[2.2]Paracyclophane-based coumarins: effective organophotocatalysts for light-induced desulfonylation processes

\author{
 Laurent Micouin ${ }^{a}$ and Erica Benedetti ${ }^{\text {a,* }}$
 a Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
 [^0] l'Académie de Paris, F-75016 Paris, France.
 E-mail: erica.benedetti@u-paris.fr
}

Supporting information

Table of Contents

General remarks S3
Synthesis and characterization of photocatalysts 3a-c S4
Synthesis and characterization of coumarin 6 S6
Synthesis and characterization of sulfonamides 4a-t S7
Synthesis and characterization of compounds 5a-k and 5q S15
HPLC analyses S19
UV-Vis Absorption spectra S21
Fluorescence emission spectra of photocatalysts 3a-c S23
Photochemical apparatus S24
Cyclic Voltammetry S25
Excitation energy of the photocatalysts S28
Photoinduced electron-transfer thermodynamics S29
EPR Studies S31
Theoretical investigations S34
References S42
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S44

General Remarks

All reactions were carried out under inert atmosphere (in oven-dried glassware, using dry solvents), unless otherwise specified. All commercially available compounds, including anilines 1a-f and isothiocyanates 2a-c, were purchased from Merck, Fisher Scientific or TCl chemicals and used as received. Analytical thin layer chromatography (TLC) was performed on silica gel plates (Merck 60F254) visualized with a UV lamp (254 nm). Flash chromatography was performed on silica gel (60-230 mesh) unless otherwise specified. Organic extractswere dried over anhydrous MgSO_{4}. NMR spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$) were recorded on Bruker Avancell 500 spectrometer, at 500 MHz (H value) in CDCl_{3} or DMSOd_{6}. Spectra were referenced to residual chloroform ($7.26 \mathrm{ppm},{ }^{1} \mathrm{H} ; 77.0 \mathrm{ppm},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$) or dimethyl sulfoxide ($2.50 \mathrm{ppm},{ }^{1} \mathrm{H} ; 39.52 \mathrm{ppm},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$). Chemical shifts are reported in ppm , multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), and m (multiplet or overlap of nonequivalent resonances), dd (doublet of doublet), td (triplet of doublet), and br (broad signal). Coupling constants, J, are reported in hertz (Hz). All NMR spectra were obtained at 300 K unless otherwise specified. IR spectra were obtained using a spectrum one FT-IR spectrometer (Perkin Elmer). High Resolution mass spectra were recorded on a ThermoFischer Exactive Orbitrap spectrometer. HPLC analyses were performed on a Shimadzu chromatograph equipped with a diode array UV/VIS detector. Optical rotations (α_{D}) were measured on a Perkin Elmer polarimeter (model 341) at $20^{\circ} \mathrm{C}$. All photochemical transformations have been performed in a Rayonet RPR-200 photochemical reactor (Manufacturer: The Southern New England Ultraviolet Co) equipped with eight 300 nm lamps ($12^{\prime \prime}$ in length, 14 w . Manufacturer: The Southern New England Ultraviolet Co Reference: RPR-3500A). Borosilicate glass vials (sealed tubes) placed in the middle of the reactor chamber were employed to run the reactions (distance from the light source to the irradiation vessel $\sim 12 \mathrm{~cm}$). For more information about the photochemical apparatus see the supporting information.

Synthesis and characterization of photocatalysts 3a-c

General procedure for the esterification reactions (GP1)

4-Hydroxy[2.2]paracyclophane ${ }^{1}$ (1, 1 equiv.), DMAP (0.15 equiv.), and the desired propiolic acid (1.5 equiv.) were dissolved in dry $\operatorname{DCM}(0.02 \mathrm{M})$ under an argon atmosphere. $\operatorname{DCC}(1 \mathrm{M}$ in $\mathrm{DCM}, 1.5$ equiv.) was added turning the reactions dark yellow and cloudy. The mixtures were stirred at rt for 4-16 h, followed by filtration through a short plug of silica gel with DCM washings. The filtrates were concentrated under reduced pressure and the crudes products were purified by silica gel column chromatography to afford the products as amorphous solids.

2a

Compound 2a: According to GP1, starting from compound 1 (1 equiv., 736 mg, 3.28 mmol); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound 2a (712 $\mathrm{mg}, 2.45 \mathrm{mmol}, 75 \%$) as an amorphous white solid. This compound has been previously characterized by our team: ${ }^{21} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.95$ (dd, J = 7.8, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.41(\mathrm{~m}, 5 \mathrm{H}), 6.06(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-2.93(\mathrm{~m}, 7 \mathrm{H}), 2.72$ (ddd, $\mathrm{J}=12.6,10.1,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.6$ (C), 148.4 (C), 141.8 (C), 139.5 (C), 139.1 (C), 135.4 (CH), 133.4 (CH), 132.9 (CH), 132.4 (CH), 131.2 (C), 130.7 (CH), 129.7 (CH), 127.6 (CH), 87.7 (C), $72.3(\mathrm{C}), 35.3\left(\mathrm{CH}_{2}\right), 34.9\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 4.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \operatorname{IR}$ (neat): 2987, 2959, 2929, 2900, 2856, 2234, 1721, 1412, 1240, 1222, 1103, 1086, 1043, 899, 740, $716 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2}$: 291.1380; found: 291.1386

Compound 2b: According to GP1, starting from compound 1 (1 equiv., $200 \mathrm{mg}, 0.89$ mmol); flash chromatography on silica gel (EtOAc/Cy, 9:1) gave compound $\mathbf{2 b}$ (185 $\mathrm{mg}, 0.58 \mathrm{mmol}, 65 \%$) as an amorphous white solid. This compound has been previously characterized by our team: ${ }^{21} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.97$ (dd, J = 7.8, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.38(\mathrm{~m}, 5 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 3.30-2.90(\mathrm{~m}, 7 \mathrm{H}), 2.87-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.8$ (C), 148.5 (C), 141.7 (C), 139.5 (C), 139.0 (C), 135.3 (CH), 133.3 (CH), 132.8 (CH), 132.3 (CH), 131.2 (C), 130.6 (CH), 129.7 (CH), 127.6 (CH), 96.5 (C), 72.1 (C), 35.2 $\left(\mathrm{CH}_{2}\right), 34.8\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 21.7\left(2 \mathrm{CH}_{3}\right), 20.6(\mathrm{CH})$ ppm. IR (neat): 2978, 2931, 2855, 2246, 1723, 1219, 1161, 1003, $716 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2}: 319.1693$; found: 319.1698.

2 c

Compound 2c According to GP1, starting from compound 1 (1 equiv., $250 \mathrm{mg}, 1.11$ mmol); flash chromatography on silica gel Cy/EtOAc 14:1) gave compound 2c (320 $\mathrm{mg}, 0.908 \mathrm{mmol}, 81 \%$) as an amorphous yellow solid. This compound has been previously characterized by our team: ${ }^{21} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.61(\mathrm{~m}$, $2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.50(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{dd}, J=$ $(\mathrm{m}, 5 \mathrm{H}), 2.77$ (ddd, $J=13.4,10.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}^{2}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.9(\mathrm{C}), 148.5(\mathrm{C})$, 141.8 (C), 139.5 (C), 139.1 (C), 135.1 (CH), 133.4 (CH), 133.2 (2CH), 132.8 (CH), 132.4 (CH), 131.3 (C), $130.9(\mathrm{CH}), 130.9(\mathrm{CH}), 129.7(\mathrm{CH}), 128.6(2 \mathrm{CH}), 127.6(\mathrm{CH}), 119.4(\mathrm{C}), 88.6(\mathrm{C}), 80.4(\mathrm{C}), 35.2\left(\mathrm{CH}_{2}\right)$, $34.8\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right)$ ppm. IR (neat): 2928, 2852, 2219, 1721, 1490, 1281, 1153, 1084, 918, $758 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{2}$: 353.1536; found: 353.1544.

General Procedure for the cyclization reactions (GP2)

A 20 mL microwave vial was charged with Echavarren's catalyst (0.05 equiv.) under an Argon atmosphere. Dry DCE (0.1 M) was then added, and the resulting mixture was stirred at $r t$ for 5 min . Compound $\mathbf{2}$ (1 equiv.) was finally added. The tube was sealed, then evacuated and refilled with argon three times. The solution was irradiated in a microwave reactor at $80^{\circ} \mathrm{C}$ for 1 h . At the end of the reaction, the mixture was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography. Products 3a-c were isolated as amorphous solids.

3a

Compound 3a: According to GP2, starting from compound 2a (1 equiv., $700 \mathrm{mg}, 2.41$ mmol); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound 3a (469 $\mathrm{mg}, 1.62 \mathrm{mmol}, 67 \%)$ as an amorphous white solid. This compound has been previously characterized by our team: ${ }^{2}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.74$ ($\mathrm{d}, \mathrm{J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (ddd, $J=9.9,8.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{dd}, J=7.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=7.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.13(\mathrm{~m}, 2 \mathrm{H})$, 3.07 (ddd, $J=13.3,10.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (dt, $J=14.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (ddd, $J=13.4,10.8,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{dt}, J=13.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.7$ (C), 153.3 (C), 153.1 (C), 139.8 (C), 139.7 (C), 137.7 (C), 135.9 (CH), 133.1 (CH), 132.2 (CH), 131.9 (CH), 129.0 $(\mathrm{CH}), 128.6(\mathrm{C}), 127.1(\mathrm{CH}), 121.9(\mathrm{C}), 116.0(\mathrm{CH}), 36.9\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 22.6$ $\left(\mathrm{CH}_{3}\right)$ ppm. IR (neat): 2924, 2854, 2248, 1721, 1573, 1415, 1355, 1191, 1042, 914, 730, $720 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2}$: 291.1380; found: 291.1385.

3b

Compound 3b: According to GP2, starting from compound 2b (1 equiv., $180 \mathrm{mg}, \mathbf{0 . 5 7}$ mmol); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound 3b (160 $\mathrm{mg}, 0.502 \mathrm{mmol}, 89 \%$) as an amorphous white solid. This compound has been previously characterized by our team: ${ }^{21} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.72$ (d, J = 7.7 $\mathrm{Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (ddd, $J=7.2,5.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.46$ (dd, $J=7.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{p}, J=6.7 \mathrm{~Hz}$, 1 H), $3.26-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.07$ (ddd, $J=13.2,10.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dt, J = 14.8, 9.1 Hz, 1H), 2.72 (ddd, J $=13.4,10.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dt}, J=13.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.5$ (C), 161.5 (C), 153.7 (C), 139.7 (C), 139.2 (C), 137.5 (C), 135.5 (CH), 133.0 (CH), 132.1 (CH), 132.0 (CH), 128.9 (CH), 128.7 (C), 127.1 (CH), 120.3 (C), 111.7 (CH), 37.9
$\left(\mathrm{CH}_{2}\right), 35.5\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right), 30.3(\mathrm{CH}), 30.2\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (neat): 2965, 2931, 2854, 1718, 1571, 1456, 1358, 1176, 1027, 918, 863, $682 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2}$: 319.1693; found: 319.1697.

3c

Compound 3c: According to GP2, starting from compound 2c (1 equiv., $310 \mathrm{mg}, 0.88$ mmol); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound 3c (180 $\mathrm{mg}, 0.51 \mathrm{mmol}, 58 \%$) as an amorphous white solid. This compound has been previously characterized by our team: ${ }^{21} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.80-7.18(\mathrm{br} \mathrm{m}$, $5 \mathrm{H}), 6.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}$, $2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (ddd, $J=13.3,10.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (ddd, $J=13.0,10.5$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (ddd, $J=13.3,10.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88-2.65 (m, 2H), 2.49 (ddd, J = 14.1, 9.7, 8.0 Hz , $1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.18$ (ddd, $J=13.3,9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.9$ (C), 156.1 (C), 154.2 (C), 141.3 (C), 139.5 (C), 138.4 (C), 138.0 (C), 136.6 (CH), 132.9 (CH), 132.2 (CH), $131.7(\mathrm{CH}), 129.6(\mathrm{CH}), 128.9(\mathrm{br}, 4 \mathrm{CH}), 128.3\left(\mathrm{CH}\right.$ and C), $126.9(\mathrm{CH}), 120.6(\mathrm{C}), 115.9(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right)$, $35.1\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right)$ ppm. IR (neat): 2938, 2856, 2248, 1716, 1568, 1446, 1415, 1355, 1183, 1038, 910, $730 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{2}$: 353.1535; found: 353.1545 .

Synthesis and characterization of coumarin 6

so

Compound SO According to GP1, starting from commercially available 2,5-dimethylphenol (1 equiv., $250 \mathrm{mg}, 0.26 \mathrm{~mL}, 2.046 \mathrm{mmol}$); flash chromatography on silica gel ($\mathrm{Cy} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $7: 3$) gave compound $\mathbf{S O}$ ($214 \mathrm{mg}, 1.14 \mathrm{mmol}, 56 \%$) as an amorphous yellow solid. This compound has been previously characterized by our team: ${ }^{21} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.11 (d, J = 7.7 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H), 6.86 (s, 1H), 2.32 (s, 3H), 2.16 (s, 3H), 2.07 (s, 3H) ppm. ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9(\mathrm{C}), 148.4$ (C), $137.0(\mathrm{C}), 130.9$ (CH), 127.2 (CH), 126.7 $(\mathrm{C}), 122.2(\mathrm{CH}), 87.7(\mathrm{C}), 72.1(\mathrm{C}), 20.8\left(\mathrm{CH}_{3}\right), 15.7\left(\mathrm{CH}_{3}\right), 3.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \operatorname{IR}$ (neat): 2233,1725,1508, 1251, 1229, 1203, 1106, 1042, 886, 810, $741 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z [M+H]+ calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}$: 189.0910; found: 189.0912 .

Compound 6: According to GP2, starting from compound S0 (1 equiv., $180 \mathrm{mg}, 0.96$ mmol); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound 6 (132 mg , $0.70 \mathrm{mmol}, 73 \%$) as an amorphous white solid. This compound has been previously characterized by our team: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.16(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4$ (C), 154.5 (C), 153.2 (C), 134.1 (C), 132.2 (CH), 127.6 (CH), $124.8(\mathrm{C}), 118.9(\mathrm{C}), 116.2(\mathrm{CH}), 25.2\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3}\right)$ ppm. IR (neat): 1703, 1585, 1411, 1206, 1136, 1064, 920, $819 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}$: 189.0910; found: 189.0909.

Synthesis and characterization of sulfonamides 4a-t

General Procedure for the tosylation reactions (GP3)

A flame-dried vial was charged with the desired amine (1 equiv.), triethylamine (1.5 equiv.) and DCM (0.1 M) under an argon atmosphere. The appropriate sulphonyl chloride (1.1 equiv.) was then added, and the resulting mixture was stirred at rt overnight. Water was then added, the immiscible phases were separated, and the aqueous layer was extracted with DCM (3x). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography. The expected products were isolated as amorphous solids unless otherwise specified.

