Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Diethylzinc-Promoted Carboxylation of Aryl/Alkenyl Boronic Acids with CO₂

Tingyu Tang,^a Shibiao Tang,^a Bin Li,^a and Baiquan Wang^{*,a,b}

^aState Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

Contents

Table of Contents	S1
1. Optimization Studies	S2-S4
2. Mechanism Research	S4-S6
3. References	S6
4. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra for Compound	S7-S86

1. Optimization Studies

General procedure: An oven-dried 50 mL schlenk tube containing a stirring bar was charged with 4-methoxyphenylboronic acid (60.8 mg, 0.4 mmol, 1.0 equiv.). The schlenk tube was evacuated and back-filled under CO₂ flow for three times. Then, anhydrous solvent (2.0 mL) and ZnEt₂ solution (2 M in toluene) was added under CO₂ flow, and the resulting mixture was stirred at 100 °C for 16 h. The mixture was then allowed to cool to room temperature, carefully quenched with 1 M HCl and stirred for 5 minutes. The reaction mixture was extracted five times with EtOAc and the combined organic phases were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The solvent was then removed under reduced pressure. The crude products were purified by flash chromatography (AcOH/EA/PE = 0/1/10 to 0.01/1/1).

B(OH) ₂ + CO ₂ - (1 atm)	Additive DMF, 1	e (3.0 equiv.) ► 100 °C, 16 h	H ₃ O ⁺	
Entry	Additi	ve	Solvent	T [°C]	Yield [%]
1	ZnEt ₂ (3.	0 eq.)	DMF	100	94
2	ZnEt ₂ (0.0) eq.)	DMF	100	0
3	$ZnMe_2(3.$	0 eq.)	DMF	100	72
4	KHMI	DS	DMF	100	0
5	KO ^t B	u	DMF	100	0
6	Cs ₂ CC	D ₃	DMF	100	0
7	CsF		DMF	100	0

 Table S1 Optimization of additive^a

^a Reaction performed on 0.40 mmol scale. Isolated yields are given.

Table S2 Optimization of solvent ^a

B(OH) ₂ +	CO ₂ ZnEt ₂ (1 atm) solvent	. (3.0 equiv.) ► , 100 ^o C, 16 h	H ₃ O ⁺	► COOH
Entry	Additive	Solvent	T [°C]	Yield [%]
1	ZnEt ₂ (3.0 eq.)	DMF	100	94
2	ZnEt ₂ (3.0 eq.)	THF	100	46
3	ZnEt ₂ (3.0 eq.)	1,4-dioxane	100	66
4	ZnEt ₂ (3.0 eq.)	DMA	100	77
5	ZnEt ₂ (3.0 eq.)	DMSO	100	94

^{*a*} Reaction performed on 0.40 mmol scale. Isolated yields are given.

Table S3 Optimization of temperature^a

B(OH) ₂	ZnEt ₂	(3.0 equiv.)	H ₃ O ⁺	СООН
OMe +	(1 atm) DMF/DM	DMF/DMSO, T, 16 h		OMe
Entry	Additive	Solvent	T [°C]	Yield [%]
1	ZnEt ₂ (3.0 eq.)	DMF	100	94
2	ZnEt ₂ (3.0 eq.)	DMF	70	84
3	ZnEt ₂ (3.0 eq.)	DMF	50	60
4	ZnEt ₂ (3.0 eq.)	DMF	25	16
5	ZnEt ₂ (3.0 eq.)	DMSO	100	94
6	ZnEt ₂ (3.0 eq.)	DMSO	70	76

^{*a*} Reaction performed on 0.40 mmol scale. Isolated yields are given.

B(OH) ₂ +	ZnEt CO ₂ (1 atm)DMF/DMS	H ₃ O⁺	► COOH	
Entry	Additive	Solvent	T [°C]	Yield [%]
1	ZnEt ₂ (3.0 eq.)	DMF	100	94
2	ZnEt ₂ (2.0 eq.)	DMF	100	84
3	ZnEt ₂ (1.5 eq.)	DMF	100	80
4	ZnEt ₂ (1.0 eq.)	DMF	100	73
5	ZnEt ₂ (3.0 eq.)	DMSO	100	94
6	ZnEt ₂ (2.0 eq.)	DMSO	100	94
7	ZnEt ₂ (1.5 eq.)	DMSO	100	94
8	ZnEt ₂ (1.2 eq.)	DMSO	100	74
9	ZnEt ₂ (1.0 eq.)	DMSO	100	62

Table S4 Optimization of the amount of diethylzinc^{*a*}

^a Reaction performed on 0.40 mmol scale. Isolated yields are given.

