Electronic Supplementary Information

Nickel-catalyzed mild synthesis of functional γ-amino butyric acid esters via direct $\alpha-\mathrm{C}\left(\mathbf{s p}^{3}\right)-\mathrm{H}$ allylation of N -alkyl anilines with allyl sulfones
He Zhao, ${ }^{\ddagger \mathrm{ab}}{ }^{\text {Xiu Li, }}{ }^{\ddagger a}$ and Min Zhang*a
a. Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry \& Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641 People's Republic of China
${ }^{\text {b. }}$ Chemistry \& Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.

Table of content

1. General information S2
2. Substrate preparation S2-S4
3. Detailed optimization studies S4
4. Typical procedure for the synthesis of $\mathbf{3}$ S5
5. Mechanistic Studies S5
6. Analytic data of the obtained compound S6-S17
7. References S18
8. NMR spectra of products S19-S50

1. General information

All the obtained products were characterized by melting points (m.p.), ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-$ NMR, and mass spectra (MS), the NMR spectra of the known compounds were found to be identical with the ones reported in the literatures. Additionally, all the new compounds were further characterized by high resolution mass spectra (HRMS). ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}-$ NMR spectra were obtained on Bruker-400. Mass spectra were recorded on Trace ISQ GC/MS. High-resolution mass spectra (HRMS) were recorded on a thermo scientific Q Exactive Ultimate 3000 UPLC spectrometer. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m). Column chromatography was performed on silica gel (200-300 mesh). Reactions were monitored by using thin layer chromatography (TLC) (Qingdao Jiyida silica gel reagent factory GF254). All the reagents were purchased from Bide Pharmatech Ltd. and Energy Chemical, all the solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification. All the reactions were heated by metal sand bath (WATTCAS, LAB-500, https://www.wattcas.com).

2. Substrate preparation

(1) Synthesis of aniline

To a solution of aniline $\mathbf{S 1}(10 \mathrm{mmol})$ and Alkyl iodide $\mathbf{S 2}(10 \mathrm{mmol})$ in 20 mL EtOH was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.7 \mathrm{~g}, 20 \mathrm{mmol})$. After 2.5 h of reflux, the mixture was cooled down and monitored by TLC. Upon completion, the mixture was concentrated under reduced pressure, the obtained residue was dissolved in EtOAc and the mixture was washed with water, brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the filtrate was evaporated and purified by chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give $\mathbf{1}$.
(2) Synthesis of Allyl Sulfones ${ }^{1}$

To a solution of paraformaldehyde $(1.99 \mathrm{~g}, 66.6 \mathrm{mmol})$ and acrylic ester (A1, B1, C1) (50 mmol) in 40 mL dioxane-water ($1: 1, \mathrm{v} / \mathrm{v}$) was added DABCO ($7.48 \mathrm{~g}, 66.7 \mathrm{mmol}$) and the reaction progress was monitored by TLC. Upon completion, the reaction mixture was partitioned with EtOAc $(200 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The organic layer was separated and washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford (A2, B2, C2).

To a solution of $\mathbf{A 2}$ or $\mathbf{B 2}$ or $\mathbf{C 2}$ (23.0 mmol) was added phosphorus (III) bromide $(0.76 \mathrm{~mL}, 8.0 \mathrm{mmol})$ in dry ether $(20 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. The temperature was allowed to rise to room temperature, and stirring was continued for 3 h . Water (10 mL) was then added and the mixture was extracted with petroleum ether ($3 \times 50 \mathrm{~mL}$). The organic phase was washed with saturated sodium chloride solution (50 mL), dried with sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (10\% hexanes/EtOAc) to give $\mathbf{A 3}$ or B3 or C3.