Compound S1. According to G3, starting from benzylamine (1 equiv., $0.408 \mathrm{~mL}, 3.73$ mmol) and tosyl chloride (1.1 equiv., $783 \mathrm{mg}, 4.106 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound S1 ($966 \mathrm{mg}, 3.7 \mathrm{mmol}, 99 \%$) as a pinkish solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H} N \mathrm{NM}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.6,136.9,136.3$, $129.8,128.7,128.0,127.9,127.2,47.3,21.5 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{4}$

Compound S2. According to G3, starting from benzylamine (1 equiv., $400 \mathrm{mg}, 0.408 \mathrm{~mL}$, 3.73 mmol) and benzenesulfonyl chloride (1.1 equiv., $725 \mathrm{mg}, 0.52 \mathrm{~mL}, 4.106 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound S2 (914 mg, $3.7 \mathrm{mmol}, 99$ \%) as an amorphous white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.34-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.86-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 140.0,136.2,132.9,129.3,128.9,128.1,128.0,127.2,47.4 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{5}$

Compound S3. According toto G3, starting from benzylamine (1 equiv., $300 \mathrm{mg}, 0.306$ $\mathrm{mL}, 2.8 \mathrm{mmol}$) and 2-mesitylenesulfonyl chloride (1.1 equiv., $674 \mathrm{mg}, 3.08 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound $\mathbf{S 3}$ ($717 \mathrm{mg}, 2.48 \mathrm{mmol}$, $89 \%)$ as an amorphous white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 4.72$ $(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 141.8,138.6,135.8,132.9,131.5,128.1,127.4,46.3,22.4,20.4 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{6}$

S4

Compound S4. According to G3, starting from benzylamine (1 equiv., $0.26 \mathrm{~mL}, 2.3$ mmol) and mesyl chloride (1.1 equiv., $0.20 \mathrm{~mL}, 2.6 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound $\mathbf{S 4}(300 \mathrm{mg}, 1.62 \mathrm{mmol}, 69 \%$) as a colourless oil. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H} N \mathrm{NR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37$ $-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $136.6,129.0,128.2,127.9,47.3,41.2 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{7}$

Compound (\pm)-S5. According to G3, starting from DL-alpha-methylbenzylamine (1 equiv., $0.213 \mathrm{~mL}, 1.65 \mathrm{mmol}$) and tosyl chloride (1 equiv., $314 \mathrm{mg}, 1.65 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound (\pm)-S5 ($448 \mathrm{mg}, 1.63 \mathrm{mmol}$, $99 \%)$ as a white solid. This compound has been previously characterized by our team: ${ }^{3}$ ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H})$, $5.06-4.76(\mathrm{br} m, 1 \mathrm{H}), 4.46(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.3,142.1,137.7,129.6,128.7,127.6$ (br), 127.2, 126.2, 53.7, 23.7, 21.6 ppm. Spectroscopic data are consistent with the literature data for this compound. ${ }^{8}$

Compound S6. According to G3, starting from 4-fluorobenzylamine (1 equiv., 0.18 mL , 1.6 mmol) and tosyl chloride (1.1 equiv., $335 \mathrm{mg}, 1.76 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound S6 (442 mg, $1.58 \mathrm{mmol}, 99 \%$) as a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=8.3,5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.95(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~s}, J=40.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl $)^{2}: \delta 162.5(d, J=246.6 \mathrm{~Hz}), 143.8,136.9,132.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 129.9,129.7(\mathrm{~d}, J=$ 8.3 Hz), 127.3, 115.7 (d, $J=21.5 \mathrm{~Hz}$), $46.7,21.7 \mathrm{ppm} .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-114.3$ (F) ppm. Spectroscopic data are consistent with the literature data for this compound. ${ }^{9}$

Compound S7. According to G3, starting from 4-methoxybenzylamine (1 equiv., 0.19 $\mathrm{mL}, 1.46 \mathrm{mmol}$) and tosyl chloride (1.1 equiv., $306 \mathrm{mg}, 1.604 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound S7 (421 mg, 1.44 mmol, 99%) as a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}: \delta 159.3,143.5,136.8,129.7,129.3,128.2,127.2,114.1,55.3,46.8\right.$, 21.6 ppm . Spectroscopic data are consistent with the literature data for this compound. ${ }^{5}$

Compound S8. According to G3, starting from tryptamine (1 equiv., 250 mg , $1.56 \mathrm{mmol})$ and tosyl chloride (1.1 equiv., $327 \mathrm{mg}, 1.72 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 3:7) gave compound S8 (380 mg, $1.209 \mathrm{mmol}, 77 \%$) as a pinkish solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.3,136.7,136.4,129.6,127.0,126.8,122.6,122.3,119.5,118.5,111.6,111.3$, $43.0,25.5,21.5 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{10}$

Compound S9. According to G3, starting from methylamine (33 wt . \% in absolute ethanol, 1 equiv., $300 \mathrm{mg}, 3.19 \mathrm{mmol}$) and tosyl chloride (1.1 equiv., $668 \mathrm{mg}, 3.51 \mathrm{mmol}$); compound $\mathbf{S 9}$ ($300 \mathrm{mg}, 1.62 \mathrm{mmol}, 51 \%$) was isolated as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82-7.70$ (m, 2H), $7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.6,135.8,129.8,127.3,29.4,21.6 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{11}$

Compound S10. According to G3, starting from butylamine (1 equiv., $200 \mathrm{mg}, 0.27 \mathrm{~mL}$, 2.73 mmol) and tosyl chloride (1 equiv., $521 \mathrm{mg}, 2.73 \mathrm{mmol}$); solvent evaporation gave compound S10 ($615 \mathrm{mg}, 2.71 \mathrm{mmol}, 99 \%$) as a clear oil. $\mathbf{S 1 0}$ was used in the next synthetic step without further purification. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.42-$ $1.32(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 143.3,137.1,129.7,127.1,42.9,31.6,21.5,19.7,13.5 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{12}$

Compound S11. This intermediate was prepared according to the following procedure: PTSA (1 equiv., $2 \mathrm{~g}, 11.68 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(1.1$ equiv., $1.3 \mathrm{~g}, 1.79 \mathrm{~mL}, 12.85$ mmol) and DMAP (0.1 equiv., $0.14 \mathrm{~g}, 1.17 \mathrm{mmol}$) was dissolved in DCE (12 mL) at room temperature under an argon atmosphere. $\mathrm{Boc}_{2} \mathrm{O}$ (1.15 equiv., $2.93 \mathrm{~g}, 2.87 \mathrm{~mL}, 13.43$ mmol) was added and the resulting mixture was stirred at rt overnight. Water was then added, the immiscible phases were separated, and the aqueous layer was extracted with DCM ($3 x$). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was triturated in heptane to afford $\mathbf{S 1 1}(2.87 \mathrm{~g}, 10.58 \mathrm{mmol}, 91 \%)$ as a white amorphous solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.45$ (s, 3H), 1.38 (s, 9H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.0,144.7,135.9,129.5,128.2,84.1,27.9$, 21.6. Spectroscopic data are consistent with the literature data for this compound. ${ }^{12}$

Compound S12. According to G3, starting from allylamine (1 equiv., $500 \mathrm{mg}, 0.66 \mathrm{~mL}$, 8.76 mmol) and tosyl chloride (1 equiv., $1.67 \mathrm{~g}, 8.76 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9 then 2:8) gave compound S12 (1.54 g, $7.28 \mathrm{mmol}, 83 \%$) as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.72$ (ddt, J = 16.2, $10.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=10.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.5,137.0,133.0,129.7,127.2,117.7$, $45.8,21.5 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{13}$

Compound (S)-S13. This intermediate was prepared according to the following procedure: to a solution of $(2 \mathrm{~S})$-1-methoxy-1-oxopropan-2-aminium chloride (1 equiv., $500 \mathrm{mg}, 3.58 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2.2$ equiv., $797.48 \mathrm{mg}, 1.095 \mathrm{~mL}, 7.88 \mathrm{mmol})$ and DMAP (0.005 equiv., $2.19 \mathrm{mg}, 0.018 \mathrm{mmol}$), in $\mathrm{DCM}(10 \mathrm{~mL})$, was added a solution of p-toluene sulfonyl chloride (1.2 equiv., $819.49 \mathrm{mg}, 4.3 \mathrm{mmol}$) in DCM (10 mL) at $0^{\circ} \mathrm{C}$ under an argon atmosphere. The resulting mixture was warmed-up to rt and stirred overnight. Water was then added, the immiscible phases were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 x)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (eluent: EtOAc/heptane 3:7) to afford S13 (840 mg, $3.26 \mathrm{mmol}, 91 \%$) as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80-7.62(\mathrm{~m}$, $2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.6,143.7,136.7,129.6,127.2$, $52.6,51.4,21.5,19.8 \mathrm{ppm} .[\alpha]_{\mathrm{D}}{ }^{20}-37\left(\mathrm{c} 0.22, \mathrm{CHCl}_{3}\right)$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{14}$

Compound (S)-S14. According to G3, starting from tert-butyl (2S)-2-aminopropanoate (1 equiv., $726.01 \mathrm{mg}, 5 \mathrm{mmol}$) and tosyl chloride (1 equiv., $953.2 \mathrm{mg}, 5 \mathrm{mmol}$); flash $\mathrm{mmol}, 98 \%)$ as a colourless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, J = 8.0 Hz, 2H), 5.18 (d, J= $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dq}, J=8.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.34$ (d, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.27(\mathrm{~s}, 9 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.3,143.5,136.8$, $129.6,127.3,82.4,51.9,27.6,21.5,20.1 \mathrm{ppm} .[\alpha]_{\mathrm{D}}{ }^{20}-32$ (c $0.2, \mathrm{CHCl}_{3}$). Spectroscopic data are consistent with the literature data for this compound. ${ }^{15}$

Compound S15. According to G3, starting from N-methylethylenediamine (1 equiv., $0.12 \mathrm{~mL}, 1.35 \mathrm{mmol}$) and tosyl chloride (2 equiv., $728 \mathrm{mg}, 2.70 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:1) gave compound S15 (226 mg, 0.59 mmol, 44%) as a white solid. This compound has been previously characterized by our team: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.94(\mathrm{dd}, J=14.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.9,143.6,136.6$, $133.7,129.9,129.8,127.4,127.2,49.8,41.4,36.1,21.57,27.56 \mathrm{ppm}$. IR (neat) : v 3308, 2882, 2254, 1598, 1453, 1333, 1159, 1090, 1048, 906, $730 \mathrm{~cm}^{-1}$. HRMS (ESI-Orbitrap) : $\mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$: 381.0948; found : 381.0954.

General Procedure for the benzoylation reactions (GP4)

A round-bottomed flask containing the desired precursor (S1-15, 1 equiv.), DMAP (0.1 eq) and triethylamine (1.5 equiv.) dissolved in DCM (0.1 M), was cooled to $0^{\circ} \mathrm{C}$. Benzoyl chloride (1.5 equiv.) was then added dropwise. The reaction was warmed up to rt and stirred overnight. Water was then added, the immiscible phases were separated, and the aqueous layer was extracted with DCM (3x). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The
crude residue was purified by silica gel column chromatography. Products were 4a-t isolated as amorphous solids unless otherwise specified. as a white solid.

Compound 4a. According to GP4, starting from N -benzyl-4-methylbenzene-1sulfonamide ($\mathbf{S 1}, 1$ equiv., $1.05 \mathrm{~g}, 4.02 \mathrm{mmol}$), and benzoyl chloride (1.5 equiv., 0.7 $\mathrm{mL}, 6.03 \mathrm{mmol})$; flash chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{Cy}, 1: 9$) gave compound 4a ($1.14 \mathrm{~g}, 3.13 \mathrm{mmol}, 78 \%$) as a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.58(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ $-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 7 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.6,144.7,136.3,136.0,135.0,131.7,129.4,128.6,128.5,128.3,128.2,128.0$, $127.8,51.2,21.6 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{16}$

Compound 4b. According to GP4, starting from N-benzylbenzenesulfonamide (S2, 1 equiv., $980 \mathrm{mg}, 3.96 \mathrm{mmol}$) and benzoyl chloride (1.5 equiv., $0.69 \mathrm{~mL}, 5.94 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound 4b (1.3 g, 3.69 $\mathrm{mmol}, 93 \%)$ as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.59$ (t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.51-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H})$, 5.03 (s, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.5,138.8,136.0,134.7,133.6,131.8,128.7$, $128.6,128.4,128.2,127.9,127.8,51.3 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{17}$

Compound $\mathbf{4 c}$. According to GP4, starting from N-benzyl-2,4,6-trimethylbenzene1 -sulfonamide ($\mathbf{S 3}, 1$ equiv., $150 \mathrm{mg}, 0.52 \mathrm{mmol}$) and benzoyl chloride (1.5 equiv., $0.09 \mathrm{~mL}, 0.78 \mathrm{mmol}$); flash chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{Cy}, 1: 9$) gave compound $4 \mathrm{c}(122 \mathrm{mg}, 0.31 \mathrm{mmol}, 60 \%$) as a white solid. This compound has been previously characterized by our team: ${ }^{3} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.41-7.36(\mathrm{~m}$, 1H), $7.35-7.21(\mathrm{~m}, 9 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}{ }^{13}\left[{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3,143.7,140.4,136.5,135.2,133.0,132.1,131.1,128.6,128.1$, 127.8,127.7, 127.4,50.2, 22.4, 21.0 ppm. IR (neat): v2977, 2255, 1681, 1603, 1344, 1278, 1165, 1056, 911, $733 \mathrm{~cm}^{-1}$. HRMS (ESI-Orbitrap): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}$: 394.1471; found: 394.1467.