2. Mechanism Research

Quenching experiment in the absence of CO₂

A 50 mL Schlenk tube was charged with (4-((4-methoxybenzyl)oxy)phenyl)boronic acid (1e, 103.2 mg, 0.4 mmol), and the tube was evacuated and refilled with Ar (3 times). DMSO (2.0 mL) and ZnEt₂ (2 M in toluene, 0.6 mmol, 1.5 equiv.) were then added, and the resulting mixture was stirred vigorously for 16 h at 100 °C. The reaction was quenched with D₂O (4.0 mL), and the resulting mixture was stirred for 1 h. The organic layer was extracted with EtOAc (3 × 10 mL). The combined organic layer was passed through a pad of Na₂SO₄, then all volatiles

were removed under reduced pressure. The residue was purified by column chromatography to afford 1-((4-methoxybenzyl)oxy)benzene-4-d (5) as a white solid (54.2 mg, 63%).

A 50 mL Schlenk tube was charged with phenethylboronic acid (60.0 mg, 0.4 mmol), and evacuated and refilled with Ar (3 times). DMSO (2.0 mL) and ZnEt₂ (2 M in toluene, 0.6 mmol, 1.5 equiv.) were then added, and the resulting mixture was stirred vigorously for 16 h at 100 °C. The reaction was quenched with D₂O (4.0 mL), and the resulting mixture was stirred for 1 h. The organic layer was extracted with EtOAc (3×10 mL) and the combined organic layer was passed through a pad of Na₂SO₄. Then, organic layer was detected by GC-MS.

A 50 mL Schlenk tube was charged with phenethylboronic acid (60.0 mg, 0.4 mmol), and evacuated and refilled with Ar (3 times). DMSO (2.0 mL) and ZnEt₂ (2 M in toluene, 0.6 mmol, 1.5 equiv.) were then added, and the resulting mixture was stirred vigorously for 16 h at 100 °C. The reaction was quenched with I₂ (1.2 mmol, 3.0 equiv. in DMSO), and the resulting mixture was stirred for 1 h. Then, 30 mL saturated NaS₂O₃ aqueous solution was added and stirred for 30 min. The organic layer was extracted with EtOAc (3×10 mL) and the combined organic layer was passed through a pad of Na₂SO₄. Then, organic layer was detected by GC-MS.

Preparation of PhZnEt solution¹

A dry and nitrogen flushed 100 mL three-necked flask, equipped with a magnetic stirrer, a thermometer, a nitrogen inlet, and a septum, was charged with zinc chloride (817.8 mg, 6 mmol, 1 equiv.) and THF (6 mL). After exothermic dissolution of zinc chloride in THF, phenylmagnesium bromide (6.3 mL, 1 M, 6.3 mmol, 1.05 equiv.) was added dropwise at room temperature. Stirring was continued for 15 min, then, ethylmagnesium chloride (3.1 mL, 2 M, 6.3 mmol, 1.05 equiv.) was added dropwise at room temperature. After completion of the addition, the reaction mixture was stirred for 15 min.

An oven-dried 50 mL Schlenk tube containing a stirring bar was evacuated and back-filled under CO₂ flow (this procedure was repeated three times). Then, anhydrous DMSO (1.0 mL) and PhZnEt (0.4 mmol, 1.0 equiv, 0.4 M in THF) was added under CO₂ flow, and the resulting mixture was stirred at 100 °C for 16 h. Then, the mixture was carefully quenched with 1 M HCl and stirred for 5 minutes. The reaction mixture was extracted five times with EtOAc and the combined organic phases were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The solvent was then removed under reduced pressure. The crude products were purified by flash chromatography affording benzoic acid (**2a**) in 43% yield.

References

(1) Cahiez, G.; Foulgoc, L.; Moyeux, A. Iron-Catalyzed Oxidative Heterocoupling between Aliphatic and Aromatic Organozinc Reagents: A Novel Pathway for Functionalized Aryl-Alkyl Cross-Coupling Reactions. *Angew. Chem. Int. Ed.* **2009**, *48*, 2969-2972.

Copies of ¹H, ¹³C and ¹⁹F NMR Spectra for Compounds

¹H NMR (400 MHz, DMSO- d_6) spectrum of **2a**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **2b**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **2d**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **2e**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **2f**

СООН

HO

 ^{13}C NMR (101 MHz, DMSO-*d*₆) spectrum of 2g

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **2h**

S22

S30

¹H NMR (400 MHz, DMSO- d_6) spectrum of **2m**

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum of **2m**

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of **2n**

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of **20**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **2r**

 13 C NMR (101 MHz, DMSO-*d*₆) spectrum of **2r**

S45

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of **2s**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **2u**

¹H NMR (400 MHz, DMSO- d_6) spectrum of 2v

S58

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of **2ac**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **2ag**

S74

¹H NMR (400 MHz, DMSO- d_6) spectrum of **2ah**

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of **2aj**

¹H NMR (400 MHz, DMSO- d_6) spectrum of **3**

S86