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1. Optimization Studies 

General procedure: An oven-dried 50 mL schlenk tube containing a stirring bar was charged 

with 4-methoxyphenylboronic acid (60.8 mg, 0.4 mmol, 1.0 equiv.). The schlenk tube was 

evacuated and back-filled under CO2 flow for three times. Then, anhydrous solvent (2.0 mL) 

and ZnEt2 solution (2 M in toluene) was added under CO2 flow, and the resulting mixture was 

stirred at 100 ºC for 16 h. The mixture was then allowed to cool to room temperature, carefully 

quenched with 1 M HCl and stirred for 5 minutes. The reaction mixture was extracted five times 

with EtOAc and the combined organic phases were washed with brine, dried over anhydrous 

Na2SO4 and filtered. The solvent was then removed under reduced pressure. The crude products 

were purified by flash chromatography (AcOH/EA/PE = 0/1/10 to 0.01/1/1).  

Table S1 Optimization of additive a  

 

Entry Additive Solvent T [oC] Yield [%] 

1  ZnEt2 (3.0 eq.) DMF 100 94 

2  ZnEt2 (0.0 eq.) DMF 100 0 

3  ZnMe2 (3.0 eq.) DMF 100 72 

4  KHMDS DMF 100 0 

5  KOtBu DMF 100 0 

6  Cs2CO3 DMF 100 0 

7  CsF DMF 100 0 

a Reaction performed on 0.40 mmol scale. Isolated yields are given. 
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Table S2 Optimization of solvent a 

 

Entry Additive Solvent T [oC] Yield [%] 

1  ZnEt2 (3.0 eq.) DMF 100 94 

2  ZnEt2 (3.0 eq.) THF 100 46 

3  ZnEt2 (3.0 eq.) 1,4-dioxane 100 66 

4  ZnEt2 (3.0 eq.) DMA 100 77 

5  ZnEt2 (3.0 eq.) DMSO 100 94 

a Reaction performed on 0.40 mmol scale. Isolated yields are given. 

 

Table S3 Optimization of temperature a 

 

Entry Additive Solvent T [oC] Yield [%] 

1  ZnEt2 (3.0 eq.) DMF 100 94 

2  ZnEt2 (3.0 eq.) DMF 70 84 

3  ZnEt2 (3.0 eq.) DMF 50 60 

4  ZnEt2 (3.0 eq.) DMF 25 16 

5  ZnEt2 (3.0 eq.) DMSO 100 94 

6  ZnEt2 (3.0 eq.) DMSO 70 76 

a Reaction performed on 0.40 mmol scale. Isolated yields are given. 
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Table S4 Optimization of the amount of diethylzinc a 

 

Entry Additive Solvent T [oC] Yield [%] 

1  ZnEt2 (3.0 eq.) DMF 100 94 

2  ZnEt2 (2.0 eq.) DMF 100 84 

3  ZnEt2 (1.5 eq.) DMF 100 80 

4  ZnEt2 (1.0 eq.) DMF 100 73 

5  ZnEt2 (3.0 eq.) DMSO 100 94 

6  ZnEt2 (2.0 eq.) DMSO 100 94 

7  ZnEt2 (1.5 eq.)  DMSO 100 94 

8  ZnEt2 (1.2 eq.) DMSO 100 74 

9  ZnEt2 (1.0 eq.) DMSO 100 62 

a Reaction performed on 0.40 mmol scale. Isolated yields are given. 

 

2. Mechanism Research 

Quenching experiment in the absence of CO2 

ZnEt2 (1.5 equiv.)

DMSO, 100 oC, 16 h

O

MeO

D

5, 63%(15% D)

D2O
O

MeO

B(OH)2

 

A 50 mL Schlenk tube was charged with (4-((4-methoxybenzyl)oxy)phenyl)boronic acid 

(1e, 103.2 mg, 0.4 mmol), and the tube was evacuated and refilled with Ar (3 times). DMSO 

(2.0 mL) and ZnEt2 (2 M in toluene, 0.6 mmol, 1.5 equiv.) were then added, and the resulting 

mixture was stirred vigorously for 16 h at 100 ℃. The reaction was quenched with D2O (4.0 

mL), and the resulting mixture was stirred for 1 h. The organic layer was extracted with EtOAc 

(3 × 10 mL). The combined organic layer was passed through a pad of Na2SO4, then all volatiles 
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were removed under reduced pressure. The residue was purified by column chromatography to 

afford 1-((4-methoxybenzyl)oxy)benzene-4-d (5) as a white solid (54.2 mg, 63%). 

 

A 50 mL Schlenk tube was charged with phenethylboronic acid (60.0 mg, 0.4 mmol), and 

evacuated and refilled with Ar (3 times). DMSO (2.0 mL) and ZnEt2 (2 M in toluene, 0.6 mmol, 

1.5 equiv.) were then added, and the resulting mixture was stirred vigorously for 16 h at 100 ℃. 