4d

Compound 4d. According to GP4, starting from N-benzylmethanesulfonamide (S4, 1 equiv., $150 \mathrm{mg}, 0.81 \mathrm{mmol}$) and benzoyl chloride (1.5 equiv., $0.14 \mathrm{~mL}, 1.22 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9 to 2:8) gave compound 4d (222 $\mathrm{mg}, 0.77 \mathrm{mmol}, 95 \%)$ as a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.6,135.6,133.8,132.3,129.0,128.9,128.4,128.1,52.2,42.9 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{18}$

Compound (\pm)-4e. According to GP4, starting from 4-methyl-N-(1-phenylethyl)benzene-1-sulfonamide ((\pm)-S5, 1 equiv., $448 \mathrm{mg}, 1.63 \mathrm{mmol})$ and benzoyl chloride (1.5 equiv., $0.28 \mathrm{~mL}, 2.44 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound (\pm)-4e ($600 \mathrm{mg}, 1.58 \mathrm{mmol}, 97 \%$) a a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDkCl}_{3}\right): \delta 7.51(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 9 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.48(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 18.6 ppm . Spectroscopic data are consistent with the literature data for this compound. ${ }^{19}$

Compound 4f. According to GP4, starting from N-[(4-fluorophenyl)methyl]-4-methylbenzene-1-sulfonamide (S6, 1 equiv., $200 \mathrm{mg}, 0.72 \mathrm{mmol}$) and benzoyl chloride (1.5 equiv., $0.12 \mathrm{~mL}, 1.074 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound $\mathbf{4 f}$ ($273 \mathrm{mg}, 0.71 \mathrm{mmol}, 99 \%$) as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl $)_{3}$: $\delta 171.5,162.4(\mathrm{~d}, J=246.7 \mathrm{~Hz}), 144.8,135.9,135.0,132.0(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 131.8$, 130.0 (d, J = 8.2 Hz), 129.5, 128.4, 128.3, 128.2, 115.5 (d, J = $21.6 \mathrm{~Hz}, 2 \mathrm{CH}$), 50.3, $21.6 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{DMSO}$): $\delta-114.24$ (F) ppm. Spectroscopic data are consistent with the literature data for this compound. ${ }^{19}$

Compound $\mathbf{4 g}$. According to GP4, starting from N-[(4-methoxyphenyl)methyl]-4-methylbenzene-1-sulfonamide (S7, 1 equiv., $200 \mathrm{mg}, 0.67 \mathrm{mmol}$) and benzoyl chloride (1.5 equiv., $0.17 \mathrm{~mL}, 1.43 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound $\mathbf{4 g}$ ($255.17 \mathrm{mg}, 0.65 \mathrm{mmol}, 94 \%$) as a white solid. This compound has been previously characterized by our team: ${ }^{3} \mathrm{H} \mathrm{HMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.6,159.2,144.6,136.0,135.0,131.7,129.5,129.4,128.4,128.31$, $128.25,128.19,113.9,55.3,50.7,21.6$ ppm. IR (neat): v 2981, 1686, 1613, 1598, 1514, 1447, 1357, 1249, 1167, 1087, 1033, 955, 814, $731 \mathrm{~cm}^{-1}$. HRMS (ESI-Orbitrap): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}$: 396.1264; found: 396.1257.

Compound 4h. According to GP4, starting from N-[2-(1H-indol-3-yl)ethyl]-4-methylbenzene-1-sulfonamide (S8, 1 equiv., $200 \mathrm{mg}, 0.64 \mathrm{mmol}$) and benzoyl chloride (1.5 equiv., $0.11 \mathrm{~mL}, 0.95 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound 4h ($158 \mathrm{mg}, 0.302 \mathrm{mmol}, 48 \%$) as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.37(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.67(\mathrm{~m}$, $4 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{qd}, J=5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.25-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 4.17-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.14-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl_{3}): $\delta 171.4,168.4,144.9,136.3,136.0,134.8,134.5,131.9,131.4,130.4,129.5$, $129.2,128.7,128.4,128.1,127.7,125.8,125.2,123.9,118.6,117.5,116.6,47.6,25.6,21.6 \mathrm{ppm}$. IR (neat): v 2924, 2255, 1683, 1600, 1453, 1376, 1356, 1167, 910, $732 \mathrm{~cm}^{-1}$. HRMS (ESI-Orbitrap): m/z $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: 523.1686; found : 523.1678.

Compound 4i. According to GP4, starting from N-methyl-p-toluenesulfonamide (S9, 1 equiv., $150 \mathrm{mg}, 0.81 \mathrm{mmol}$) and benzoyl chloride (1.5 equiv., $0.14 \mathrm{~mL}, 1.22 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound $4 \mathbf{i}$ ($242 \mathrm{mg}, 0.81 \mathrm{mmol}$, quantitative) as a white solid. This compound has been previously characterized by our team: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 7.84(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.41$ (dd, J $=10.8,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta 171.5,144.9,135.1,134.4,132.0,129.6,128.50,128.47,128.44,128.3,35.6,21.7 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{20}$

Compound 4j. According to GP4, starting from N-butyl-4-methylbenzene-1sulfonamide (S10, 1 equiv., $250 \mathrm{mg}, 1.1 \mathrm{mmol}$) and benzoyl chloride (1.5 equiv., 0.19 $\mathrm{mL}, 1.65 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Pentane, 2:8) gave compound 4 j ($262 \mathrm{mg}, 0.079 \mathrm{mmol}, 72 \%$) as an off-white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78$ (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.45$ $(\mathrm{s}, 3 \mathrm{H}), 1.67(\mathrm{dt}, J=15.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{dt}, J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl_{3}): $\delta 171.6,144.6,136.2,135.4,131.6,129.5,128.4,128.2,128.1,47.9,31.7,21.6$, 19.8, 13.5 ppm . Spectroscopic data are consistent with the literature data for this compound. ${ }^{21}$

Compound 4k. According to GP4, starting from S11 (1 equiv., $1.36 \mathrm{~g}, 5 \mathrm{mmol}$) and benzoyl chloride (1 equiv., $0.58 \mathrm{~mL}, 5 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/heptane, 2:8) gave compound $\mathbf{4 k}(400 \mathrm{mg}, 1.06 \mathrm{mmol}, 21 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.11-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 167.4,148.6,145.1,136.0,134.7,133.6,130.7,129.5,128.9,85.5,27.6,21.7 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{22}$

Compound 4I. According to GP4, starting from 4-methyl-N-(prop-2-en-1-yl)benzene-1-sulfonamide (S12, 1 equiv., $300 \mathrm{mg}, 1.42 \mathrm{mmol}$) and benzoyl chloride (1.5 equiv., $0.25 \mathrm{~mL}, 2.13 \mathrm{mmol})$; flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound 41 ($421 \mathrm{mg}, 1.33 \mathrm{mmol}, 94 \%$) as a white solid. This compound has been previously characterized by our team: ${ }^{3} 1 \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2 H), $7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.76$ (ddt, J=17.0,10.4,5.7 Hz, 1 H), 5.10 (ddd, $J=18.2,13.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 171.4,144.8,136.1,134.9,132.8,131.6,129.5,128.7,128.2,128.0,118.8,50.3,21.7$ ppm . Spectroscopic data are consistent with the literature data for this compound. ${ }^{23}$

Compound $4 m$. According to GP4, starting from N-benzyl-4-methylbenzene-1sulfonamide ($\mathbf{S 1}, 1$ equiv., $150 \mathrm{mg}, 0.57 \mathrm{mmol}$) and 4-fluorobenzoyl chloride (1.5 equiv., $0.10 \mathrm{~mL}, 0.86 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound 4 m ($226 \mathrm{mg}, 0.57 \mathrm{mmol}$, quantitative) as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.58(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.16(\mathrm{~m}, 7 \mathrm{H}), 7.09-6.94(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~s}$, $2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.6,164.8(\mathrm{~d}, \mathrm{~J}=253.5 \mathrm{~Hz}), 144.8,136.0$, $135.6,131.2$ ($d, J=3.4 \mathrm{~Hz}$), 131.1 ($\mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}$), 129.5, 128.6, 128.3, 128.0, 127.8, 115.3 (d, J=22.1 $\mathrm{Hz}), 51.1,21.6 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-106.3$ (F) ppm. Spectroscopic data are consistent with the literature data for this compound. ${ }^{19}$

Compound 4n. According to GP4, starting from N-benzyl-4-methylbenzene-1sulfonamide (S1, 1 equiv., $150 \mathrm{mg}, 0.57 \mathrm{mmol}$) and 4-methoxybenzoyl chloride (1.5 equiv., $0.12 \mathrm{~mL}, 0.86 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound 4 n ($182 \mathrm{mg}, 0.46 \mathrm{mmol}, 80 \%$) as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62$
(d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 7 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.83$ ($\mathrm{s}, 3 \mathrm{H}$), $2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3,162.9,144.5,136.1,135.8,131.3$, $129.5,128.5,128.4,128.1,127.7,127.2,113.5,55.4,51.4,21.6 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{24}$

Compound (S)-4o. According to GP4, starting from S13 (1 equiv., $204 \mathrm{mg}, 0.79 \mathrm{mmol})$ and benzoyl chloride (1 equiv., $0.09 \mathrm{~mL}, 0.79 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Pentane, 2:8) gave compound $\mathbf{4 0}$ ($220 \mathrm{mg}, 0.61 \mathrm{mmol}, 77 \%$) as an offwhite solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.65(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H})$, 7.32 (t, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (dd, $J=10.4,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $170.6,170.5,144.9,135.9,134.6,131.1,129.3,128.7,128.1,127.6,56.7,52.8,21.7,17.0 \mathrm{ppm} .[\alpha]_{\mathrm{D}}{ }^{20}$ -98 (c 0.2, CHCl_{3}). HRMS (ESI-Orbitrap): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}: 362.1062$; found: 362.1059.

Compound (S)-4p. According to GP4, starting from S14 (1 equiv., $300 \mathrm{mg}, 1.0 \mathrm{mmol})$ and benzoyl chloride (1equiv., $0.12 \mathrm{~mL}, 1.0 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Pentane, 2:8) gave compound $\mathbf{4 p}$ ($340 \mathrm{mg}, 0.84 \mathrm{mmol}, 84 \%$) as an offwhite solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{td}, J=7.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.4,168.8,144.7$, $136.4,135.0,130.8,129.3,128.6,127.9,127.4,82.4,57.5,27.9,21.6,16.9 \mathrm{ppm} .[\alpha]_{\mathrm{D}}{ }^{20}-92$ (c 0.18 , CHCl_{3}). HRMS (ESI-Orbitrap): $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}$: 404.1532; found: 404.1525 .

Synthesis of Compound 4q. A round-bottomed flask containing N-benzyl-4-methylbenzene-1-sulfonamide ($\mathbf{S 1}, 1$ equiv., $150 \mathrm{mg}, 0.57 \mathrm{mmol}$), and DMAP (0.1 equiv., $7 \mathrm{mg}, 0.057 \mathrm{mmol}$), dissolved in THF (5 mL), was cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{Boc}_{2} \mathrm{O}(1.5$ equiv., $0.18 \mathrm{~mL}, 0.86 \mathrm{mmol}$) was then added. The reaction was warmed up to rt and stirred overnight. Water was then added, and the resulting aqueous mixture was extracted with DCM (3x). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography eluent: EtOAc/Cyclohexane 1:9) to afford compound $\mathbf{4 q}(124 \mathrm{mg}, 0.34 \mathrm{mmol}, 60 \%)$ as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.59-7.53$ $(\mathrm{m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.31$ ($\mathrm{s}, 9 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 151.1, 144.1, 137.4, 137.1, 129.1, 128.5, 128.2, 128.1, $127.7,84.5,49.7,27.9,21.6 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{25}$

Compound 4r. According to GP4, starting from N-benzyl-4-methylbenzene-1sulfonamide ($\mathbf{S} 1,1$ equiv., $150 \mathrm{mg}, 0.57 \mathrm{mmol}$) and acetyl chloride (1.5 equiv., 0.06 mL , 0.86 mmol); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound 4 r (168 $\mathrm{mg}, 0.55 \mathrm{mmol}, 96 \%)$ as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, J = 7.3 Hz, 2H), $7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,144.9,136.7,136.5,129.8,128.6,128.0,127.8,49.5,24.9,21.6 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{26}$

Synthesis of Compound 4s. A round-bottomed flask N-benzyl-4-methylbenzene-1sulfonamide ($\mathbf{S 1} 1,1$ equiv., $100 \mathrm{mg}, 0.38 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6 equiv., $317 \mathrm{mg}, 2.3 \mathrm{mmol}$), and DMF (5 mL), was cooled to $0^{\circ} \mathrm{C}$. Mel (1.5 equiv., $0.04 \mathrm{~mL}, 0.57 \mathrm{mmol}$) was then added. The reaction was warmed up to RT and stirred overnight. Water was then added, and the resulting aqueous mixture was extracted with DCM (3x). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography eluent: EtOAc/Cyclohexane 1:9) to afford compound 4s (104 mg, 0.38 mmol , quantitative yield) as a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 4.12$ (s, 2H), $2.58(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.5,135.7,134.2,129.8$, $128.6,128.4,127.9,127.5,54.1,34.3,21.6 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{27}$

Compound 4t. According to GP4, starting from N,4-dimethyl-N-(2-((4-methylphenyl)sulfonamido)ethyl)-benzenesulfonamide (S15, 1 equiv., 150 mg , 0.26 mmol) and benzoyl chloride (1.5 equiv., $0.05 \mathrm{~mL}, 0.39 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound 4 t ($126 \mathrm{mg}, 0.26$ mmol, quantitative yield) as a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.03(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 171.5,145.1,143.6,135.6,134.8,134.1,131.6,129.8,129.7,128.5,128.2,127.4,49.6,45.3$, 36.0, 21.7, 21.6 ppm. IR (neat) : v 3068, 2980, 1688, 1598, 1345, 1163, 1089, 910, $731 \mathrm{~cm}^{-1}$. HRMS (ESI-Orbitrap): $m / z\left[M+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$: 487.1356; found : 487.1343.

Synthesis and characterization of compounds 5a-k and 5q

General procedure for the photodesulfonylation reactions (GP5)

A flame dried vial was charged with the desired compound 4 (1 equiv.), Hantzsch ester 7 (1.2 equiv.), and photocatalyst 3a (0.05 equiv.) under argon atmosphere. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M})$ was then added, and the resulting mixture was stirred at rt for 5 min . The tube wasthen sealed and evacuated and refilled with argon three times. The reaction mixture was irradiated under at 300 nm in a Rayonet chamber for $2 \mathrm{~h}\left(\mathrm{~T}=29^{\circ} \mathrm{C}\right)$. Water was then added. The immiscible phases were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. The combined organic phases were washed with brine ($2 x$), dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography. Product 5a-q were isolated as amorphous solids unless otherwise specified.

5a

Compound 5a (Table 3, entry 1). According to GP5, starting from $4 a(1$ equiv., 50 mg , 0.14 mmol); flash chromatography on silica gel (EtOAc/Cy, 7:3) gave compound 5a ($19 \mathrm{mg}, 0.09 \mathrm{mmol}, 65 \%$ yield) as a white solid. This compound has been previously
characterized by our team: ${ }^{3}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{dq}, J=8.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.4,138.1,134.4,131.6,128.8,128.6,128.0,127.7,126.9$, 44.2 ppm . Spectroscopic data are consistent with the literature data for this compound. ${ }^{28}$

Compound 5a (scale-up). According to GP5, starting from 4a (1 equiv., $500 \mathrm{mg}, 1.4 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:8) gave compound 5 ($165 \mathrm{mg}, 0.78 \mathrm{mmol}, 57 \%$ yield) as a white solid.

Compound 5a (Table 3, entry 2). According to GP5, starting from 4b (1 equiv., $50 \mathrm{mg}, 0.14 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:8) gave compound 5 ($18 \mathrm{mg}, 0.08 \mathrm{mmol}, 59 \%$ yield) as a white solid.

Compound 5a (Table 3, entry 3). According to GP5, starting from 4c (1 equiv., $50 \mathrm{mg}, 0.13 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:8) gave compound 5a ($3 \mathrm{mg}, 0.014 \mathrm{mmol}, 11 \%$ yield) as a white solid.

Compound $5 \boldsymbol{a}$ (Table 3, entry 4). According to GP5, starting from 4d (1 equiv., $50 \mathrm{mg}, 0.17 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:8) gave traces of compound 5a.

