Supporting Information for

Controlled oligomeric guest stacking by cucurbiturils in water

Fengbo Liu, Amine Kriat, Roselyne Rosas, David Bergé-Lefranc, Didier Gigmes, Simon Pascal, Olivier Siri, Simin Liu, Anthony Kermagoret, David Bardelang

Table of Contents

- **Experimental procedures**

- **Additional data**

Experimental Procedures

1/ Chemical compounds. **T-VPI** and **VPI-N** were obtained following previously described procedures.[1] D_2O , TFA (deuterated trifluoroacetic acid) and DCI in D_2O (3.5%) were purchased from commercial sources (Aldrich, Acros, ABCR or TCI) and used without further purification. HPLC grade water (purchased from Sigma-Aldrich) was used as deionized water. CB[8] was prepared according to a previous paper.^[2] CB[10] was obtained following a previously described procedure.^[3] Di-tolyl viologen (**TVT**) was obtained from a previously reported procedure.[4]

*2/ NMR measurements***.** NMR measurements were recorded on Bruker AVL 300, 400 and 500 spectrometers (¹H-NMR 300.13, 400.13 and 500.13 MHz and ¹³C-NMR 100.60, and 125.75 MHz). When using D_2O as the solvent (internal reference, 4.75 ppm) a watergate sequence (water suppress) was applied if necessary. Acetone was also used as internal reference for D_2O solutions (ref 2.22 ppm).^[5] Splitting patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet. 2D NMR spectra (COSY and ROESY) were recorded using standard Bruker sequences. ROESY spectra for the CB $[8]_2 \cdot T\text{-VP}$, complex was not attempted owing to large signals in the aromatic region usually affording spectra with no cross-peaks. Similarly, the ROESY of the CB[10]₂•VPI-N₃ complex was not recorded for the same reason, but ROESY was obtained for this complex in acidic conditions (sharper peaks compared to neutral conditions, see Figure S33).

*3/ ITC measurements***.** Isothermal Titration Calorimetry (ITC) was performed on a Malvern MicroCal PEAQ-ITC at 25 °C. A 1 mM stock solution of **VPI-N** (syringe) was diluted in HPLC grade water (cell) for investigating dimer formation. Results were analyzed using the Malvern MicroCal PEAQ-ITC Analysis Software 1.1.0.1262 considering the dissociation model. For **T-VPI** (1 mM, syringe), titrations were performed with CB[8] solutions at 40 μM in HPLC grade water (cell). For VPI-N (1 mM, syringe), titrations were performed with CB[8] solutions at 40 μ M in HPLC grade water (cell). Results were analyzed using the Malvern MicroCal PEAQ-ITC Analysis Software 1.1.0.1262 considering the one set of sites binding model. The reduced Chi square value [(kJ/mol)²] for each titration is indicated hereafter: **VPI-N** dilution: 0.036, **T-VPI** with CB[8]: 0.353, **VPI-N** with CB[8]: 0.385.

4/ Absorption and fluorescence spectroscopies. UV-visible absorption spectra were recorded in spectrophotometric grade water (*ca*. 10⁻⁵ M) on a VARIAN CARY 50 SCAN spectrophotometer at room temperature with a 300 nm/min scan rate. Emission spectra were measured using a Horiba-Jobin Yvon Fluorolog-3 spectrofluorimeter equipped with a three-slit double-grating excitation and a spectrograph emission mono-chromator with dispersions of 2.1 nm.mm⁻¹ (1200 grooves per mm). A 450 W xenon continuous wave lamp provided excitation. The luminescence of diluted solutions was detected at right angle using 10 mm quartz cuvettes.