To a solution of A3 or B3 or $\mathbf{C 3}$ or $\mathbf{D 1}$ or $\mathbf{E 1}(10.4 \mathrm{mmol})$ in dry methanol (25 mL) was added sodium phenylsulfinate $(2.50 \mathrm{~g}, 15.2 \mathrm{mmol})$ and refluxed. After 2.5 h , the mixture was concentrated under reduced pressure, the obtained residue was dissolved in EtOAc and the mixture was washed with water, brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the filtrate was evaporated and purified by chromatography ($50 \% \mathrm{EtOAc} /$ hexanes) to give $\mathbf{2 a - 2} \mathbf{e}$.

A solution of a-methyl styrene $\mathbf{F} 1(8.3 \mathrm{~mL}, 64 \mathrm{mmol})$ and N -bromosuccinimide (NBS, $15.0 \mathrm{~g}, 84 \mathrm{mmol})$ in chloroform (15 mL) was heated to reflux for 3 h . The mixture was cooled down after reflux and the filtrated was evaporated and purified by chromatography (100% hexanes) to afford 1-bromo-2-phenyl-2-propene F2.

Then to a solution of the 1-bromo-2-phenyl-2-propene ($2.61 \mathrm{~g}, 13.2 \mathrm{mmol}$) in dry DMF (40 mL) was added sodium benzenesulfinate. This mixture was heated to $80^{\circ} \mathrm{C}$ for 4 h , cooled, and diluted with EtOAc (100 mL). The mixture was washed with water ($3 \times 50 \mathrm{~mL}$), brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the filtrate was evaporated and purified by chromatography (20% hexane/ EtOAc) afforded $\mathbf{2 f}$ as a white solid.

3. Detailed Optimization Studies

Table S1 Optimization of reaction conditions ${ }^{a}$

	 Catalyst	add., sol.2a			3aa'	
Entry		[O]	Additive	Solvent	3aa (\%) ${ }^{\text {b }}$	3aa' (\%)
1	$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	TBHP	-	DMF	33	0
2	$\mathrm{NiCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}$	TBHP	-	DMF	20	0
3	$\mathrm{Ni}(\mathrm{OTf})_{2}$	TBHP	-	DMF	25	0
4	NiI_{2}	TBHP	-	DMF	19	0
5	$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	TBHP	-	$\mathrm{CH}_{3} \mathrm{CN}$	trace	0
6	$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	TBHP	-	dioxane	0	0
7	$\mathrm{Ni}(\mathrm{OAc})_{2} 4 \mathrm{H}_{2} \mathrm{O}$	TBHP	-	DCE	23	0
8	$\mathrm{Ni}(\mathrm{OAc})_{2} 4 \mathrm{H}_{2} \mathrm{O}$	TBHP	-	EtOAc	39	0
9	$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	TBHP	-	EtOH	42	0
10	$\mathrm{Ni}(\mathrm{OAc})_{2} 4 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$		EtOH	0	0
11	$\mathrm{Ni}(\mathrm{OAc})_{2} 4 \mathrm{H}_{2} \mathrm{O}$	DDQ		EtOH	0	12
12	$\mathrm{Ni}(\mathrm{OAc})_{2} 4 \mathrm{H}_{2} \mathrm{O}$	m-CPBA		EtoH	0	0
13	$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	DCP		EtOH	trace	trace
14	$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	O_{2}		EtOH	0	18

${ }^{a}$ Reaction conditions: unless otherwise stated, all the reactions were conducted with $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.2 \mathrm{mmol})$, catalyst ($30 \mathrm{~mol} \%$), oxidant (1.5 eq .) and solvent $\left(1.5 \mathrm{~mL}\right.$) at $70^{\circ} \mathrm{C}$ for 18 h under N_{2} atmosphere. ${ }^{b}$ Isolated yield.

4. Typical procedure for the synthesis of 3

The mixture of amine $\mathbf{1}$ (0.3 mmol), allyl sulfone 2 (3 eq., 0.9 mmol), TBHP (2.5 eq.,
$0.75 \mathrm{mmol}, 70 \mathrm{wt} \%$ in water $)$, and $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{mmol} \%)$ in $\mathrm{EtOH}(1.5 \mathrm{~mL})$ was introduced into a Schlenk tube (25 mL) was stirred at $70^{\circ} \mathrm{C}$ for 18 h under N_{2} atmosphere. After cooling down to room temperature, the resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel eluting with petroleum ether / ethyl acetate (20:1), which afforded $\mathbf{3}$ as a yellow oil.