5b

Compound 5b (Table 3, entry 5). According to GP5, starting from 4e (1 equiv., 150 $\mathrm{mg}, 0.4 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound 5 b ($64 \mathrm{mg}, 0.28 \mathrm{mmol}, 72 \%$ yield) as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H} N \mathrm{NR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76$ (dd, J=5.2, 3.4 Hz, 2H), 7.52-7.46(m, 1H), $7.45-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.34(p, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.6,143.0,134.5$, $131.5,128.7,128.6,127.5,126.9,126.2,49.2,21.7 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for these compounds. ${ }^{16}$

Compound 5c (Table 3, entry 6). According to GP5, starting from $4 f$ (1 equiv., 50 $\mathrm{mg}, 0.13 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave
compound 5 c ($18 \mathrm{mg}, 0.07 \mathrm{mmol}, 60 \%$ yield) as a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82$ $7.76(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.3,162.3(\mathrm{~d}, J=245.9 \mathrm{~Hz}), 134.2,134.0(\mathrm{~d}, \mathrm{~J}$ $=3.3 \mathrm{~Hz}), 131.7,129.6(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 128.7,126.9,115.6(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 43.4 \mathrm{ppm} .{ }^{19} \mathrm{~F} \mathrm{NMR}(471 \mathrm{MHz}$, CDCl_{3}): $\delta-114.8$ (F) ppm. Spectroscopic data are consistent with the literature data for this compound. ${ }^{29}$

Compound 5d (Table 3, entry 7). According to GP5, starting from 4g (1 equiv., 50 $\mathrm{mg}, 0.13 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound 5d ($19 \mathrm{mg}, 0.07 \mathrm{mmol}, 61 \%$ yield) as a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81$ $7.76(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~s}$, $1 \mathrm{H}), 4.59(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.2,159.1,134.4$, $131.5,130.2,129.4,128.6,126.9,114.2,55.3,43.7 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{29}$

Bz

Compound 5 e (Table 3, entry 8). According to GP5, starting from 4h (1 equiv., 50 $\mathrm{mg}, 0.10 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound $\mathbf{5 e}$ ($19 \mathrm{mg}, 0.05 \mathrm{mmol}, 54 \%$ yield) as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.41$ (d , $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.37(\mathrm{~m}$, $6 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.3,167.3,136.3,134.3,134.2,131.7,131.4,130.5$, $128.8,128.5,128.44,128.43,126.6,125.2,124.8,123.8,118.9,118.8,116.5,39.4,25.0 \mathrm{ppm}$. IR (neat): v 3346, 3066, 2930, 2489, 1679, 1644, 1537, 1453, 1378, 1357, 908, $712 \mathrm{~cm}^{-1}$. HRMS (ESI-Orbitrap) : $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$: 369.1598; found : 369.1594.

Compound $5 \boldsymbol{f}$ (Table 3, entry9). According to GP5, starting from 4 i (1 equiv., $50 \mathrm{mg}, 0.17$ mmol); flash chromatography on silica gel (EtOAc/Cy, 3:7) gave compound $\mathbf{5 f}(14 \mathrm{mg}, 0.10$ $\mathrm{mmol}, 58 \%$ yield) as a white solid. This compound has been previously characterized by our team: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75$ (dd, $\left.J=5.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.53-7.46(\mathrm{~m}, 1 \mathrm{H})$, $7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.3$, $134.7,131.4,128.6,126.8,26.9 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{30}$

Compound 5 g (Table 3, entry 10). According to GP5, starting from 4j (1 equiv., 50 $\mathrm{mg}, 0.15 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound 5 g ($15 \mathrm{mg}, 0.085 \mathrm{mmol}, 56 \%$ yield) as a colourless oil. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79-7.72(\mathrm{~m}$, $2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{td}, J=7.2,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.42(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.5$, $134.9,131.3,128.6,126.8,39.8,31.8,20.2,13.8 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{31}$

Compound $5 \boldsymbol{h}$ (Table 3, entry 11). According to GP5, starting from 4k (1 equiv., 100 mg , 0.27 mmol); flash chromatography on silica gel (EtOAc/Cy, 3:7) gave compound 5 h (50 $\mathrm{mg}, 0.25 \mathrm{mmol}, 84 \%$ yield) as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90(\mathrm{~s}, 1 \mathrm{H})$, $7.84-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.2,149.5,133.4,132.8,128.8,128.8,127.5,82.8,28.0 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{32}$

Compound 5 (Table 3, entry 12). According to GP5, starting from 41 (1 equiv., 50 mg , 0.16 mmol); flash chromatography on silica gel (EtOAc/Cy, 3:7) gave compound $5 \mathbf{i}$ (20 $\mathrm{mg}, 0.12 \mathrm{mmol}, 78 \%$ yield) as a colourless oil. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.54-$ $7.47(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{ddt}, J=17.0,10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (ddd,$J=17.1$, $3.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (ddd, $J=10.2,2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{tt}, J=5.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.3,134.5,134.2,131.5,128.6,126.9,116.7,42.4 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{33}$

Compound 5 (Table 3, entry 13). According to GP5, starting from 4 m (1 equiv., $50 \mathrm{mg}, 0.16 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 1:9) gave compound 5 ($16 \mathrm{mg}, 0.07 \mathrm{mmol}, 54 \%$ yield) as
a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$
 NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}$, $1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.7,162.7(\mathrm{~d}, \mathrm{~J}=252.0 \mathrm{~Hz}), 135.9,128.4(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz})$, 127.2 ($\mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}$), $126.8,125.9,125.7,113.6$ ($\mathrm{d}, J=21.9 \mathrm{~Hz}$), $42.2 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-108.1$ (F) ppm. Spectroscopic data are consistent with the literature data for this compound. ${ }^{34}$

Compound $5 \boldsymbol{k}$ (Table 3, entry 14). According to GP5, starting from 4n (1 equiv., $50 \mathrm{mg}, 0.13 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8) gave compound $5 \mathbf{k}$ ($12 \mathrm{mg}, 0.05 \mathrm{mmol}, 39 \%$ yield) as a white solid. This compound has been previously characterized by our team: ${ }^{3}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.76 (d, J = 8.7 Hz, 2H), 7.36 (d, J = $4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H})$, $4.65(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.9,162.2,138.4,128.8$, $128.8,128.0,127.6,126.6,113.8,55.4,44.1 \mathrm{ppm}$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{35}$

Compound (S)-5I (Table 3, entry 15). According to GP5, starting from 40 (1 equiv., 50 $\mathrm{mg}, 0.14 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 3:7) gave compound $51\left(10 \mathrm{mg}, 0.05 \mathrm{mmol}, 36 \%\right.$ yield) as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81$ ($\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $173.7,166.8,133.9,131.7,128.6,128.6,127.0,52.6,48.4,18.7,18.8 \mathrm{ppm} .[\alpha]_{\mathrm{D}}{ }^{20}-18\left(\mathrm{c} 0.26, \mathrm{CHCl}_{3}\right)$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{36}$

Compound (S)-5m (Table 3, entry16). According to GP5, starting from 4p (1 equiv., $50 \mathrm{mg}, 0.12 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 3:7) gave compound 5 m ($9 \mathrm{mg}, 0.036 \mathrm{mmol}, 30 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.80(\mathrm{dd}, J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.5,166.6,134.1,131.6$, $128.5,127.0,82.2,49.0,28.0,18.9 \mathrm{ppm} .[\alpha]_{\mathrm{D}}{ }^{20}+30\left(\mathrm{c} 0.46, \mathrm{CHCl}_{3}\right)$. Spectroscopic data are consistent with the literature data for this compound. ${ }^{37}$

Compound 5q (Scheme 3). According to GP5, starting from 4t (1 equiv., 50
 $\mathrm{mg}, 0.10 \mathrm{mmol}$); flash chromatography on silica gel (EtOAc/Cy, 2:8 to 1:1) gave compound $5 q$ ($21 \mathrm{mg}, 0.063 \mathrm{mmol}, 61 \%$ yield) as a white solid. This compound has been previously characterized by our team: ${ }^{31} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=11.0,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~s}$, $3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.7,142.8,133.2,133.0,130.5,128.9,127.6$, $126.3,126.0,48.3,36.9,34.7,20.5 \mathrm{ppm}$. IR (neat): v 3383, 2885, 2253, 1649, 1537, 1336, 1160, 906, $730 \mathrm{~cm}^{-1}$. HRMS (ESI-Orbitrap) : $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: 333.1267; found : 333.1256.

HPLC analyses

HPLC analyses were performed on a Shimadzu chromatograph equipped with a diode array UV/VIS detector. Chiral separations were realized on a Chiralpack ID column ($250 \times 4,6 \mathrm{~mm}$) [conditions: eluent = 'iPrOH/heptane 2:8; flow $=1 \mathrm{~mL} / \mathrm{min} ; \lambda=254 \mathrm{~nm}]$.

Figure S1. HPLC analysis of racemic compound $5 \mathbf{5}$.
This reference substrate was synthesized according to a previously described procedure. ${ }^{22}$

Figure S2. HPLC analysis of compound (S)-5I.

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 210 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.267	6433475	643253	49.480	70.693
2	9.810	6568699	266672	50.520	29.307
Total		13002175	909925	100.000	100.000

Figure S3. HPLC analysis of racemic compound 5m.
This reference substrate was synthesized according to a previously described procedure. ${ }^{38}$

Me \quad ?
Chromatogram
JB707pic1HPLC-ID-20\%iprOH-2 C:LLabSolutions\Data\Jules\JB707piclHPLC-ID-20\%iprOH-2.lcd

Figure S4. HPLC analysis of compound (S)-5m.

UV-Vis Absorption spectra

Absorption spectra were recorded on a UV-2700 spectrophotometer (Shimadzu). The photophysical measurements were performed on air-equilibrated solutions ($C=10^{-4} \mathrm{M}$), using quartz cuvettes with 1 cm optical path length. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was employed as solvent to perform the analyses.

Figure S5. Absorption spectrum of compound 3a

Figure S6. Absorption spectrum of compound 3b

Figure S7. Absorption spectrum of compound 3c

Figure S8. Absorption spectrum of compound 4a

Figure S9. Absorption spectrum of compound 7

Fluorescence emission spectra of catalysts 3a-c

Fluorescence emission spectra were recorded on a F-7000 fluorescence spectrometer (Hitachi), respectively. The photophysical measurements were performed on air-equilibrated solutions ($\mathrm{C}=10^{-4}$ M), using quartz cuvettes with 1 cm optical path length. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was employed as solvent to perform the analyses.

Figure S10. Fluorescence emission of compound 3a ($\lambda_{\text {ex }}=350 \mathrm{~nm} ; \lambda_{\max }=443 \mathrm{~nm}$)

Figure S11. Fluorescence emission of compound 3b ($\lambda_{\text {ex }}=350 \mathrm{~nm} ; \lambda_{\text {max }}=441 \mathrm{~nm}$)

Figure S12. Fluorescence emission of compound $3 \mathbf{c}\left(\lambda_{\text {ex }}=340 \mathrm{~nm} ; \lambda_{\max }=460 \mathrm{~nm}\right)$

Photochemical apparatus

All photochemical transformations have been performed in a Rayonet RPR-200 photochemical reactor (manufacturer: The Southern New England Ultraviolet Co) equipped with eight 300 nm lamps (12"in length, 14 w. Manufacturer: The Southern New England Ultraviolet Co, reference: RPR-3000A). Enclosure dimensions: $12^{\prime \prime} \times 15^{\prime \prime} \times 16^{\prime \prime}$. Lamp chamber dimensions: $10^{\prime \prime}$ diameter x $15^{\prime \prime}$ deep. Power consumption 400 watts. Borosilicate glass vials were employed to perform the reactions.

Cyclic Voltammetry

All electrochemical experiments were performed at room temperature using Autolab PGstat101 potentiostat from Metrohm using a 5 mL glass three electrode cell. Data acquisition was performed with NOVA software. Solvent was deoxygenated with argon bubbling for 5 min prior to the analyses. The working electrode was polished using a mechanical grinder (LaboPol-2 bench-top polisher, manufacturer: Struers) on polishing cloths with alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, then rinsed with water.

Figure S13 Cathodic reduction of 3a. IUPAC plotting convention. Condition of the analysis: WE: C; RE: Pt in a $\mathrm{Fc}^{+} /$Fc equimolar solution; CE: Pt; supporting electrolyte: $\mathrm{Bu}_{4} \mathrm{NPF}_{6} 0.15 \mathrm{M}$; analyte: 3a, 1 mM ; solvent: acetonitrile. Initial potential: -0.5 V ; oxidative scan (from 0.5 to -3.3 V); Scan rate $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. A reversible reduction peak was observed at -2.28 V .

Figure S14. Cathodic reduction of 3c. IUPAC plotting convention. Condition of the analysis: WE: C; RE: Pt in a $\mathrm{Fc}^{+} / \mathrm{Fc}$ equimolar solution; CE: Pt; supporting electrolyte: $\mathrm{Bu}_{4} \mathrm{NPF}_{6} 0.15 \mathrm{M}$; analyte: 3c, 1 mM ; solvent: acetonitrile. Initial potential: -0.5 V; oxidative scan (from 0.5 to -3.1 V); Scan rate $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. A reversible reduction peak was observed at -2.05 V , together with an irreversible peak at -2.59 V (inflection point potentials value $=-$ 2.53 V).

Figure S15. Cathodic reduction of 4a IUPAC plotting convention. Condition of the analysis: WE: C; RE: Pt in a $\mathrm{Fc}^{+} /$Fc equimolar solution; CE: Pt; supporting electrolyte: $\mathrm{Bu}_{4} \mathrm{NPF}_{6} 0.15 \mathrm{M}$; analyte: 4a, 1 mM ; solvent: acetonitrile. Initial potential: -0.5 V; oxidative scan (from 0.5 to -3.2 V); Scan rate $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. An irreversible reduction peak was observed for 4 a at -2.16 V (inflection point potentials value $=-2.05 \mathrm{~V}$).

Potentiel (V)

Figure S16. Anodic oxidation of 7. IUPAC plotting convention. Condition of the analysis: $\underline{\mathrm{WE}} \mathbf{: ~} ; \underline{\mathrm{RE}} \mathbf{P t}$ in a $\mathrm{Fc}^{+} / \mathrm{Fc}$ equimolar solution; $\mathrm{CE}: \mathrm{Pt}$; supporting electrolyte: $\mathrm{Bu}_{4} \mathrm{NPF}_{6} 0.15 \mathrm{M}$; analyte: $7,1 \mathrm{mM}$; solvent: acetonitrile. Initial potential: -0.5 V ; oxidative scan (from 1.2 to -3.2 V); Scan rate $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. An irreversible oxidation peak was observed at 0.45 V (inflection point potentials value $=0.33 \mathrm{~V}$).

Figure S17. Anodic oxidation of 3a. IUPAC plotting convention. Condition of the analysis: WE: C; RE: Pt in a Fc ${ }^{+} / \mathrm{Fc}$ equimolar solution; $\underline{C E}$: Pt; supporting electrolyte: $\mathrm{Bu}_{4} \mathrm{NPF}_{6} 0.15 \mathrm{M}$; analyte: $\mathbf{3 a}, 1 \mathrm{mM}$; solvent: acetonitrile. Initial potential: - 0.5 V ; oxidative scan (from 1.2 to -2.6 V); Scan rate $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. An irreversible oxidation peak was observed at 1.60 V (inflection point potentials value $=1.32 \mathrm{~V}$).

