Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

Molecular-iodine catalyzed selective construction of cyclopenta[b]indoles from indoles and acetone: a green gateway to indole-fused cycles

Prantika Bhattacharjee,^{a,b} Bipul Sarma^a and Utpal Bora*a

^aDepartment of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India ^bDepartment of Chemistry, Bahona College, Jorhat-785101, Assam, India

*Corresponding author email: utbora@yahoo.co.in, ubora@tezu.ernet.in

Contents

1	¹ H and ¹³ C NMR spectra of all compounds	S2
2	HRMS spectra	S48
3	Single crystal XRD data	S50
4	References	S51

1. Copies of ¹H and ¹³C NMR spectra

Fig. S1 400 MHz ¹H NMR spectrum of (2a)¹ in CDCl₃

Fig. S2 100 MHz 13 C NMR spectrum of $(2a)^1$ in CDCl₃

Fig. S3 400 MHz ¹H NMR spectrum of $(2b)^1$ in CDCl₃

Fig. S4 100 MHz 13 C NMR spectrum of $(2b)^1$ in CDCl₃

Fig. S5 400 MHz ¹H NMR spectrum of (2c)² in CDCl₃

Fig. S6 100 MHz 13 C NMR spectrum of $(2c)^2$ in CDCl₃

Fig. S7 400 MHz ¹H NMR spectrum of $(2d)^2$ in CDCl₃

Fig. S8 100 MHz ¹³C NMR spectrum of (2d)² in CDCl₃

Fig. S9 400 MHz ¹H NMR spectrum of 2e in CDCl₃

Fig. S10 100 MHz ¹³C NMR spectrum of 2e in CDCl₃

Fig. S11 400 MHz ¹H NMR spectrum of 2f in CDCl₃

Fig. S13 400 MHz ¹H NMR spectrum of (2g)¹ in CDCl₃

Fig. S14 100 MHz 13 C NMR spectrum of $(2g)^1$ in CDCl₃

Fig. S15 400 MHz ¹H NMR spectrum of (2h)² in CDCl₃

Fig. S16 100 MHz 13 C NMR spectrum of $(2h)^2$ in CDCl₃

Fig. S17 400 MHz ¹H NMR spectrum of 2i in CDCl₃

Fig. S18 100 MHz ¹³C NMR spectrum of 2i in CDCl₃

Fig. S19 400 MHz ¹H NMR spectrum of 2j in CDCl₃

Fig. S20 100 MHz ¹³C NMR spectrum of 2j in CDCl₃

Fig. S21 400 MHz ¹H NMR spectrum of 2k in CDCl₃

Fig. S22 100 MHz 13 C NMR spectrum of 2k in CDCl₃

Fig. S23 400 MHz ¹H NMR spectrum of 2l in CDCl₃

Fig. S24 100 MHz ¹³C NMR spectrum of 2l in CDCl₃

ψψ

Fig. S25 400 MHz ¹H NMR spectrum of 2m in CDCl₃

Fig. S26 100 MHz ¹³C NMR spectrum of 2m in CDCl₃

Fig. S27 400 MHz ¹H NMR spectrum of 2n in CDCl₃

Fig. S28 100 MHz 13 C NMR spectrum of 2n in CDCl₃

Fig. S29 400 MHz ¹H NMR spectrum of 20 in CDCl₃

Fig. S30 100 MHz 13 C NMR spectrum of 20 in CDCl₃

Fig. S31 400 MHz ¹H NMR spectrum of 2p in CDCl₃

Fig. S32 100 MHz 13 C NMR spectrum of 2p in CDCl₃

Fig. S33 400 MHz ¹H NMR spectrum of (2q)³ in CDCl₃

S35

Fig. S35 400 MHz ¹H NMR spectrum of $(3a)^2$ in CDCl₃

Fig. S36 100 MHz 13 C NMR spectrum of $(3a)^2$ in CDCl₃

Fig. S37 400 MHz ¹H NMR spectrum of (3b)² in CDCl₃

Fig. S38 100 MHz 13 C NMR spectrum of $(3b)^2$ in CDCl₃

Fig. S39 400 MHz ¹H NMR spectrum of 3c in DMSO- d_6

Fig. S40 100 MHz ¹³C NMR spectrum of 3c in DMSO- d_6

Fig. S41 400 MHz ¹H NMR spectrum of (3d)⁴ in CDCl₃

Fig. S42 100 MHz 13 C NMR spectrum of $(3d)^4$ in CDCl₃

Fig. S43 400 MHz ¹H NMR spectrum of (3e)⁴ in CDCl₃