Excitation: the luminescence of diluted solutions was detected at right angle using 10 mm quartz cuvettes. Fluorescence quantum yields Φ were measured in diluted absolute ethanol solution with an optical density lower than 0.1 using the following equation:

$$
\frac{\Phi_x}{\Phi_r} = \left(\frac{A_r(\lambda)}{A_x(\lambda)}\right) \left(\frac{n_x^2}{n_r^2}\right) \left(\frac{D_x}{D_r}\right)
$$

where A is the absorbance at the excitation wavelength (λ) , n the refractive index and D the integrated intensity. "r" and "x" stand for reference and sample. The fluorescence quantum yields were measured relative to anthracene in ethanol (Φ = 27%). Excitation of reference and sample compounds was performed at the same wavelength, *ie*. 290 nm for **T-VPI** and 310 nm for **VPI-N** and **T-V-T**.

Additional data

5/ ¹H NMR spectrum of T-VPI

¹H NMR (300 MHz, D₂O) δ 9.38 (d, *J* = 7.1 Hz, 2H, **H5**), 9.32 (d, *J* = 7.1 Hz, 2H, **H2**), 8.74 (d, *J* = 7.0 Hz, 2H, *H4*), 8.69 (d, *J* = 7.0 Hz, 2H, *H3*), 8.31 (d, *J* = 8.8 Hz, 2H, *H7*), 7.96 (d, *J* = 8.8 Hz, 2H, *H6*), 7.68 (dd, *J* = 5.8, 2.8 Hz, 4H, overlapped signals of *Hy* and *H8*), 7.57 (d, *J* = 8.2 Hz, 2H, *Hx*), 7.32 (dd, *J* = 6.1, 3.2 Hz, 2H, *H9*), 2.47 (s, 3H, *H1*).

Figure S1. ¹H NMR spectrum (300 MHz, D₂O, 298 K, 1 M) of compound T-VPI.

6/ ¹H NMR spectrum of VPI-N

¹H NMR (500 MHz, D₂O) δ 8.95 (d, *J* = 5.0 Hz, 2H, **H5**), 8.76 (d, *J* = 5.9 Hz, 2H, **H2**), 8.19 (d, *J* = 5.0 Hz, 2H, *H4*), 8.13 (d, *J* = 5.6 Hz, 2H, *H3*), 8.08 (d, *J* = 8.0 Hz, 2H, *H7*), 7.90 (br s, 2H, *H8*), 7.73 (br s, 2H, *H9* or *H10*), 7.67 (d, *J* = 8.2 Hz, 2H, *H6*), 7.18 (m, 2H, *H9* or *H10*), 4.31 (s, 3H, *H1*).

Figure S2. ¹H NMR spectrum (300 MHz, D2O, 298 K, 0.33 M) of compound **VPI-N**.

7/ NMR and ITC study of VPI-N dimerization

Figure S3. ¹H NMR spectra of VPI-N alone in D₂O (top) and in the presence of TFA (bottom).

Figure S4. DOSY NMR spectra (500 MHz, D_2O , 300 K) of VPI-N in D_2O (top) and in the presence of deuterated-TFA (bottom).

Figure S5. Evolution of the chemical shift of the ¹H NMR signal of proton H5 in D₂O (500 MHz, 300 K) as a function of **VPI-N** concentration (in mol.L-1).

Figure S6. ITC thermogram corresponding to the dilution of a 1 mM solution of **VPI-N** in water.

8/ ¹H NMR titration of T-VPI with CB[8]

Figure S7. ¹H NMR (500 MHz, D2O, 298 K, 0.45 mM) of compound CB[8]2•**T-VPI**2.

9/ 1H NMR titration of VPI-N with CB[8]

10/ Preparation and NMR spectra of CB[8]2●T-VPI²

A 0.45 mM solution of CB[8]₂ • T-VPI₂ was prepared from a mixture of 0.84 mg of solid CB[8] $(6.3 \times 10^{-7}$ mol, 1.2 equiv.), 263 µL of a 2 mM stock solution of **T-VPI** (5.3 \times 10⁻⁷ mol in D₂O and 370 μ L of D₂O. Acetone was used as internal reference (2.22 ppm).

According to the integral value of signals *H5* (9.19 ppm, I = 4.00) and the integral value of CB[8] protons (5.83-5.69 ppm, I = 44.20), a CB[8]/**T-VPI** ratio of 2.76/2 is determined.