Excitation energy of the photocatalysts

The E* energy was determined based on the normalized absorption and emission spectra of compounds $3 \mathbf{3}$ and $\mathbf{3 c}\left(10^{-4} \mathrm{M}\right.$ solutions in MeCN). The following equation was used to estimate E^{*} :

$$
\lambda_{\text {int }}=\left(\lambda_{\text {abs }}{ }^{\text {max }}+\lambda_{\text {em }}{ }^{\text {max }}\right) / 2
$$

Compound	$\lambda_{\text {int }}(\mathrm{nm})$	$\mathrm{E}^{*}(\mathrm{eV})$
3a	382	3.24
3c	401	3.09

Figure S17. Normalized absorption and emission bands of 3a in $\operatorname{MeCN}\left(\lambda_{\mathrm{abs}}=360 ; \lambda e x=350 \mathrm{~nm} ; \lambda_{\mathrm{em}}=442 \mathrm{~nm}\right)$

Figure $\mathbf{S 1 9 .}$ Normalized absorption and emission bands of $3 \boldsymbol{c}$ in $\operatorname{MeCN}\left(\lambda_{\text {abs }}=368 ; \lambda e x=350 \mathrm{~nm} ; \lambda_{\mathrm{em}}=471 \mathrm{~nm}\right)$

Photoinduced electron-transfer thermodynamics

ET between catalyst 3a and substrate 4a

The determination of the free energy change ΔG_{ET} for the electron transfer (ET) reaction

$$
\left(D^{*}-A\right) \rightarrow\left(D^{\bullet+}-A^{\bullet-}\right)
$$

between an excited-state donor ($D^{*}=3 a$) and a ground-state acceptor $(A=4 a)$ is generally based on the Weller equation, ${ }^{39}$ which is given by

$$
\Delta G_{E T}=e\left(E\left(\mathrm{D}^{\bullet+} / \mathrm{D}\right)-E\left(\mathrm{~A} / \mathrm{A}^{\bullet-}\right)\right)-E^{*}(\mathrm{D})+\Delta E_{\text {Coulombic }}
$$

Where $E\left(\mathrm{D}^{\bullet+} / \mathrm{D}\right)$ and $E\left(\mathrm{~A} / \mathrm{A}^{\bullet-}\right)$ are the reduction potential of the electron donor and acceptor, respectively, $E^{*}(\mathrm{D})$ is the energy of the singlet excited state of D , and $\Delta E_{\text {Coulombic }}$ accounts for the free energy gained upon bringing the charged products at ET distance minus the free energy for the same process but for the neutral reactants. This last term is often small ($\left|\Delta E_{\text {Coulombic }}\right| \lesssim 0.1 \mathrm{eV}$) and thus will not be taken into account in the following calculations.

$$
\left.\Delta G_{E T}(e V)=(1.32-(-2.05))-3.24\right)=0.13 \mathrm{eV}
$$

Note that, for irreversible oxidation or reduction processes, the standard potentials were extracted from cyclic voltammetry data by approximating the inflexion point potentials values to the standard electrochemical. ${ }^{40}$ The inflection point potentials were determined from the zero points of the second derivatives at the rising spans of the anodic waves of the voltammograms, i.e., the potentials where $\partial^{2} \mathrm{i} / \partial \mathrm{E}^{2}=0$ at $\partial \mathrm{E} / \partial \mathrm{t}=$ constant .

On the basis of these considerations, we concluded that an electron transfer between $\mathbf{3 a}$ and $\mathbf{4 a}$ is likely to be thermodynamically unfavourable both at the ground and excited states ($\Delta G_{\mathrm{ET}}>0$).

ET between catalyst $3 a$ and Hantzsch ester 7

The determination of the free energy change $\Delta G_{\text {ET }}$ for the electron transfer (ET) reaction

$$
\left(A^{*}-D\right) \rightarrow\left(A^{\bullet-}-D^{\bullet+}\right)
$$

between an excited-state acceptor $\left(A^{*}=3 a\right)$ and a ground-state donor $(D=7)$, as before, is based on the Weller equation. ${ }^{39}$ Here again, $\Delta E_{\text {Coulombic }}$ was not taken into account in the calculations, the standard potentials were extracted from cyclic voltammetry data by approximating the inflexion point potentials values to the standard electrochemical. ${ }^{40}$

$$
\begin{gathered}
\Delta G_{E T}=e\left(E\left(\mathrm{D}^{\bullet+} / \mathrm{D}\right)-E\left(\mathrm{~A} / \mathrm{A}^{\bullet-}\right)\right)-E^{*}(\mathrm{D})+\Delta E_{\text {Coulombic }} \\
\left.\Delta G_{E T}(e V)=(0.33-(-2.28))-3.24\right)=-0.63 \mathrm{eV}
\end{gathered}
$$

We concluded that an electron transfer between 3 a and 7 is likely to be thermodynamically unfavourable at the ground state, but favourable at the excited state ($\Delta G_{\mathrm{ET}}<0$).

ET between catalyst 3c and Hantzsch ester 7

The determination of the free energy change ΔG_{ET} for the electron transfer (ET) reaction

$$
\left(A^{*}-D\right) \rightarrow\left(A^{\bullet-}-D^{\bullet+}\right)
$$

between an excited-state acceptor ($A^{*}=3 \mathrm{C}$) and a ground-state donor ($\mathrm{D}=7$), as before, is based on the Weller equation. ${ }^{39}$ Here again, $\Delta E_{\text {Coulombic }}$ was not taken into account in the calculations, and the standard potentials were extracted from cyclic voltammetry data by approximating the inflexion point potentials values to the standard electrochemical. ${ }^{40}$

$$
\begin{gathered}
\Delta G_{E T}=e\left(E\left(\mathrm{D}^{\bullet+} / \mathrm{D}\right)-E\left(\mathrm{~A} / \mathrm{A}^{\bullet-}\right)\right)-E^{*}(\mathrm{D})+\Delta E_{\text {Coulombic }} \\
\left.\Delta G_{E T}(e V)=(0.33-(-2.05))-3.09\right)=-0.71 \mathrm{eV}
\end{gathered}
$$

On the basis of these considerations, we concluded that an electron transfer between $\mathbf{3 c}$ and $\mathbf{7}$ is likely to be thermodynamically unfavourable at the ground state, but favourable at the excited state $\left(\Delta G_{\boxminus}\right.$ <0).

EPR studies

EPR measurements were performed using a Bruker Elexsys 500 EPR spectrometer (Bruker, Wissembourg, France), operating at X-band (9.85 GHz) and equipped with a SHQ high-sensitivity cavity and a Variable Temperature Unit (Bruker ER4141VTM) for low temperature experiments.

Acquisition and analysis of EPR spectra was performed using Bruker Xepr software and further processing, including simulation, was performed using Matlab and the EasySpin toolbox. ${ }^{41}$

In situ sample irradiation (300 nm) was performed during acquisition using an arc lamp source with grating monochromator and light guide (Spectral Luminator, Oriel Instrument, Palaiseau, France). EPR tubes used are from Wilmad-Labglass SP SCIENCEWARE (ref: 707-SQ-100M).

The magnetic field at the sample position was corrected using a Bruker weak pitch standard sample for which the g-value is accurately known. The g-values were determined from the corrected magnetic field at the center of the EPR line and the microwave frequency read from the frequency meter. Routinely, g-values were measured with a reproducibility of ± 0.0001.

Figure S20. EPR spectroscopy of a solution of $\mathbf{3 a}$ ($5 \mathrm{~mol} \%$), $\mathbf{4 a}$ (1 equiv.) and $\mathbf{7}$ (1.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.05 \mathrm{M})$ under irradiation at $300 \mathrm{~nm}(\mathrm{~T}=294 \mathrm{~K})$. Analysis settings: microwave power $=40 \mathrm{~mW}$; modulation frequency: 100 kHz ; modulation amplitude: 0.15 mT ; receiver gain: 60 dB ; time constant $=40.96 \mathrm{~ms}$; conversion time $=40.96 \mathrm{~ms}$; data points: 1024 ; sweep width $=10 \mathrm{mT}$; sweep time $=41.94 \mathrm{~s}$. The figure presents the sum of 24 experimental spectra. This figure also appears in the main article (figure 1).

Generation of arylsulfonyl radicals

Figure S21. EPR spectroscopy of a solution of tosylchloride (1 equiv.), triethylsilane (1 equiv.) and diterbutylperoxyde (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{mM})$ under irradiation at 300 nm ($\mathrm{T}=294 \mathrm{~K}$). Analysis settings: microwave power: 40 mW ; modulation frequency: 100 kHz ; modulation amplitude: 0.15 mT ; receiver gain: 60 dB ; time constant: 81.92 ms ; conversion time: 81.92 ms ; data points: 1024; sweep width: 2 mT ; sweep time: 83.89 s . The figure presents the sum of 24 experimental spectra.

Figure S22. EPR spectroscopy of a solution of tosylchloride (1 equiv.), triethylsilane (1 equiv.) and diterbutylperoxyde (1 equiv.) in toluene (0.3 mM) under irradiation at 300 nm ($\mathrm{T}=294 \mathrm{~K}$). Analysis settings: microwave power 1 mW ; modulation amplitude: 0.15 mT ; receiver gain: 60 dB ; time constant, 40.96 ms ; conversion time, 40.96 ms ; data points: 1024; sweep width, 2 mT ; sweep time, 41.94 s . The figure presents the sum of 10 experimental spectra.

Figure S23. EPR spectroscopy (blue line) and simulation (red line) of a solution of tosylchloride (1 equiv.), triethylsilane (1 equiv.) and diterbutylperoxyde (1 equiv.) in toluene (0.3 mM) under irradiation at 300 nm ($T=193 \mathrm{~K}$). Analysis settings: microwave power, 1 mW ; modulation frequency, 100 kHz ; modulation amplitude, 0.15 mT ; receiver gain, 60 dB ; time constant, 40.96 ms ; conversion time, 40.96 ms ; data points, 1024; sweep width, 2 mT ; sweep time, 41.94 s . The simulation parameters used are listed in Table S1.

Table S1: EPR characteristic values (g-factor and hyperfin coupling constants $\left(\mathrm{a}_{\mathrm{H}}\right)$) of the simulated $\mathrm{ArSO}_{2}{ }^{\cdot}$ radical obtained in figure S 23 .

g	ан ortho $(2 \mathrm{H})$	ан meta $(2 \mathrm{H})$	aн methyl $(3 \mathrm{H})$
2.0046	$3.609 \mathrm{MHz} / 0.129 \mathrm{mT}$	$0.932 \mathrm{MHz} / 0.033 \mathrm{mT}$	$1.870 \mathrm{MHz} / 0.067 \mathrm{mT}$

Theoretical investigations

The density functional theory (DFT) and time-dependent density functional dependent theory (TDDFT) calculations were performed using Gaussian 16 package. ${ }^{42}$ Since the excited-state properties are related to different HF exchange percentage, exchange-correlation (XC) functionals, including B3LYP ($20 \% \mathrm{HF}$), PBEO ($25 \% \mathrm{HF}$), and M06-2X ($56 \% \mathrm{HF}$) functionals, as well as long-range functionals of ω B97XD and CAM-B3LYP, were investigated. ω B97XD functional was selected eventually owing to the smallest absolute deviation between theoretical and experimental values (data not shown).

Thus, the ω B97XD with the $6-311 \mathrm{G}+(\mathrm{p}, \mathrm{d})^{43}$ basis set was used to optimize the ground state (S0) geometries of all molecules. The optimized structures were further characterized by harmonic vibrational frequency analysis to confirm that real local minima without any imaginary frequency were reached at the same computational level. The results of vibration analysis showed that there is no imaginary frequency for all reactants and products. Then, the thermodynamic correction was applied for each reactant and product at 298.15 K . The free energy was obtained by adding the single point energy to the Gibbs free energy correction value.

As for excited states, unrestricted DFT (UDFT)/ ω B97XD/6-311G+(p,d) and TDDFT/ ω B97XD/6$311 \mathrm{G}+(\mathrm{p}, \mathrm{d})$ were used to optimize geometries of lowest singlet excited state (S1) and lowest singlet excited state (T1), and to calculate their energies. For all calculations, a DCM solvent environment using a conductor-like polarizable continuum model (CPCM) was added.

The EPR/NMR module of the ORCA (v4.2.1) code ${ }^{44,45}$ was then exploited to compute the g-tensor. Organic radicalswere geometry optimized using the double-hybrid density functional theory (DHDFT) B2PLYP-D3 method ${ }^{46}$ and def2-TZVP ${ }^{47}$ basis sets as implemented in ORCA in combination with the resolution of identity (RI) by using the AutoAux keyword to automatically build the auxiliary basis set. Hyperfine coupling tensors were calculated using B3LYP and EPR-III ${ }^{48}$ basis sets, disregarding contributions from spin-orbit coupling.

Coordinates of geometry-optimised compounds

Electronic energies ($\mathrm{E}_{\text {corr }}$) are corrected by addition of zero-point energies estimated from frequency calculations. They are given in atomic unit.