Fig. S44 100 MHz ¹³C NMR spectrum of (3e)⁴ in CDCl₃

Fig. S45 400 MHz ¹H NMR spectrum of $(3a')^5$ in CDCl₃

Fig. S46 100 MHz 13 C NMR spectrum of (3a')⁵ in CDCl₃

2. Copies of HRMS spectra

Fig. S47 HRMS spectrum of 2c

Single Mass Analysis Tolerance = 100.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 1033 formula(e) evaluated with 165 results within limits (all results (up to 1000) for each mass) Elements Used:

Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	н	N	0	
403.2385	403.2386	-0.1	-0.2	12.5	C26 H31 N2 O2	700.0	8.010	0.03	26	31	2	2	
	403.2391	-0.6	-1.5	5.5	C11 H27 N14 O3	695.2	3.185	4.14	11	27	14	3	
	403.2377	0.8	2.0	0.5	C10 H31 N10 O7	696.4	4.379	1.25	10	31	10	7	
	403.2404	-1.9	-4.7	-0.5	C14 H35 N4 O9	697.8	5.866	0.28	14	35	4	9	
	403.2359	2.6	6.4	13.5	C22 H27 N8	698.8	6.787	0.11	22	27	8		
	403.2417	-3.2	-7.9	4.5	C15 H31 N8 O5	697.4	5.381	0.46	15	31	8	5	•

.

н

1: TOF MS ES+

PB-465_28122020_007 454 (3.949) AM2 (Ar,30000.0,556.32,0.00,LS 1); Cm (444:483)

Fig. S48 HRMS spectrum of 2d

3. Single crystal XRD data of 2d

(CCDC 2254620)

Fig. S49 ORTEP diagram of 2d with 50% probability ellipsoids

Crystal data	2d
Formula unit	$C_{26}H_{30}N_2O_2$
Formula weight (gmol ⁻¹)	402.52
Crystal system	orthorhombic
T [K]	100 K
a [Å]	8.0818(7)
<i>b</i> [Å]	16.4868(15)
c [Å]	32.475(3)
α [°]	90
β [°]	90
γ [°]	90
Volume [Å ³]	4327.1(7)
Space group	Pbca
Z	8
$D_{cal}[g/cm^3]$	1.236
$ R_1, wR2 $	0.0429, 0.0941
Instrument	Bruker CCD Apex II
CCDC No	CCDC 2254620

Table S1 Crystallographic parameters of structures 2d

Single crystal X-ray diffraction. Single crystal X-ray diffractions were collected on a Bruker SMART APEX-II CCD diffractometer using Mo K α ($\lambda = 0.71073$ Å) radiation. Bruker SAINT software has been employed for reducing the data and SADABS for correcting the intensities of absorption. Structure was solved and refined using SHELXL with anisotropic displacement parameters for non-H atoms. In the crystal structure H-atoms are located experimentally, whereas C–H atoms were fixed geometrically using the HFIX command in SHELX-TL. No missed symmetry observed in the final check of CIF file using PLATON. Information of crystallographic parameters for the structure is furnished in Table S1.

4. References

- 1. J. Bergman, P.-O. Norrby, U. Tilstam and L. Venemalm, *Tetrahedron*, 1989, **45**, 5549-5564.
- 2. G. M. Shelke, V. K. Rao, R. K. Tiwari, B. S. Chhikara, K. Parang and A. Kumar, *RSC Adv.*, 2013, **3**, 22346-22352.
- 3. S. V. Nadkarni and J. M. Nagarkar, Green Chem. Lett. Rev., 2011, 4, 121-126.
- 4. C. Huo, C. Sun, C. Wang, X. Jia and W. Chang, *ACS Sustain. Chem. Eng.*, 2013, 1, 549-553.
- 5. S. O. Lee, J. Choi, S. Kook and S. Y. Lee, Org. Biomol. Chem., 2020, 18, 9060-9064.