¹H NMR (500 MHz, D₂O) δ 9.19 (br s, 4H, *H5*), 9.05 (br s, 4H, *H2*), 8.38 (br s, 8H, overlapped signals of *H6* and *H7*), 8.01 (br s, 4H, *Hy*), 7.68 (br s, 4H, *Hx*), 7.22 (s, 4H, *H4*), 7.11 (s, 4H, *H3*), 6.69 (s, 4H, *H8* or *H9*), 6.21 (s, 4H, *H8* or *H9*), 5.83 – 5.69 (m, 32H, CB[8]), 5.52 (s, 32H, CB[8]), 4.17 (app t, *J* = 37.3 Hz, 32H, CB[8]), 2.59 (br s, 6H, *H1*), 2.22 (acetone, ref).

Figure S9. ¹H NMR (500 MHz, D2O, 298 K, 0.45 mM) of compound CB[8]2•**T-VPI**2.

Figure S10. COSY NMR (500 MHz, D₂O, 298 K, 0.45 mM) of compound $CB[8]_2 \cdot T\text{-}VPI_2$.

11/ Preparation and NMR spectra of CB[8]2●VPI-N²

A 0.45 mM solution of CB[8]₂•**VPI-N**₂ was prepared from a mixture of 0.74 mg of solid CB[8] $(5.6 \times 10^{-7}$ mol, 1.2 equiv.), 115 µL of a 4 mM stock solution of VPI-N $(4.6 \times 10^{-7}$ mol) in D₂O and 440 μ L of D₂O. Acetone was used as internal reference (2.22 ppm).

According to the integral value of signals *H5* (8.90 ppm, I = 4.00) and the integral value of CB[8] protons (5.75 ppm, I = 37.82), a CB[8]/**VPI-N** ratio of 2.36/2 is determined.

¹H NMR (500 MHz, D₂O) δ 8.90 (d, *J* = 5.9 Hz, 4H, **H5**), 8.68 (d, *J* = 6.3 Hz, 4H, **H2**), 8.39 (d, *J* = 8.4 Hz, 4H, *H6* or *H7*), 8.32 (d, *J* = 8.4 Hz, 4H, *H6* or *H7*), 7.19 (s, 4H, *H8*), 6.91 (br s, 8H, overlapped signals of *H9* and *H10*), 6.82 (d, *J* = 6.1 Hz, 4H, *H4*), 6.65 (d, *J* = 6.2 Hz, 4H, *H3*), 5.75 (dd, *J* = 26.9, 15.4 Hz, 32H, CB[8]), 5.49 (s, 32H, CB[8]), 4.60 (s, *H1*), 4.19 (dd, *J* = 15.4, 6.3 Hz, 32H, CB(8]), 2.22 (acetone, ref).

Figure S11. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 0.45 mM) of compound CB[8]₂•VPI-N₂.

Figure S12. COSY NMR (300 MHz, D₂O, 298 K, 0.45 mM) of compound CB[8]₂ • VPI-N₂.

Figure S13. ROESY NMR (500 MHz, D₂O, 298 K, 0.45 mM, mixing time: 400 ms) of compound CB[8]₂•**VPI-N**₂.

12/ Preparation and NMR spectra of T-VPI with CB[10]

A solution of **T-VPI** with CB[10] was prepared from a mixture of 0.47 mg of solid CB[10] (2.7 × 10^{-7} mol, 1.1 equiv.), 125 μ L of a 2 mM stock solution of **T-VPI** (2.5 \times 10⁻⁷ mol) in D₂O and 400 μ L of D₂O.

¹H NMR (500 MHz, D₂O, 298 K, Figure S12) δ 5.8 (br s, CB[10]), 5.5 (br s, CB[10]), 4.1 (br s, CB[10]).