$E_{\text {corr }}=-923.056694$
C -2.67727300 $0.29071200-0.80656700$
C -2.10791800 $1.55011800-0.93568600$ C - $0.801046001 .69368600-1.40656400$ C - $0.215330000 .58284400-2.01423300$ C - $0.78669800-0.67957200-1.88661400$ C - $1.95426300-0.85600500-1.14350100$ C -1.51643900 0.101061002 .08966300 C - 0.925677001 .358755001 .95840500 C 0.220448001 .550965001 .20283100 C 0.961304000 .394273000 .83692200 C $0.31661200-0.845738000 .95120100$ C - $0.98146100-1.002032001 .45096700$

[^1]H -0.31653600 3.585474001 .02952200 H 1.371164003 .348153000 .66467900 H - 1.31232500 -3.13053500 1.26350000 H - 2.73023200 -2.17653000 1.67400400 H $3.77440500-0.82372900-0.68905900$ H $2.840939002 .31241300-0.55143800$ H 3.154126002 .119642001 .17661500 H $4.195573001 .32250500-0.01461600$

$E_{\text {corr }}=-922.795861$ (T1)
C - $2.900298000 .36246400-0.50722000$ C -2.26864000 $1.56923000-0.79419600$ C - $1.016935001 .58031700-1.41569000$ C - $0.573356000 .38744200-1.99674500$ C - $1.22832200-0.81710200-1.74436300$ C - $2.31217200-0.85640100-0.86458900$ C - 1.256920000 .023645002 .15599900 C - 0.785398001 .328999001 .95389500 C 0.259793001 .595031001 .09087300 C 1.110844000 .439365000 .70524300 C $0.44532000-0.873582000 .74881200$ C -0.73667300 -1.07757000 1.38410700 C - $2.61624900-2.10558000-0.07139700$ C - $0.057107002 .72888900-1.19842400$ C 0.288568002 .900572000 .32596200 C -1.58547000 -2.30153100 1.12320800 C 2.423282000 .506435000 .31461500 C $3.02800600-0.70289900-0.16238800$ C $2.27753900-1.90602700-0.38023900$ O $0.97228600-1.920854000 .01681800$ C 3.258582001 .757550000 .33692000 O 2.70963500 -2.91646700-0.91605400 H -3.78814700 0.364309000 .12017600 H -2.67528100 $2.49085000-0.38515500$ H 0.366274000 .37466000 -2.54397800 H -0.78563900 -1.74517100-2.09492700 H -2.13926600 -0.14216700 2.76598200 H - 1.377332002 .155025002 .33968200 H -3.62668800 -2.04277000 0.34262300 H -2.57786000 -2.99639700 -0.70519800 H 0.862713002 .53494100 -1.75950700 H -0.45857400 3.68280300-1.55609500 H -0.46233100 3.553998000 .78007800 H 1.243929003 .427588000 .39594400 H -0.93835800 -3.14895300 0.89104700 H -2.14538700 -2.55860100 2.02693700 H $4.06614300-0.72674400-0.47118600$ H $3.093926002 .37225500-0.55572300$ H 3.040340002 .368933001 .21544900 H 4.319801001 .498540000 .36143900

$E_{\text {corr }}=-922.970327$
$g_{\text {calculated }}=2.0033$
C 2.67099900 -0.49969100 -0.80689000 C $1.98215300-1.69733000-0.97571800$ C $0.66522200-1.70002100-1.44627100$ C $0.18148400-0.51542000-2.00896100$ C $0.874958000 .68275300-1.84927900$ C $2.060905000 .72258900-1.11038800$ C $1.51581600-0.246172002 .10285900$ C $0.84972300-1.457532001 .93572000$ C - $0.32885300-1.562854001 .19203600$ C - $1.02322000-0.350350000 .84700200$ C - 0.257348000 .855948000 .94796000 C 1.029934000 .908957001 .46132700 C $2.484009001 .98952900-0.40309500$ C - $0.28651600-2.81736800-1.08295700$ C - $0.57347500-2.879992000 .47165700$ C 1.962222002 .045369001 .10159900 C - $2.32172900-0.254971000 .29227700$ C - $2.754897000 .99052300-0.23590100$ C -1.95692500 $2.13368500-0.23418900$ O -0.71312500 2.031478000 .39278700 C - $3.29443300-1.403742000 .27073000$ O -2.19770500 $3.26460400-0.70548500$ H $3.62627800-0.50620900-0.28727600$ H $2.41362600-2.61610500-0.58508500$ H -0.82133100 -0.49146400 -2.42779700 H 0.40024700 1.61262000-2.15121700 H $2.49688700-0.226362002 .57032400$ H 1.34856900 -2.37187200 2.25267900 H $3.575185002 .08157100-0.38928900$ H $2.092377002 .85677100-0.94281400$ H -1.22915000 -2.66260900 -1.61816000 H 0.09805800 -3.79690100 -1.38959300 H 0.10991600 -3.61601200 0.90825300 H -1.58030700 -3.28630400 0.60048800 H 1.481991003 .015558001 .25505200 H 2.828493002 .004854001 .76936500 H -3.74131400 $1.08454800-0.67858400$ H -3.11266300 -2.11277900 -0.54926900 H -3.26681800 -1.97543000 1.20473000 H -4.31360200 -1.02600400 0.14266800

$E_{\text {corr }}=-1114.711997$
C 2.93585600 -1.72753500 -0.82950400 C $1.74212100-2.38710900-1.08316600$ C $0.63565500-1.68925700-1.56900700$ C 0.86178300 -0.40804000-2.07051400

C $2.058740000 .25381800-1.81868300$ C $3.05311300-0.35476900-1.05377200$ C 1.95871000 -1.12335100 2.08316300 C $0.76035800-1.792975001 .83133700$ C - $0.24176000-1.223549001 .06196500$ C - 0.150938000 .170513000 .81221200 C 1.086729000 .793372001 .02196700 C 2.200621000 .127495001 .54530600 C $4.029707000 .47556500-0.25471300$ C - $0.76973400-2.16861900-1.28618600$ C - $1.12791000-2.157924000 .25560100$ C 3.596799000 .631635001 .26912500 C - 1.190921000 .984478000 .19709000 C - $0.885371002 .20995900-0.27863400$ C $0.446721002 .77542300-0.17498400$ O 1.335307002 .056204000 .58220400 O $0.814771003 .81643100-0.64767700$ H $3.73143600-2.25377200-0.30996000$ H $1.62618500-3.41691800-0.75800300$ H 0.045290000 .13780000 -2.53364600 H 2.155806001 .30055500 -2.09008600 H 2.77520000 -1.66434800 2.55084200 H 0.69303800 -2.84535100 2.08602400 H $5.029688000 .03429200-0.27625900$ H $4.104910001 .47060000-0.69715600$ H -1.47779900 -1.52349000 -1.81250700 H -0.93335500 -3.18579600-1.65353000 H - 0.97234800 -3.16386900 0.65234500 H -2.19249600 -1.94709300 0.35070900 H 3.695645001 .682692001 .54476900 H 4.291158000 .065379001 .89403500 H -1.63517100 $2.85170800-0.72280700$ C - 2.604529000 .534718000 .14403400 C - 3.263305000 .162864001 .31764400 C -3.30098200 $0.51991200-1.06281500$ C - $4.59463900-0.224579001 .27983900$ H -2.72348000 0.174088002 .25817400 C -4.63119300 $0.11808200-1.10142900$ H -2.79162200 0.80839500 -1.97616900 C - $5.27991900-0.255204000 .06880500$ H -5.09923500 -0.50608200 2.19703600 H -5.15994500 $0.09725500-2.04752300$ H -6.31780100 -0.56665800 0.03942600

$E_{\text {corr }}=-1114.433051$ (T1)
C $3.05599000-1.83530200-0.67038800$ C $1.85067000-2.44046100-1.01435300$ C $0.81518300-1.68681200-1.57519900$ C $1.13067200-0.40741600-2.04487400$ C $2.351580000 .18845000-1.73096000$ C $3.26388600-0.47079100-0.90387100$ C $1.88639000-0.955083002 .11594900$ C $0.73527800-1.699586001 .82595900$ C - $0.24661900-1.215455000 .98272800$ C - 0.241276000 .237577000 .71242600

C 1.055451000 .902868000 .88035100 C 2.123590000 .304882001 .48020000 C $4.224939000 .31069800-0.03920800$ C - $0.62858000-2.10386400-1.40151900$ C -1.02595900 -2.18507300 0.11798700 C 3.531768000 .825947001 .29898600 C -1.30972200 0.965643000 .25085900 C -1.05469000 $2.31958900-0.19628800$ C $0.259044002 .88315600-0.21313600$ O 1.278880002 .139869000 .30707400 O $0.546238003 .98379400-0.66363900$ H 3.78490300 -2.39574900 -0.09021500 H $1.66066300-3.46239400-0.69554600$ H 0.36616400 0.18235600-2.54538800 H 2.51654000 1.23050500-1.99052400 H 2.68867800 -1.40843800 2.68946400 H 0.71314700 -2.74656600 2.11599000 H $5.07951100-0.315478000 .23263600$ H $4.614289001 .17735400-0.58084300$ H -1.27406300 -1.37474000 -1.90144600 H -0.83677500 -3.08151100 -1.84856900 H -0.79787400 -3.19044700 0.48392000 H -2.10912300 -2.05989200 0.18802100 H 3.525023001 .917328001 .28993900 H 4.141552000 .512714002 .15063200 H -1.85228600 $2.93872200-0.58754600$ C -2.69921600 0.464375000 .17672200 C - $3.31124500-0.097633001 .30492000$ C -3.43835400 $0.57648200-1.00755600$ C - $4.62314900-0.557717001 .24379500$ H -2.74959700 -0.17484300 2.23151400 C -4.74980000 0.11165000-1.07017200 H -2.97678600 $1.01073400-1.89031000$ C -5.34547900 -0.45814100 0.05456400 H -5.08316900 -0.99136800 2.12611700 H -5.30558200 $0.19250100-1.99901800$ H -6.36826300 -0.81799600 0.00615400

$E_{\text {corr }}=-1114.611398$
C 2.95194200 -1.66839900 -0.94969300 C $1.75185000-2.31137700-1.23754500$ C $0.63854100-1.58085200-1.66749400$ C $0.85714600-0.26357800-2.07951700$ C $2.061521000 .37980400-1.79751300$ C $3.06946300-0.28054900-1.08940900$ C 2.03023700 -1.22478300 2.02144700 C $0.84649300-1.903489001 .74050000$ C - $0.18750200-1.310474001 .01328000$ C - 0.163969000 .109828000 .84015800 C 1.090940000 .743060001 .06223100 C 2.218100000 .073655001 .53549000 C $4.058886000 .49497900-0.24949100$ C - $0.76575200-2.07298600-1.39072600$ C -1.04197200 -2.23060800 0.15444700 C 3.606032000 .616063001 .27380000

C -1.21057700 0.903604000 .25944900 C - $0.883040002 .20551300-0.21250900$ c $0.371116002 .78563500-0.03641100$ O 1.317188002 .042621000 .67592600 O $0.774418003 .90961600-0.39800300$ H $3.74798700-2.22604500-0.46187300$ H $1.63444400-3.35797900-0.96607900$ H $0.026625000 .32199300-2.46449500$ H $2.144500001 .44819000-1.97918500$ H 2.87100900 -1.76266100 2.45186000 H 0.80300200 -2.97329300 1.93327300 H $5.044722000 .01879900-0.27171900$ H $4.175596001 .50151300-0.66145000$ H - 1.47998900 -1.35621300 -1.80865600 H - $0.96433800-3.04261600-1.86171100$ H - $0.79100300-3.257510000 .44000100$ H -2.11814400 -2.11854200 0.30804200 H 3.683013001 .666385001 .56625800 H 4.314915000 .055780001 .89104400 H - 1.63862000 2.82998500 -0.67529500 C - 2.609546000 .469999000 .18302300 C - $3.23427000-0.211749001 .24707600$ C - $3.408698000 .78440500-0.93445800$ C - $4.57784100-0.565004001 .19412300$ H - $2.64915100-0.457633002 .12897300$ C - $4.753660000 .42832100-0.98926000$ H - 2.958070001 .29668000 -1.77987900 C - $-3.35124900-0.249352000 .07418700$ H -5.02752900 -1.08455800 2.03584000 H -5.33678100 $0.67612500-1.87202500$ H -6.40018000 -0.52628400 0.03257300

$E_{\text {corr }}=-614.640276$
C $2.451401000 .97623900-0.00003200$ C $1.91695900-0.306961000 .00024300$ c $0.49794400-0.447893000 .00027000$ C - $0.268645000 .73493100-0.00002900$ C 0.27203200 2.02772200-0.00031300 C $1.653004002 .12069100-0.00029500$ H $3.530536001 .09276700-0.00006300$ C - $0.25801700-1.706494000 .00030600$ H $2.121275003 .10063400-0.00051000$ C - $2.36558600-0.431634000 .00058400$ C - $1.61422500-1.661661000 .00025100$ H - $2.20576400-2.569264000 .00002400$ O - $1.636047000 .71633600-0.00001500$ O - $3.57973200-0.32928700-0.00068700$ C $0.38416400-3.066696000 .00024600$ H $1.00966800-3.21406000-0.88230800$ H $1.00965400-3.214185000 .88278800$ H -0.38669300-3.83851400 0.00018600 C - 0.62220700 3.23689200 -0.00060400 H - $1.272104003 .24851800-0.88068100$ H-1.27215000 3.248907000 .87943300 H - $0.023769004 .15022700-0.00079000$ C $2.90216100-1.453481000 .00040700$ H $2.80162500-2.087723000 .88378200$ H $2.80139800-2.08816100-0.88263400$ H $3.91864800-1.055460000 .00018400$

$E_{\text {corr }}=-614.540977$ (T1)
C $2.398980001 .13299700-0.00019100$ C $1.96313600-0.176995000 .00006100$ C $0.52577800-0.451784000 .00006200$ C - $0.330737000 .72625300-0.00015900$ C $0.132858002 .02648600-0.00045700$ C $1.522019002 .22492600-0.00048100$ H $3.467867001 .32509100-0.00018000$ C - $0.06602200-1.708478000 .00014500$ H 1.91662100 3.23592200 -0.00070600 C -2.35168100 -0.56996400 0.00052000 C -1.54900700 -1.74104900 0.00059500 H -2.07736600 -2.68645200 0.00106200 O -1.71331200 $0.63469200-0.00016500$ O -3.57816400-0.55484100 0.00040200 C $0.59663700-3.059270000 .00016700$ H 1.22361800 -3.22034600 -0.88127200 H 1.22004900 -3.22194200 0.88390200 H -0.16452600 -3.84217000 -0.00204000 C - $0.825681003 .18763100-0.00073600$ H -1.47533300 $3.16481300-0.88079100$ H -1.47529200 3.165268000 .87936100 H -0.27805900 $4.13248600-0.00099200$ C $3.00303200-1.266642000 .00027700$ H 2.92848100 -1.90848600 0.88203100 H 2.93017200 -1.90715000 -0.88260900 H $3.99969600-0.820499000 .00151900$

$E_{\text {corr }}=-614.722336$
C $2.482950000 .94687800-0.00004900$ C $1.92598900-0.329967000 .00016900$ C $0.49359400-0.480958000 .00011200$ C - $0.254935000 .74190200-0.00010900$ C $0.314679002 .01081800-0.00030300$ C $1.711573002 .10802900-0.00028900$ H $3.567074001 .03733600-0.00001300$ C - $0.25510300-1.696702000 .00021300$ H $2.186389003 .08532600-0.00045400$ C -2.39054600 -0.42646100 0.00001900 C -1.67841900-1.62009300 0.00019300 H -2.26765300 -2.53144400 0.00029100 O -1.63371600 $0.75119800-0.00019000$ O -3.62577100-0.23598400 0.00003000 C $0.33354700-3.088878000 .00019200$ H $0.94951800-3.29642600-0.88125400$ H 0.94977300 -3.29639400 0.88145500 H -0.47766900 -3.82247200 0.00032200 C - $0.559714003 .23799900-0.00054400$ H -1.21327300 $3.26432500-0.87893300$ H -1.21332600 3.264630000 .87779700 H $0.053122004 .14361900-0.00068200$ C 2.88877500 -1.49808100 0.00053300