5. Mechanistic Studies

5, detected by HRMS
Calcd. for $[\mathrm{M}+\mathrm{H}]+:$ 270.2064; Found: m/z 270.2064.

Figure S1 HRMS of compound 5

6. Analytic data of the obtained compound

(1) ethyl 2-methylene-4-(phenylamino)pentanoate (3aa) ${ }^{2}$

Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.17$ (t, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.71-6.64(\mathrm{~m}$, $3 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ $(\mathrm{dd}, J=13.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.2,147.5,138.4,129.4$, 127.2, 117.3, 113.4, 61.0, 48.2, 39.4, 20.8, 14.3. MS (EI, m/z): $233.1[\mathrm{M}]^{+}$.
(2) ethyl 2-methylene-4-(phenylamino)butanoate (3ba)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.30$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.2,148.1,138.4,129.4,126.7,117.5,113.0,61.0,43.0,32.1,14.3$. MS (EI, m/z): $219.1[\mathrm{M}]^{+}$.
(3) ethyl 2-methylene-4-(phenylamino)hexanoate (3ca)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60$ $(\mathrm{s}, 1 \mathrm{H}), 3.52(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=13.8$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{dt}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.6,147.9$, $138.3,129.4,127.2,116.9,113.1,61.0,53.9,37.1,27.4,14.3,10.3 . \operatorname{HRMS}(E S I):$ Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 248.1641$; Found: m/z 248.1645.
(4) ethyl 2-methylene-4-(phenylamino) heptanoate (3da)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.61$ - $3.57(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51$ (dd, $J=14.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=$ 6.6 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,147.9,138.3,129.4,127.2,116.9$, 113.0, 61.0, 52.3, 37.6, 37.1, 19.3, 14.3, 14.2. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}$: 262.1798; Found: m/z 262.1802 .

(5) ethyl 2-methylene-4-(phenylamino)octanoate (3ea)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.57$ (s, 1H), 4.21 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59$ - $3.56(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=13.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=13.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{dd}, J=13.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,147.9,138.3,129.4,127.2$, $116.8,113.0,61.0,52.5,37.6,34.6,28.2,22.9,14.3,14.2$. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 276.1955$; Found: m/z 276.1958.
(6) ethyl 2-methylene-4-(phenylamino)hexanoate (3fa)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.6-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{qd}, J$ $=7.0,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=13.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=$ $13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dtd}, J=11.8,6.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{ddt}, J=12.8,9.0,3.4 \mathrm{~Hz}$, 2H), $1.39-1.34$ (m, 1H), 1.31 (d, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.27$ (s, 7H), $0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}$,
$3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,147.9,138.3,129.4,127.2,116.8,113.0$, $60.9,52.5,37.6,34.9,31.9,29.8,29.4,26.1,22.8,14.3,14.2$. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 318.2424$; Found: m/z 318.2428.
(7) diethyl 2-methylene-4-(phenylamino) pentanedioate (3ga)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}$, $J=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 173.3,166.9,146.6,136.5,129.4,128.2,118.4,113.6,61.3$, 56.3, 35.7, 14.3. HRMS (ESI): Calcd. for [M+H]+: 292.1539; Found: m/z 292.1543.
(8) ethyl 4-((4-(tert-butyl)phenyl)amino)-2-methylenepentanoate (3ha)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.61 (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=13.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $167.5,145.0,139.8,138.3,127.3,126.1,112.9,60.9,48.1,39.4,33.9,31.7,20.8,14.3$. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 290.2111$; Found: m/z 290.2115.

