Org. Chem.*, 2014, **79**, 1356–1367.

8. NMR spectra of products

¹H-NMR spectrum of 3aa

¹³C-NMR spectrum of 3aa

¹H-NMR spectrum of 3ba

¹³C-NMR spectrum of 3ca

Î

¹³C-NMR spectrum of 3da

¹³C-NMR spectrum of 3ea

¹³C-NMR spectrum of 3fa

¹H-NMR spectrum of 3ha

¹³C-NMR spectrum of 3ia

¹H-NMR spectrum of 3ja

¹³C-NMR spectrum of 3ja

¹³C-NMR spectrum of 3qa

¹³C-NMR spectrum of 3ua

¹H-NMR spectrum of 3ad

¹H-NMR spectrum of 4