¹H NMR (500 MHz, D₂O, 340 K, Figure S13) δ 8.86 (br s), 8.14 (br m), 7.81 (br s), 7.61 (br s), 7.48 – 7.16 (br m), 6.78 (br s), 5.80 (app d, *J* = 15.0 Hz, CB[10]), 5.50 (s, CB[10]), 4.26 – 4.20 (m, CB[10]), 2.35 (br s, *H1*).

Figure S14. ¹H NMR spectrum (500 MHz, D₂O, <u>298 K</u>, 0.5 mM) of **T-VPI** with CB[10].

Figure S15. ¹H NMR spectrum (500 MHz, D2O, 340 K, 0.5 mM) of **T-VPI** with CB[10].

13/ Preparation and NMR spectra of CB[10]2●VPI-N³

A 0.17 mM solution of CB[10]2•**VPI-N**³ was prepared from a mixture of 0.46 mg ofsolid CB[10] $(2.8 \times 10^{-7}$ mol, 1.0 equiv.), 68 µL of a 4 mM stock solution of VPI-N $(2.8 \times 10^{-7}$ mol) in D₂O and 500 μ L of D₂O. Acetone was used as internal reference (2.22 ppm).

¹H NMR (300 MHz, 298 K, D₂O) δ 8.66 (d, *J* = 6.6 Hz, 4H, **H5a**), 8.61 (d, *J* = 6.4 Hz, 4H, **H2a**), 8.45-8.38 (m, 2H, *H5b*), 8.23 (d, *J* = 5.0 Hz, 2H, *H2b*), 8.15 (d, *J* = 8.7 Hz, 4H, *H7a*), 7.81-7.92 (m, 6H, *H7b* and *H6a*), 7.49 (d, *J* = 5.0 Hz, 2H, *H6b*), 6.95-7.15 (br m), 6.94-6.80 (br m), 5.78 (app ddd, *J* = 17.9, 17.0, 10.7 Hz, 40H, CB[10]), 5.50 (app d, 40H, CB[10]), 4.53 (br s, *H1a*), 4.47 (brs, *H1b*), 4.30-4.06 (m, 40H, CB[10]), 2.22 (acetone, ref). Signals *H3a-b*, *H4a-b*, *H8a-b*, *H9a-b* and *H10a-b* were not identified on the ¹H NMR spectrum at 298 K (300 or 500 MHz).

According to the integral value of signals **H5a** + **H5b** (8.67 ppm, I = 3.78 and 8.33 ppm, I = 1.93) and the integral value of CB[10] protons (5.92-5.69 ppm, I = 40.00), a CB[10]/**VPI-N** ratio of 2.1/3 is determined.

¹H NMR (500 MHz, 340 K, D₂O) δ 8.67 (d, *J* = 6.3 Hz, 4H, **H5a**), 8.52 (d, *J* = 6.1 Hz, 4H, **H2a**), 8.33 (d, *J* = 5.9 Hz, 2H, *H5b*), 8.18 (d, *J* = 8.4 Hz, 4H, *H7a*), 8.14 (d, *J* = 6.3 Hz, 2H, *H2b*), 7.87 (two d, *J* = 11.6, 8.7 Hz, 6H, overlapped signals of *H7b* and *H6a*), 7.54 (d, *J* = 8.4 Hz, 2H, *H6b*), 7.08 (d, *J* = 6.2 Hz, 4H, *H4a*), 7.00 (d, *J* = 6.2 Hz, 4H, *H3a*), 6.88 (d, *J* = 8.5 Hz, 4H, *H9a*), 6.79 (d, *J* = 6.0 Hz, 2H, *H4b*), 6.74 (d, *J* = 6.2 Hz, 2H, *H3b*), 6.59 (s, 4H, *H10a*), 5.92 – 5.69 (m, 40H, CB[10]), 5.59 – 5.40 (m, 40H, CB[10]), 4.53 (br s, *H1a*), 4.43 (br s, *H1b*), 4.18 (app ddd, *J* = 39.1, 19.6, 11.9 Hz, 40H, CB[10]), 2.22 (acetone, ref). Signals *H8a*, *H8b*, *H9b* and *H10b* were not identified on the 1 H NMR spectrum at 340 K (500 MHz).