(9) ethyl 4-((3-methoxyphenyl) amino)-2-methylenepentanoate (3ia)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.22$ (d, $J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.66(\mathrm{~m}$, $1 \mathrm{H}), 2.73(\mathrm{dd}, J=13.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1$
$\mathrm{Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5,161.0,148.8$, 138.2, 130.1, 127.3, 106.4, 102.3, 99.2, 61.0, 55.2, 48.1, 39.3, 20.7, 14.3. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 264.1592$; Found: m/z 264.1594.
(10) ethyl 4-(mesitylamino)-2-methylenepentanoate (3ja)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.80(\mathrm{~s}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H})$, 4.19 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.2,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.32 (dd, $J=13.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5,142.1,138.9,130.8,129.6,126.6$, 60.8, 52.2, 40.8, 21.2, 20.7, 19.0, 14.3. HRMS (ESI): Calcd. for [M+H] ${ }^{+}$: 276.1955; Found: m/z 276.1958.
(11) ethyl 4-((3-chlorophenyl) amino)-2-methylenepentanoate (3ka)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.05(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.48$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=$ 13.8, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.3,148.6,138.0,135.1,130.3,127.6,116.8,112.7,111.5,61.1$, 48.1, 39.3, 20.6, 14.4. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}$: 268. 1095; Found: m/z 268.1099.

(12) ethyl 2-((1,2,3,4-tetrahydroquinolin-2-yl)methyl)acrylate (3la)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.96(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 1H), 6.49 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45$
(d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dt}, J=18.6,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=13.4,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{dd}, J=13.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=13.2,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.31 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.2,144.3,137.6,129.4$, 127.6, 126.9, 121.3, 117.3, 114.4, 61.1, 49.8, 39.4, 28.1, 26.2, 14.4. HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$246.1486; found: 246.1489.
(13) ethyl 2-((8-methyl-1,2,3,4-tetrahydroquinolin-2-yl)methyl)acrylatem (3ma)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.51-3.48(\mathrm{~m}$, $1 \mathrm{H}), 2.87-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=13.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=13.2,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~d}, J=12.8,1 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=12.0$ $\mathrm{Hz}, 8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,142.3,137.9,128.0,127.3$, 127.2, 121.2, 120.5, 116.6, 61.1, 50.2, 39.4, 28.0, 26.5, 17.2, 14.3. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 260.1643$; Found: m/z 260.1645.

(14) ethyl 2-((8-bromo-1,2,3,4-tetrahydroquinolin-2-yl)methyl)acrylate (3na)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.56-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=13.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J$ $=13.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=16.0 \mathrm{~Hz}$, $8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,141.2,137.3,130.2,128.3,127.8$, 122.9, 117.4, 109.1, 61.2, 50.2, 39.2, 27.7, 26.5, 14.4. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 324.0588$; Found: m/z 324.0594.
(15) ethyl 4-(methyl(phenyl)amino)-2-methylenebutanoate (3oa) ${ }^{2}$

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.53-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): δ 167.1, 149.1, 138.7, 129.3, 126.6, 116.4, 112.4, 60.9, 52.5, 38.4, 29.8, 14.4. MS (EI, m/z): $233.1[\mathrm{M}]^{+}$.
(16) the mixture of ethyl 4-(ethyl(phenyl)amino)-2-methylenebutanoate (3pa-1) and ethyl 4-(methyl(phenyl)amino)-2-methylenepentanoate (3pa-2)