H 2.77537400 -2.13562200 0.88189000 H 2.77532300 -2.13627400 -0.88034000 H 3.91690500 -1.12521800 0.00037300

$E_{\text {corr }}=-1489.878221$
C 3.83277900 -2.08553500 0.96689000 C $4.95473900-1.466204000 .42374200$ C $4.81707500-0.64520100-0.68998100$ C $3.56203700-0.43941700-1.25236400$ C $2.43729000-1.05662500-0.71275300$ C $2.58034100-1.883549000 .40009600$ C $1.08095000-0.81722300-1.33502600$ N $0.03006400-0.54244300-0.33451200$ C 0.157442000 .445890000 .63677200 C 1.193365001 .495398000 .38818600 O-0.54440500 0.462162001 .62632600 C $1.157359002 .29214200-0.75332600$ C $2.116725003 .28086100-0.93333300$ C 3.115905003 .463263000 .01719800 C 3.143798002 .671897001 .16154300 C 2.176063001 .695754001 .35459700 C - $2.68771800-0.68441600-0.06814000$ C - $3.044836000 .05431300-1.19059600$ C -4.19954800 $0.81822800-1.14427700$ C -5.00177300 0.843100000 .00094200 C -4.613406000 .088551001 .10904300 C - $3.45473900-0.674991001 .08662000$ C - 6.271752001 .648018000 .02473100 S -1.23163600-1.68839000 -0.14279400 O -1.23574300-2.43364800-1.39070000 O -1.06455000 -2.42178400 1.09596900 H 3.93270400 -2.72605700 1.83593200 H 5.93071600 -1.61998600 0.86999800 H $5.68472700-0.15236500-1.11398100$ H 3.45397000 0.22395400-2.10452800 H 1.70876300 -2.36012900 0.83827300 H 1.12433700 0.00549000-2.04778000 H 0.75576500 -1.69646100 -1.89015600 H 0.37824500 2.14968700-1.49443600 H $2.084720003 .90723600-1.81710900$ H $3.870980004 .22662800-0.13173400$ H 3.919983002 .815310001 .90406700 H 2.191900001 .073046002 .24152900 H -2.43113900 $0.03679000-2.08368300$ H -4.48453600 1.40336500-2.01169500 H -5.22015200 0.103902002 .00762600 H -3.14330100 -1.24532900 1.95206300 H -6.16881700 $2.56591100-0.55712200$ H -7.09208600 $1.07022800-0.41201300$ H -6.55605000 1.910758001 .04489800

$E_{\text {corr }}=-1489.962422$
$g_{\text {calculated }}=2.0050$
$\mathrm{A}_{\text {calculated(iso) }}=0.14 \mathrm{mT}$
C -5.10796100-1.07099500 -0.35048700 C -5.61441500 $0.11825500-0.86844600$ C -4.92035500 $1.30714100-0.67111000$ C -3.72377600 1.304725000 .03898400 C - 3.207445000 .118886000 .55670400 C -3.91272100-1.06808800 0.35829900 C -1.89413500 0.118241001 .30354600 N - $0.73125800-0.229086000 .47805500$ C - $0.313296000 .68003200-0.58921100$ C $0.526163001 .75210500-0.15862700$ O -0.70278400 0.48276000-1.77245800 C 0.992684001 .902917001 .17835700 C 1.809098002 .959432001 .53643800 C 2.206704003 .920076000 .59876200 C $1.757694003 .79001700-0.71990300$ C 0.93931300 2.74085500-1.09747100 C $1.50942100-1.569997000 .06854700$ C 2.36148000 -1.21758400 1.10838700 C $3.70558500-1.012114000 .83758400$ C $4.20811200-1.14831900-0.45873200$ C 3.32901000 -1.50613000 -1.48258800 C 1.98173100 -1.72248000 -1.22767800 C $5.67196300-0.94076400-0.73907500$ S -0.22380400 -1.79262500 0.41124000 O -0.39907200-2.36119400 1.75035800 O -0.79590200-2.56915500 -0.68637700 H -5.64621600 -2.00083000 -0.49805400 H -6.54715600 0.11726900 -1.42157600 H -5.30932300 $2.23699400-1.07133700$ H -3.17939800 2.232393000 .18693500 H -3.51938300 -1.99780400 0.75801600 H -1.69613700 1.113605001 .71035900 H -1.92953700 -0.57701600 2.14423200 H 0.713491001 .166871001 .92318600 H 2.149435003 .038907002 .56499900 H 2.847701004 .745216000 .88808000 H 2.055951004 .52374700 -1.46357200 H 0.60132400 2.65055500-2.12333100 H $1.97681100-1.100835002 .11411200$ H $4.37400400-0.732078001 .64487900$ H 3.70121100 -1.61127200 -2.49617200 H $1.29895000-1.99065300-2.02377400$ H $6.10210300-0.19774900-0.06463800$ H $6.22343000-1.87547900-0.59709300$ H 5.83534400 -0.61278000-1.76735500

$E_{\text {corr }}=-819.406666$
$g_{\text {calculated }}=2.0048$
C $1.69898300-1.20234000-0.00015900$ C $0.31417000-1.215590000 .07419200$ C - 0.358734000 .000001000 .09167700 C 0.314168001 .215592000 .07419100 C $1.698982001 .20234400-0.00016000$ C $2.410183000 .00000300-0.03500600$ H $2.23547800-2.14413300-0.03392300$ H - $0.23175700-2.150432000 .09754100$ H - 0.231761002 .150432000 .09753900 H $2.235475002 .14413800-0.03392500$ S -2.14597400 -0.00000100 0.24269100 O - $2.657672001 .27809000-0.28083500$ O - $2.65767000-1.27809200-0.28083700$ C $3.91288100-0.00000100-0.08227400$ H $4.32162700-0.000146000 .93286400$ H $4.29272000-0.88680100-0.59239300$ H $4.292737000 .88692800-0.59215200$

$E_{\text {corr }}=-744.225357$
$g_{\text {calculated }}=2.0088$
C $1.28718500-1.20296100-0.01183500$ C - $0.09285400-1.06977600-0.00576400$ C - $0.653217000 .20613700-0.00069100$ C $0.162334001 .33954800-0.00310000$ C $1.540230001 .18576500-0.00914700$ C $2.12504800-0.08365700-0.01053700$ H $1.72420600-2.19601600-0.01965300$ H - $0.73789300-1.94056200-0.00793500$ H - $0.273386002 .33353500-0.00338100$ H $2.173001002 .06685500-0.01469200$ S -2.40316800 0.447062000 .00396300 O -3.05003800 -0.92127500 0.00568400 C $3.62076800-0.241520000 .01499100$ H $3.98134600-0.282900001 .04761500$ H $3.93032800-1.16393100-0.47995300$ H $4.116431000 .59901300-0.47437900$

$E_{\text {corr }}=-894.578640$
gcalculated $=2.0089$
O -2.39737800 -0.79696100 1.12228000 S - 1.899392000 .070992000 .00209300 C - $0.143019000 .04290300-0.00025100$ O - $2.40088100-0.78974700-1.12224700$ O - 2.364244001 .435898000 .00698400 C $0.51342200-1.18750800-0.00311000$ C $0.558632001 .24223600-0.00355100$ C $1.89598600-1.20280200-0.00850200$ H - $0.04568000-2.11550000-0.00362900$ C $1.945612001 .20274600-0.00893500$

H $0.030381002 .18706300-0.00427000$ C $2.63225000-0.01194900-0.00920000$ H $2.41600500-2.15416100-0.01368000$ H $2.501060002 .13365000-0.01467200$ C $4.13410300-0.049937000 .01131400$ H $4.49048600-0.249653001 .02639100$ H $4.51537900-0.84478400-0.63275700$ H $4.560754000 .89986500-0.31360900$

$E_{\text {corr }}=-820.013705$
C 1.72315900 -1.20225100 -0.00310300 C $0.33778000-1.212840000 .06147000$ C -0.341463000 .000005000 .09019400 C 0.337791001 .212849000 .06147100 C $1.723170001 .20225300-0.00310300$ C $2.43439000-0.00000100-0.03220300$ H 2.26047600 -2.14364400 -0.03619600 H -0.20878500 -2.14794900 0.07440600 H - 0.208770002 .147960000 .07440700 H 2.26049300 2.14364400-0.03619600 S -2.11032800 -0.00000500 0.19659100 O -2.61850400 1.26444600-0.32255800 O -2.61849900-1.26444100-0.32256000 H -2.33766200 -0.00000500 1.53871500 C $3.93754400-0.00000600-0.07213700$ H $4.34103700-0.000155000 .94508500$ H $4.32012100-0.88682200-0.58026600$ H $4.320132000 .88695400-0.58000500$

$E_{\text {corr }}=-670.577875$
C - 4.892892000 .237999000 .38832800 C -4.90678400-1.09107300-0.02635500 C - $3.71744400-1.69064400-0.42842900$ C -2.52636200-0.96950500-0.41782000 C - $2.499690000 .36336300-0.00732100$ C - 3.700080000 .953028000 .39747300 C - $1.226316001 .18291900-0.03429100$ N - 0.032074000 .377350000 .04218400 C $1.083119001 .05835800-0.07094700$ C 2.359722000 .231772000 .00648200 O $1.212157002 .30783000-0.23771800$ C $2.34166200-1.148185000 .22699500$ C 3.52437600 -1.87579600 0.29114300 C $4.75181000-1.235277000 .13452300$ C $4.782308000 .13796700-0.08487900$ C $3.594971000 .86208800-0.14659500$ H -5.81175000 0.716610000 .71074800 H $-5.83409100-1.65368700-0.03123800$ H -3.71562100 -2.72713400 -0.75017500 H - $1.59623500-1.43586900-0.72018500$ H -3.69801000 1.988145000 .72825000 H -1.24118600 1.79229300 -0.95496500 H-1.27432400 1.921516000 .78239700

H 1.38315200 -1.63830300 0.34739600 H 3.49050000 -2.94662500 0.46396900 H 5.67511400 -1.80267800 0.18399000 H $5.732789000 .64693900-0.20799300$ H $3.606524001 .93260400-0.31558500$

$E_{\text {corr }}=-671.068770$
C - 2.926066000 .118751001 .07532600 C - $3.07152000-1.173240000 .57647000$ C -2.37911400-1.55077800 -0.56828600 C - $1.54075000-0.64219500-1.20668000$ C - $1.388962000 .64982700-0.71223600$ C - 2.090857001 .024122000 .43309200 C - $0.462727001 .62806700-1.40498000$ C 1.307244001 .709012000 .38292300 C 1.514009000 .229581000 .24242800 O 1.875810002 .350015001 .26055400 C $2.02764700-0.31739100-0.93090300$ C 2.22012500 -1.69039300 -1.03051600 C 1.88606700 -2.51946000 0.03495500 C 1.37935900 -1.97205100 1.21010000 C $1.20414900-0.598756001 .31873300$ H -3.46325300 0.419915001 .96782900 H -3.71890400 -1.88182500 1.08076300 H -2.48050500 -2.55715800 -0.95900600 H -0.98086700 -0.94871000 -2.08453000 H -1.97082800 2.025740000 .83380600 H 0.077506001 .11747300 -2.20448900 H -1.04657700 2.41980000 -1.87852800 H $2.284313000 .32733900-1.76453900$ H 2.62754200 -2.11251800 -1.94202300 H 2.02473300 -3.59146200 -0.04812000 H 1.12086900 -2.61602000 2.04284500 H 0.80910500 -0.16685500 2.23126000 N $0.469894002 .30020800-0.50299200$ H $0.349514003 .29213700-0.36131300$

$E_{\text {corr }}=-862.217665$
C 1.26293000-0.74072900 0.00015300 C 1.22182000 -2.09455600 -0.00001500 N -0.00001900 -2.73433000 -0.00020900 C - $1.22185200-2.09454500-0.00030100$ C -1.26294900 -0.74071600-0.00017700 C - 0.000005000 .097356000 .00013000 C $2.39905700-3.025904000 .00000400$ C - $2.39909700-3.02588400-0.00055300$ C - $2.54863600-0.03908400-0.00034500$ C $2.54863000-0.039111000 .00039200$ O-2.37058400 1.29452000 0.00015900 O -3.65993500-0.53729200-0.00067200 O 2.370603001 .294500000 .00020500 O $3.65992200-0.537336000 .00025700$ C - 3.551786002 .110735000 .00013400

C 3.551820002 .110692000 .00011900 C $3.106175003 .55494600-0.00001800$ C - 3.106113003 .554980000 .00066900 H -0.00002400-3.74089400 -0.00028500 H $0.000110000 .76605600-0.86748000$ H - 0.000111000 .765767000 .86796400 H 3.02548200 -2.85579700 0.87570700 H $2.06731000-4.06582700-0.00014500$ H 3.02566400 -2.85561100 -0.87553300 H -2.06735700 -4.06580900 -0.00032000 H -3.02589600 -2.85557600 0.87483800 H -3.02532500 -2.85578900 -0.87640300 H -4.14751100 $1.87215900-0.88423500$ H -4.14791700 1.871630000 .88408600 H 4.147750001 .871924000 .88429900 H $4.147737001 .87175700-0.88402200$ H $3.983000004 .20657800-0.00010100$ H $2.510823003 .77962500-0.88775300$ H 2.510853003 .779806000 .88769000 H -3.98292500 4.206629000 .00066100 H -2.51097500 3.779473000 .88859500 H -2.51056600 $3.78000200-0.88684800$

$E_{\text {corr }}=-862.011015$
$g_{\text {calculated }}=2.0036$
C $1.25544200-0.75355800-0.00003800$ C $1.22695600-2.12629600-0.00014300$ N 0.00000200 -2.72372000 -0.00017600 C -1.22695400 -2.12629800 -0.00012800 C - $1.25544200-0.75356000-0.00004600$ C -0.000001000 .031110000 .00002800 C 2.40027100 -3.05196400 -0.00021400 C - $2.40026700-3.05196900-0.00016200$ C -2.55101700 -0.01414300-0.00005100 C $2.55101600-0.014141000 .00002500$ O-2.34225500 1.293951000 .00024400 O -3.64031800-0.53541100-0.00051800 O 2.342253001 .293952000 .00003400 O $3.64031700-0.535409000 .00000600$ C -3.50995300 2.149921000 .00007100 C 3.509951002 .149922000 .00011700 C 3.022768003 .577975000 .00044400 C - 3.022770003 .577974000 .00037100 H $0.00000200-3.73809400-0.00023600$ H $0.000004000 .72849900-0.85337400$ H -0.000006000 .728328000 .85357200 H 3.02128300 -2.87234500 0.87715000 H $2.07410100-4.09214700-0.00027800$ H $3.02126300-2.87223400-0.87757300$ H -2.07409200 -4.09215100 0.00004600 H -3.02140900 -2.87217000 0.87707000 H -3.02112900-2.87242500 -0.87765300 H -4.10262000 1.91704200 -0.88647500 H-4.10305000 1.916815000 .88626900 H 4.102908001 .916750000 .88638900 H $4.102757001 .91710900-0.88635400$ H 3.884121004 .249109000 .00048200 H $2.424135003 .78726200-0.88824400$

H 2.424323003 .786915000 .88934100
H -3.88412300 4.249107000 .00024800 H -2.42444600 3.786975000 .88933600 H -2.42401500 $3.78720000-0.88824900$