The reaction was quenched with D2O (4.0 mL), and the resulting mixture was stirred for 1 h. 

The organic layer was extracted with EtOAc (3 × 10 mL) and the combined organic layer was 

passed through a pad of Na2SO4. Then, organic layer was detected by GC-MS. 

 

A 50 mL Schlenk tube was charged with phenethylboronic acid (60.0 mg, 0.4 mmol), and 

evacuated and refilled with Ar (3 times). DMSO (2.0 mL) and ZnEt2 (2 M in toluene, 0.6 mmol, 

1.5 equiv.) were then added, and the resulting mixture was stirred vigorously for 16 h at 100 ℃. 

The reaction was quenched with I2 (1.2 mmol, 3.0 equiv. in DMSO), and the resulting mixture 

was stirred for 1 h. Then, 30 mL saturated NaS2O3 aqueous solution was added and stirred for 

30 min. The organic layer was extracted with EtOAc (3 × 10 mL) and the combined organic 

layer was passed through a pad of Na2SO4. Then, organic layer was detected by GC-MS. 

Preparation of PhZnEt solution1 

A dry and nitrogen flushed 100 mL three-necked flask, equipped with a magnetic stirrer, 

a thermometer, a nitrogen inlet, and a septum, was charged with zinc chloride (817.8 mg, 6 

mmol, 1 equiv.) and THF (6 mL). After exothermic dissolution of zinc chloride in THF, 

phenylmagnesium bromide (6.3 mL, 1 M, 6.3 mmol, 1.05 equiv.) was added dropwise at room 

temperature. Stirring was continued for 15 min, then, ethylmagnesium chloride (3.1 mL, 2 M, 

6.3 mmol, 1.05 equiv.) was added dropwise at room temperature. After completion of the 

addition, the reaction mixture was stirred for 15 min. 
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An oven-dried 50 mL Schlenk tube containing a stirring bar was evacuated and 

back-filled under CO2 flow (this procedure was repeated three times). Then, anhydrous 

DMSO (1.0 mL) and PhZnEt (0.4 mmol, 1.0 equiv, 0.4 M in THF) was added under CO2 flow, 

and the resulting mixture was stirred at 100 ºC for 16 h. Then, the mixture was carefully 

quenched with 1 M HCl and stirred for 5 minutes. The reaction mixture was extracted five 

times with EtOAc and the combined organic phases were washed with brine, dried over 

anhydrous Na2SO4 and filtered. The solvent was then removed under reduced pressure. The 

crude products were purified by flash chromatography affording benzoic acid (2a) in 43% 

yield. 
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Copies of 1H, 13C and 19F NMR Spectra for Compounds 
1H NMR (400 MHz, DMSO-d6) spectrum of 2a 

 

 

 

COOH
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13C NMR (101 MHz, DMSO-d6) spectrum of 2a 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2b 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2b 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2c 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2c 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2d 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2d 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2e 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2e 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2f 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2f 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2g 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2g 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2h 

 

COOH
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13C NMR (101 MHz, DMSO-d6) spectrum of 2h 

 

COOH



S23 

1H NMR (400 MHz, DMSO-d6) spectrum of 2i 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2i 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2j 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2j 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2k 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2k 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2l 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2l 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2m 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2m 
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19F NMR (376 MHz, DMSO-d6) spectrum of 2m 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2n 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2n 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2o 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2o 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2p 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2p 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2q 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2q 
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19F NMR (376 MHz, DMSO-d6) spectrum of 2q 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2r 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2r 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2s 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2s 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2t 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2t 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2u 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2u 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2v 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2v 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2w 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2w 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2x 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2x 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2y 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2y 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2z 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2z 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2aa 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2aa 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2ab 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2ab 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2ac 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2ac 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2ad 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2ad 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2ae 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2ae 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2af 
 

 



S72 

13C NMR (101 MHz, DMSO-d6) spectrum of 2af 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2ag 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2ag 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2ah 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2ah 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2ai 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2ai 
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1H NMR (400 MHz, DMSO-d6) spectrum of 2aj 
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13C NMR (101 MHz, DMSO-d6) spectrum of 2aj 

 

Fe
COOH
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1H NMR (400 MHz, DMSO-d6) spectrum of 3 
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13C NMR (101 MHz, DMSO-d6) spectrum of 3 
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1H NMR (400 MHz, DMSO-d6) spectrum of 4 
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13C NMR (101 MHz, DMSO-d6) spectrum of 4 

 

O

COOH
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1H NMR (400 MHz, CDCl3) spectrum of 5 
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13C NMR (101 MHz, CDCl3) spectrum of 5 

 