3pa-1

3pa-2

Yellow oil. The molar ratio of 3pa-1 and 3pa-2 is 4:1. 3pa-1: ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 6.75$ (d, $\left.J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.46-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,147.7,138.6,129.4$, $126.8,115.7,111.9,61.0,50.2,45.1,30.6,14.4,12.6$. 3pa-2: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.79(\mathrm{t}, J=8.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.15(\mathrm{~s}, 0.25 \mathrm{H}), 5.56(\mathrm{~s}, 0.25 \mathrm{H}), 4.19(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 0.5 \mathrm{H}), 2.65(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.46(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 1.28$ (t, $J=7.0 \mathrm{~Hz}, 0.77 \mathrm{H}$), $1.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.77 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $167.3,150.4,138.5,129.2,126.8,116.6,113.3,60.9,52.7,37.0,30.0,17.2,14.3 .{ }^{1} \mathrm{H}$ NMR of mixture: $7.25-7.21(\mathrm{~m}, 2.3 \mathrm{H}), 6.70-6.65$ (m, 1.25H). HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 248.1645$; Found: m/z 248.1643
(17) ethyl 2-methylene-4-(phenyl(propyl)amino)hexanoate (3qa)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00$ (p, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{dq}, J=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{dt}$, $J=14.2,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{q}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 167.3,149.6,138.6,129.1,126.9,116.1,113.8,60.8,59.8,45.6$,
36.1, 26.0, 21.2, 14.3, 11.8, 11.7. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 290.2111$; Found: m/z 290.2115 .

(18) ethyl 4-(methyl(m-tolyl)amino)-2-methylenebutanoate (3ra)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.52(\mathrm{~m}$, $3 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}$, $3 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}): $\delta 167.1,149.1,139.0,138.7,129.2,126.7,117.3,113.0,109.5,60.9,52.5$, 38.5, 29.7, 22.1, 14.4. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{H}]^{+}$: 248.1641; Found: m/z 248.1645 .

(19) ethyl 4-(methyl(p-tolyl)amino)-2-methylenebutanoate (3sa)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.48-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,150.0,138.7,129.9,126.7,125.5$, 112.7, 60.9, 52.7, 38.6, 29.5, 20.3, 14.4. HRMS (ESI): Calcd. for [M+H] ${ }^{+}: 248.1641$; Found: m/z 248.1645.
(20) (S)-ethyl 4-((4-(tert-butyl)phenyl)(ethyl)amino)-2-methylenepentanoate (3ta)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.33-$ 3.22 (m, 2H), 2.71 (dd, $J=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=13.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}$, $3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,146.2,138.8$,
128.6, 126.9, 126.0, 113.1, 60.9, 52.5, 38.2, 37.0, 33.8, 31.7, 18.0, 14.9, 14.4. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 318.2428$; Found: m/z 318.2425.

(21) ethyl 4-((3-chlorophenyl)(methyl)amino)-2-methylenebutanoate (3ua)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.62$ (dd, $J=16.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.0,150.0,138.2,135.3,130.2,127.1,116.0$, 111.9, 110.2, 61.0, 52.3, 38.5, 29.8, 14.4. HRMS (ESI): Calcd. for [M+H] ${ }^{+}$: 268.1095; Found: m/z 268.1099.
(22) methyl 2-methylene-4-(phenylamino)pentanoate (3vb)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{dd}, J=18.6$, $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.23$ (s, 1H), 5.62 (s, 1H), 3.77 (s, 3H), $3.74-3.70$ (m, 1H), 2.73 (dd, $J=$ $13.8,6.2,1 \mathrm{H}), 2.34(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 166.9,147.2,137.9,129.4,127.6,117.3,113.4,52.1,48.2,39.4$, 20.6. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 220.1329$; Found: m/z 220.1329 .

(23) tert-butyl 2-methylene-4-(phenylamino) pentanoate (3ac)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dd, $J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=13.8,6.4,1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9,147.5,139.7,129.4,126.3,117.0$, 113.2, 81.0, 48.4, 39.2, 28.2, 20.8. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 262.1799$; Found: m/z 262.1802 .

(24) cyclohexyl 2-methylene-4-(phenylamino) pentanoate (3ad)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{tt}, J=8.6,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72 (q, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=$ 13.8, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.42$ $-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9,147.5$, 138.7, 129.4, 127.1, 117.1, 113.3, 73.3, 48.1, 39.4, 31.8, 31.7, 25.6, 23.9, 20.7. HRMS (ESI): Calcd. for [M+H]+: 288.1953; Found: m/z 288.1958.
(25) benzyl 2-methylene-4-(phenylamino) pentanoate (3ae)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37$ - 7.35 (m, 5H), 7.13 (t, $J=7.6 \mathrm{~Hz}$, 2H), $6.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.22$ (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=13.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}$, $J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3$, $147.3,138.0,136.0,129.4,128.7,128.4,127.9,117.1,113.3,66.8,48.1,39.4,20.7$. HRMS (ESI): Calcd. for [M+H]+: 296.1641; Found: m/z 296.1645.