$E_{\text {corr }}=-861.465187$
C 1.210694002 .152956000 .00013000 C $1.218043000 .76142700-0.00003600$ C $0.000000000 .09053100-0.00012700$ C -1.21804400 $0.76142600-0.00008500$ C - 1.210696002 .152955000 .00009900 H $0.00000000-0.99066700-0.00024600$ C - 2.397658003 .053546000 .00020300 H -3.01475600 $2.85542800-0.87642100$ H -3.01509500 2.854824000 .87644400 H -2.09445900 4.100272000 .00063100 C 2.397656003 .053548000 .00025600 H $3.014861002 .85532200-0.87626400$ H 2.094456004 .100273000 .00051900 H 3.014985002 .854934000 .87660100 C -2.50684200 -0.00644100-0.00028100 O-3.59786100 0.50675900-0.00066500 O -2.28696500-1.30999300 0.00008900 C $2.50684200-0.00643900-0.00014200$ O $3.597861000 .50676200-0.00048900$ O $2.28696600-1.309991000 .00017200$ C -3.44785000-2.17673300-0.00007900 C -2.94742000 -3.60006300 0.00036100 H -4.04188600 -1.94906500 -0.88690100 H -4.04242000 -1.94870200 0.88629200 H -3.80279900 -4.27879700 0.00026300 H -2.34691400 -3.80396200 -0.88829500 H -2.34741500 -3.80358800 0.88944000 C 3.44785200 -2.17673100 0.00001700 C $2.94742400-3.600061000 .00017200$ H 4.04230200 -1.94883600 0.88650400 H 4.04200800 -1.94892400 -0.88668800 H $3.80280300-4.278794000 .00010000$ H 2.34728800 -3.80371900 0.88913300 H $2.34704800-3.80382800-0.88860200$ N - 0.000001002 .751907000 .00019600 H -0.00000200 3.766651000 .00033800

$E_{\text {corr }}=-861.040150$
C $1.165565002 .18389100-0.03569900$ C $1.206458000 .77823400-0.04773600$ C 0.000008000 .092766000 .00008900 C - 1.206447000 .778251000 .04781000 C -1.16555600 2.183894000 .03556600 N $0.000012002 .83662400-0.00009600$ H 0.00000200 -0.98787400 0.00018500 C - 2.386838003 .055133000 .05305600 H -3.10155500 $2.75465700-0.71446000$ H -2.90328700 2.972155001 .01178200

H -2.08244900 $4.08854400-0.10597600$ C $2.386853003 .05511900-0.05327300$ H 2.90302000 2.97234100 -1.01218800 H 2.082503004 .088505000 .10598400 H 3.101793002 .754473000 .71394800 C -2.48663800 0.017918000 .12117400 O-3.56347000 0.493174000 .39860200 O -2.30891700-1.27575500 -0.14888500 C $2.486653000 .01791000-0.12099500$ O $3.563472000 .49314800-0.39849700$ O $2.30896900-1.275730000 .14929600$ C -3.46853200-2.12838800-0.07015400 C - $3.01823700-3.53483900-0.38628000$ H -4.21348800 -1.76924100 -0.78325900 H -3.88966900 -2.05155400 0.93447400 H -3.87642600 -4.20854700 -0.33578400 H -2.59437700 -3.59283400 -1.39096600 H -2.27038100 -3.87618500 0.33254600 C 3.46858200 -2.12836200 0.07054900 C 3.01809300 -3.53498600 0.38562700 H 4.21322100 -1.76967900 0.78422500 H 3.89019400 -2.05093300 -0.93383000 H $3.87629700-4.208680000 .33521800$ H 2.59368200 -3.59355400 1.39004700 H $2.27062400-3.87590500-0.33380400$

References

1. C. J. Friedmann, S. Ay and S. Bräse J. Org. Chem. 2010, 75, 4612.
2. M.-L. Delcourt, C. Reynaud, S. Turcaud, L. Favereau, J. Crassous, L. Micouin, and E. Benedetti J. Org. Chem. 2019, 84, 888.
3. J. Brom, A. Maruani, L. Micouin, and E. Benedetti J. Org. Chem. 2023, 10.1021/acs.joc.3c00296.
4. Z. Ninghui, Z. Chunli, H. Xiaoping, X. Xin and L. Yuanhong, Org. Lett. 2021, 23, 6004.
5. W. Huiling, L. Nianhua, Z. Qianheng and L. Renshi, J. Org. Chem. 2021, 86, 3850.
6. B. G. Reed-Berendt and L. C. Morrill, J. Org. Chem. 2019, 84, 3715.
7. Y. Ai, P. Liu, R. Liang, Y. Liu and F. Li, New J. Chem., 2019, 43, 10755.
8. G. M. Murali, T. R. Pradip and M. Biplab, J. Org. Chem. 2020, 85,806.
9. B. Aditya, S. Pushpendra and M. Biswajit, ACS Omega 2021, 6, 8988.
10. D. L. Priebbenow, L. C. Henderson, F. M. Pfeffer and S. G. Stewart, J. Org. Chem. 2010, 75, 1787.
11. P. Wessig and S. Krebs, Eur. J. Org. Chem. 2021, 2021, 6367.
12. S. Y. Chow, M. Y. Stevens and L. R. Odell, J. Org. Chem. 2016, 81, 2681.
13. S. Zhou, K. Lv, R. Fu, C. Zhu and X.Bao, ACS Catal. 2021, 11, 5026.
14. W. Muramatsu, T. Hattori, and H. Yamamoto J. Am. Chem. Soc. 2019, 141, 12288.
15. R. Grandel, U. Kazmaier, and F. Rominger J. Org. Chem. 1998, 63, 4524.
16. X. Jun, L. Bin-Jie, F. Zhu-Jia, S. Guo-Dong, M. Huan-Huan, Y. Zhi-Wei, C. Jia-Rong, L. Liang-Qiu and X. Wen-Jing, Chem. Asian J. 2013, 8, 1090.
17. H.-S. Knowles, A.-F. Parsons, R.-M. Pettifer and S. Rickling, Tetrahedron, 2000, 56, 979.
18. H. Knowles, A. Parsons and R. Pettifer, Synlett 1997, 1997, 271.
19. G. Blay, L. Cardona, E. Climent and J. R. Pedro, Angew. Chem., Int. Ed. 2008, 47, 5593.
20. X.-H. Xu, J.-S. Zhen, X. Du, H. Yuan, Y.-H. Li, M.-H. Chu and Y. Luo, Org. Lett. 2022, 24, 853.
21. E. Hasegawa, Y. Nagakura, N. Izumiya, K. Matsumoto, T. Tanaka, T. Miura, T. Ikoma, H. Iwamoto and K. Wakamatsu, J. Org. Chem. 2018, 83, 10813.
22. C. Liu, S. Shi, Y. Liu, R. Liu, R. Lalancette, R. Szostak, and M. Szostak, Org. Lett. 2018, 20, 7771.
23. M. Kuriyama, T. Soeta, X. Hao, Q. Chen and K. Tomioka, J. Am. Chem. Soc. 2004, 126, 8128.
24. R. Ramkunar and S. Chandrasekaran, Synthesis, 2019, 51, 4, 921.
25. W. Yu, Synlett 2005, 16, 2510.
26. B. A. Stenfors and F. N. Ngassa, Eur. J. Org. Chem. 2021, 12, 109.
27. I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam, A. M. Moran, B. D. Dunietz and D. A. Nicewicz, Nature 2020, 580, 76.
28. A. Matsumoto, Z. Wang and K. Maruoka, J. Org. Chem. 2021, 86, 5401.
29. V. K. Pandey, C. S. Tiwari and A. Rit, Org. Lett. 2021, 23, 1681.
30. S. Hanada, T. Ishida, Y. Motoyama and H. Nagashima, J. Org. Chem. 2007, 72, 7551.
31. Y. He, L. Zeng, M. Li, L. Gu, S. Zhang and G. Li, J. Org. Chem. 2022, 87, 12622.
32. D. C. Johnson II and T. S. Widlanski, Tetrahedron Lett. 2004, 45, 8483.
33. A. Polyzos, Angew. Chem. Int. Ed. 2020, 59, 18646.
34. Y. Pei, W. Yuwei, Z. Zhigang and C. Yunfeng, J. Org. Chem. 2019, 84, 14883.
35. S.-T. Bai, C. B. Bheeter and J. N. H. Reek, Angew. Chem. Int. Ed. 2019, 58, 13039.
36. M. K. Gupta, C. K. Jenaa and N. K. Sharma, Org. Biomol. Chem. 2021, 19,10097.
37. J. Zhao, J. Shi and Y. Li, Org. Lett. 2021, 23, 7274.
38. S. Tan, F. Li, S. Parka and S. Kim, Org. Chem. Front. 2019, 6, 3854.
39. G. J. Kavarnos in Fundamentals of Photoinduced Electron Transfer. VCH Publishers: New York, 1993.
40. E. M. Espinoza, J. A. Clark, J. Soliman, J. B. Derr, M. Morales, V. I. Vullev, J. Electrochem. Soc. 2019, 166, H3175.
41. S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42.
42. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Jlyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
43. M. A. Rohrdanz, J. M. Herbert, J. Chem. Phys. 2008, 129, 034107.
44. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.
45. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017 8, e1327.
46. S. Grimme J. Chem. Phys. 2006, 124, 034108.
47. F. Weigend, R. Ahlrichs Phys. Chem. Chem. Phys. 2005, 7, 3297.
48. V. Barone, P. Cimino Chem. Phys. Lett. 2008, 454, 139.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

4-Hydroxy[2.2]paracyclophane (1)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

O잉․

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Tricyclo[8.2.2.2^\{4,7\}]hexadeca-1(12),4,6,10,13,15-hexaen-5-yl 4-methylpent-2-ynoate (2b)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2b

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Tricyclo[8.2.2.2^\{4,7\}]hexadeca-1(12),4,6,10,13,15-hexaen-5-yl 3-phenylprop-2-ynoate (2c)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

+

$\begin{array}{llllllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

3a

pCp-based coumarin 3b
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3b

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3c

[^2]No웅 に
M M M M

$\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 9\end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4,5,8-Trimethyl-2H-chromen-2-one (6)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N゙M M

$\begin{array}{lllllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

N-benzylbenzenesulfonamide (S2)

${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S2

N-benzyl-2,4,6-trimethylbenzene-1-sulfonamide (S2)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S4

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{n}{N} \stackrel{\infty}{\underset{j}{7}}$

4-Methyl-N-(1-phenylethyl)benzene-1-sulfonamide (S5)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

s5

							$\begin{array}{r} 1 \\ \hline-1 \end{array}$	$\begin{aligned} & 7 \\ & \hline 8 \\ & \hline \end{aligned}$				$\begin{aligned} & \text { T1 } \\ & \text { O } \\ & \text { M } \end{aligned}$		$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\infty} \end{aligned}$			
1	1	1	1	T	1	1	1	1 ,	1	1	1	1	1	1	1	1	
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} 4.5 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\substack{n \\ \sim}}{\sim}$
Ni

N-[(4-fluorophenyl)methyl]-4-methylbenzene-1-sulfonamide (S6)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR (471 MHz, CDCl_{3})

N-[(4-methoxyphenyl)methyl]-4-methylbenzene-1-sulfonamide (S7) ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

```
*~N
```


$\underset{\substack{\text { 莌 } \\ \text { i }}}{ }$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { n }}{\substack{n \\ \text { - } \\ \text { i } \\ \hline}}$

N-[2-(1H-indol-3-yl)ethyl]-4-methylbenzene-1-sulfonamide (S8)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N,4-dimethylbenzenesulfonamide (S9)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-tert-butyl tosylcarbamate (S11)

${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Methyl (S)-2-((4-methylphenyl)sulfonamido)butanoate (S13) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

tert-Butyl (S)-2-((4-methylphenyl)sulfonamido)butanoate (S14) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-(benzenesulfonyl)-N-benzylbenzamide (4b)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N
in

N-benzyl-N-(methylsulfonyl)benzamide (4d)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-(4-methylbenzenesulfonyl)-N-(1-phenylethyl)benzamide (4e)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-[(4-fluorophenyl)methyl]-N-(4-methylbenzenesulfonyl)benzamide (4f) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-[2-(1-benzoyl-1H-indol-3-yl)ethyl]-N-(4-methylbenzenesulfonyl)benzamide (4h)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-methyl-N-tosylbenzamide (4i)

${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-butyl-N-tosylbenzamide (4j)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \\ f 1\end{array}(\mathrm{ppm})$
tert-Butyl benzoyl(tosyl)carbamate (4k)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ f 1(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

N-benzyl-4-fluoro-N-(4-methylbenzenesulfonyl)benzamide (4m)
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\text { m }}{\substack{0 \\ \hline \\ \hline \\ \hline}}$

N-benzyl-4-methoxy- N-(4-methylbenzenesulfonyl)benzamide (4n)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

素

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

tert-Butyl benzoyl(tosyl)carbamate (4p)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

tert-Butyl benzyl(tosyl)carbamate (4q)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\rightharpoonup}{\dot{\rightharpoonup}}$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { \& }}{\stackrel{\text { ® }}{+}}$
$\stackrel{\circ}{\circ}$
$\stackrel{\rightharpoonup}{\infty} \stackrel{-}{\sim}$

tert-Butyl benzyl(tosyl)carbamate (4r)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-benzylbenzamide (5a)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5a

N-(1-phenylethyl)benzamide (5b)

${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5b

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { ju }}{\substack{\text { j } \\ \text { N }}}$

N-[(4-fluorophenyl)methyl]benzamide (5c)

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR (471 MHz, CDCl_{3})

N-[(4-methoxyphenyl)methyl]benzamide (5d)

${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5d

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-[2-(1-benzoyl-1H-indol-3-yl)ethyl]benzamide (5e)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-methylbenzamide (5f)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }_{5}$

${ }^{59}$
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

tert-Butyl benzoylcarbamate (5h)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-allylbenzamide (5i)

${ }_{5 i}$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^3]${ }^{19}$ F NMR (471 MHz, CDCl_{3})
-108.10

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

tert-Butyl benzoyl-L-alaninate (5m)
$$
{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$

5 m

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
-172.53
-166.60

$\stackrel{\sim}{\sim}$
8
\dot{j}
$\stackrel{\circ}{\stackrel{\circ}{\circ}} \stackrel{\text { ® }}{\sim}$

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: ${ }^{\text {b }}$ Sorbonne-Université, Institut National Supérieur du Professorat et de l'Education (INSPE) de

[^1]: C -2.25115600-2.17702200 -0.47308300
 C $0.039467002 .88536700-1.00914300$
 C 0.383623002 .907307000 .53842200
 C -1.82750500 -2.19028800 1.06033300
 C 2.292675000 .386149000 .24209500
 C $2.78522100-0.77196600-0.25272400$
 C 2.05333100 -2.01357600-0.21593500
 O $0.86243300-1.987394000 .44290100$
 C 3.168260001 .605731000 .21384500
 O $2.41195600-3.07113300-0.68520100$
 H -3.62890800 $0.19049300-0.29304800$
 H -2.62641200 $2.41047200-0.52310100$
 H 0.770735000 .67305000 -2.46036200
 H -0.23853200 -1.54829900 -2.23872700
 H - 2.498517000 .025970002 .54482200
 H -1.48221600 2.226072002 .29661100
 H -3.31635000 -2.41519700-0.52508100
 H -1.71413400 -2.97397400-0.99127000
 H $0.967833002 .86998500-1.58566900$
 H -0.46277700 $3.82764200-1.24277600$

[^2]:

[^3]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{ll}100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\end{array}$