Figure S16. ¹H NMR spectrum (300 MHz, D₂O, <u>298 K</u>, 0.17 mM) of CB[10]₂•VPI-N₃.

igure S17. ¹H NMR spectra (500 MHz, D₂O, 300-365 K, 0.17 mM, ref. acetone 2.22 ppm) of CB[10]2•**VPI-N**3.

Figure S18. ¹H NMR (500 MHz, D₂O, <u>340 K</u>, 0.17 mM, ref. acetone 2.22 ppm) of CB[10]₂•VPI-**N**3.

Figure S19. COSY NMR (500 MHz, D₂O, 340 K, 0.17 mM) of CB[10]₂ • VPI-N₃.

Figure S20. ITC thermogram corresponding to a solution of **VPI-N** titrated with CB[8] in water.

15/ Competition NMR for the determination of binding constants

The binding constants corresponding to the formation of CB[8]₂•**T-VPI**₂ and CB[8]₂•**VPI-N**₂ were evaluated using ¹H NMR in the presence of a competitor guest, following the procedure of Macartney and co-workers,^[6] expended to CB[8] 2:2 complexes.^[7] The NMR spectra were collected at 298 K on a Bruker AC500 (64 scans) from 1 mM solutions of **T-VPI** or **VPI-N** in the presence of 1 equiv. of CB[8] and 1 equiv. of competitor in D_2O (Figures S28 to S31). The first competitor guest was 1adamantylamine•HCl (**Ad**). The binding constant correspond to formation of the CB[8]•**Ad** complex $(8.19 \pm (1.75) \times 10^8 \text{ M}^{\text{-}1}$, **R1** and **Eq1**) was reported in the literature.^[8] The chemical shifts of the free Ad and CB[8]•Ad were determined in D₂O from 1 mM solutions (Figure S29). The limiting chemical shift values, Δ*δ*lim, for **Ad** and CB[8]•**Ad** were measured according to the chemical shifts of CH protons (Table S1). Then, ¹H NMR spectra of a mixture of **T-VPI** (1 equiv.), with CB[8] (1 equiv.) and **Ad** (1 equiv.) were recorded to determine the chemical shifts of CH protons of **Ad** (Table S2, **R3** and **Eq3**). Chemical resonances for free and complexed **Ad** suggest fast exchange on the NMR timescale (Figure S29). Following the method of Macartney et al,^[6] the binding constant corresponding to the formation of the complex from CB[8] and **T-VPI** was calculated from the chemical shifts of the competitive spectra and Δ*δ*lim (Table S1) and considering equation **Eq4**.

On the other hand, since 1-adamantylamine•HCl (**Ad**) presents a too low CB[8] binding constant compared to **VPI-N**, we used memantine (3,5-dimethyladamantylamine•HCl, **diMeAd**) as competitor to evaluate the binding constant for $CB[8]_2 \cdot VPI-N$ ₂ (Figures S30-31). The binding constant of CB[8] toward **diMeAd**₂ is 4.3 \times 10¹¹ M⁻¹.^[8] Because the ¹H NMR signals of free/complexed VPI-N/diMeAd were not clear in the aromatic and aliphatic regions (Figure S30), we evaluated the CB[8]2•**VPI-N**² binding constant from the integral values of the CB[8] at 5.540 and 5.490 ppm, assigned to CB[8]•**diMeAd** and CB[8]2•**VPI-N**2, respectively (Figure S31). The results are presented in (Table S2). Preparation of the **Ad**/**T-VPI**/CB[8] competition solution (Figures S28-29) :