(26) N -(4-phenylpent-4-en-2-yl) aniline (3af)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}$, $J=14.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=14.0,7.6,1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 146.2,141.2,129.4,128.5,127.7,126.5,117.5,115.2,113.7$, 47.4, 43.2, 20.6. HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 238.1586; found: 238.1590.
(27) 2,6-di-tert-butyl-4-((ethyl(phenyl)amino)methyl)phenol (4)

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 6.77$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $1.43(\mathrm{~s}, 18 \mathrm{H}), 1.23-1.21(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.7$, 149.1, 136.0, 129.6, 129.2, 123.5, 116.0, 112.7, 54.4, 44.8, 34.5, 30.5, 12.2. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 340.2635$; Found: m/z 340.2631.
(28) ethyl 2-methyl-4-(phenylamino)pentanoate (3aa')

Yellow oil. The ratio of diastereomers is $1: 1$. The mixture: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.18-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.59-6.53(\mathrm{~m}, 4 \mathrm{H}), 4.16-$ $4.05(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{dq}, \mathrm{J}=14.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 1.5 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 1 \mathrm{H})$, $2.61-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=13.8,8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, J=14.0,8.4,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.60(\mathrm{ddd}, J=13.6,7.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49$ (dt, $J=14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-$ $1.16(\mathrm{~m}, 18 \mathrm{H})$. One of the diastereomers : ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.1$, 147.5, 129.4, 117.1, 113.2, 60.5, 47.1, 41.4, 37.4, 21.2, 18.0, 14.3. HRMS (ESI): Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 340.2635$; Found: m/z 340.2631.
(29) 2-methylene-3,3a,4,5-tetrahydropyrrolo[1,2-a]quinolin-1(2H)-one (6) ${ }^{3}$

White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H})$, $3.95-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, 12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (dd, $J=16.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.25-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dq}, J=$ $12.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,139.7,136.8,129.3,126.9$, 126.3, 124.2, 120.0, 116.6, 54.8, 31.4, 29.6, 27.7. MS (EI, m/z): 199.0 [M] ${ }^{+}$.

7. References

1. (a) Y. Li, J. Zhang, D. Li and Y. Chen, Metal-Free C(sp $\left.{ }^{3}\right)$-H Allylation via Aryl Carboxyl Radicals Enabled by Donor-Acceptor Complex, Org. Lett. 2018, 20, 3296-3299; (b) M. Zhang and F. Liu, Visible-light-mediated allylation of alkyl radicals with allylic sulfones via a deaminative strategy, Org. Chem. Front., 2018, 5, 3443; (c) K. Wu, L. Wang, C-R. Sonivette, G-U Flechsig and T. Wang, Amidyl Radical Directed Remote Allylation of Unactivated $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ Bonds by Organic Photoredox Catalysis, Angew. Chem. Int. Ed., 2019, 58, 1774-1778.
2. Y. Duan, M. Zhang, R Ruzi, Z. Wu and C. Zhu. The direct decarboxylative allylation of N -arylglycine derivatives by photoredox catalysis, Org. Chem. Front., 2017, 4, 525-528.
3. J. A. Sirvent, F. Foubelo, M. Yus, Stereoselective Synthesis of Indoline, Tetrahydroquinoline, and Tetrahydrobenzazepine Derivatives from o-Bromophenyl N-tert-Butylsulfinyl Aldimines, J. Org. Chem., 2014, 79, 1356-1367.
4. NMR spectra of products
${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{3 a a}$

${ }^{13}$ C-NMR spectrum of 3aa

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 3ba

${ }^{13}$ C-NMR spectrum of 3ba

${ }^{1} \mathrm{H}$-NMR spectrum of 3ca

${ }^{13}$ C-NMR spectrum of 3ca

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 3 da

${ }^{13}$ C-NMR spectrum of 3 da

$\stackrel{\infty}{\stackrel{\circ}{\top}} \stackrel{0}{+}$

성

${ }^{1} \mathrm{H}$-NMR spectrum of 3ea

${ }^{13}$ C-NMR spectrum of 3ea

$\xrightarrow{\text { 군 }}$

${ }^{1} \mathrm{H}$-NMR spectrum of 3fa

${ }^{13}$ C-NMR spectrum of 3fa

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 3ga

${ }^{13}$ C-NMR spectrum of 3ga

${ }^{1} \mathrm{H}$-NMR spectrum of 3ha

										$\begin{gathered} \text { N} \\ \text { i } \\ 1 \\ 1 \end{gathered}$											
								$\stackrel{T}{8}$		$\underset{\sim}{\top}$				$\stackrel{T}{T}$		on					
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5		6.0	5.5	$\begin{aligned} & 5.0 \\ & (\mathrm{ppm}) \end{aligned}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13}$ C-NMR spectrum of 3 ha

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 3ia

${ }^{13}$ C-NMR spectrum of 3ia

${ }^{1} \mathbf{H}-N M R$ spectrum of $\mathbf{3} \mathbf{j a}$

${ }^{13}$ C-NMR spectrum of $\mathbf{3 j a}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{3 k a}$

${ }^{13} \mathbf{C}$-NMR spectrum of $\mathbf{3 k a}$

${ }^{1}$ H-NMR spectrum of 31a

${ }^{13}$ C-NMR spectrum of 31a

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{3 m a}$

${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{3 m a}$

${ }^{1} \mathrm{H}$-NMR spectrum of 3na

${ }^{13}$ C-NMR spectrum of 3 na

${ }^{1} \mathrm{H}$-NMR spectrum of 3oa

${ }^{13}$ C-NMR spectrum of 3 oa

${ }^{1}$ H-NMR spectrum of 3pa-1 and 3pa-2

${ }^{13}$ C-NMR spectrum of 3pa-1 and 3pa-2

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{3 q a}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 3 qa

${ }^{1} \mathrm{H}$-NMR spectrum of 3 ra

${ }^{13}$ C-NMR spectrum of 3ra

${ }^{1} \mathrm{H}$-NMR spectrum of 3 sa

${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{3 s a}$

${ }^{1}$ H-NMR spectrum of 3ta

${ }^{13}$ C-NMR spectrum of 3ta

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 3 ua

${ }^{13}$ C-NMR spectrum of 3 ua

$\left\{\begin{array}{r}77.48 \\ -77.16 \\ 76.84\end{array}\right.$

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{3 a b}$

${ }^{13}$ C-NMR spectrum of 3ab

${ }^{1} \mathrm{H}$-NMR spectrum of 3ac

$$
\stackrel{n}{i} \stackrel{\infty}{i}
$$

${ }^{13}$ C-NMR spectrum of 3ac

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{3 a d}$

${ }^{13}$ C-NMR spectrum of 3ad

${ }^{1} \mathrm{H}$-NMR spectrum of 3ae

${ }^{13}$ C-NMR spectrum of 3ae

${ }^{1} \mathrm{H}$-NMR spectrum of 3af

${ }^{13}$ C-NMR spectrum of 3af

${ }^{1} \mathrm{H}$-NMR spectrum of 4

켜ํ죽

${ }^{13}$ C-NMR spectrum of 4

${ }^{13}$ C-NMR spectrum of 3aa"

${ }^{13} \mathrm{C}$-NMR spectrum of $3 \mathrm{aa}{ }^{\prime \prime}$

${ }^{1} \mathrm{H}$-NMR spectrum of 6

${ }^{13}$ C-NMR spectrum of 6