A solution of **Ad**/**T-VPI**/CB[8] was prepared from a mixture of 0.81 mg of solid CB[8] (6.1 × 10-7 mol, 1 equiv.), 304 μ L of a 2 mM solution of **T-VPI** (6.1 × 10⁻⁷ mol, 1equiv.) in D₂O, 122 μ L of a 5 mM solution of **Ad** in D₂O (6.1 \times 10⁻⁷ mol) and 200 µL of D₂O. Acetone was used as internal reference (2.22 ppm). Preparation of the **diMeAd**/**VPI-N**/CB[8] competition solution (Figures S30-31) :

A solution of **diMeAd**/**VPI-N**/CB[8] was prepared from a mixture of 0.54 mg of solid CB[8] (4.1 × 10-7 mol, 1 equiv.), 102 µL of a 4 mM stock solution of **VPI-N** (4.1 × 10⁻⁷ mol, 1equiv.) in D₂O, 82 µL of a 5 mM solution of **diMeAd** in D₂O (4.1 \times 10⁻⁷ mol) and 250 μ L of D₂O. Acetone was used as internal reference (2.22 ppm).

Table S1. ¹H NMR results considering the **Ad**/**T-VPI** competition toward CB[8].

^a 1 mM solution in D₂O; ^b Chemical shift determined from NMR spectra of Figure S29 and using acetone (2.220 ppm) as internal reference; ^c Δδlim determined from for **Ad** and CB[8]•**Ad** spectra; ^d calculated from Eq4.

Equilibrium reactions:

R1 Ad + CB[8] = Ad • CB[8] (K_{a-Ad} = 8.19 × 10⁸ M⁻¹)

Eq1 *K*a-Ad $=\frac{[Ad \bullet CB[8]]}{[Ad \bullet CB[8]]}$ $[Ad],[CB[8]]$

R2 2 **T-VPI** + 2 CB[8] = **T-VPI** • CB[8]₂

Eq2 *K*a-**TVPI**2.CB[8]2 $=\frac{[TVPI2 \cdot CB[8]2]}{[TVPI2 \cdot CB[8]2]}$ $[TVPI]^2.[CB[8]]^2$

R3 Ad•CB[8] + **T-VPI** = Ad + 0.5 **T-VPI₂**•CB[8]₂

Eq3 K_{a-competition} $[Ad \bullet CB[8]].[TVPI] =$ $=$ $\frac{v}{x}$ $[TVPI2\bullet CB[8]2]$.[Ad] $[Ad \bullet CB[8]].[TVPI]$ Ka – TVPI2.CB[8]2 Ka – Ad

$$
\mathsf{Eq4} \; \mathsf{K}_{\mathsf{a}\text{-}\mathsf{TVPI2}\cdot\mathsf{CB}[\mathsf{8}]2} = \left[\frac{Ka - Ad\sqrt{[\text{TVPI2}\bullet CB[\mathsf{8}]2]}.[Ad]}{[Ad\bullet CB[\mathsf{8}]].[\text{TVPI}]}\right]^2
$$

^a 1 mM solution in D₂O; ^b Chemical shift determined from NMR spectra of Figure S31

and using acetone (2.220 ppm) as internal reference; \circ Integral values based on -CH₃ signals of **diMeAd** in the competition solution; ^d calculated from Eq4.

Figure S21. ¹H NMR spectrum (500 MHz, D₂O, 298 K) of a mixture of 1 equiv. of **T-VPI**, 1 equiv. of CB[8] and 1 equiv. of 1-adamantylamine•HCl (**Ad**).

Figure S22. ¹H NMR spectra (500 MHz, D₂O, 298 K, zoom of 0.9-3 ppm region) of: **a.** a mixture of **T-VPI**/CB[8]/**Ad** (1 equiv.), **b.** of a mixture of 1.2 equiv. of CB[8] and 1 equiv. of 1 adamantylamine•HCl (Ad), and c. 1-adamantylamine•HCl (Ad, 1 mM) in D₂O.

16/ UV-visible and fluorescence spectra

Table S3. Summary of the optical properties in water solution.

^a Fluorescence quantum yields in deionized water, relative to anthracene in ethanol (Φ = 27%). Excitation of reference and sample compounds was performed at the same wavelength, *i.e*. 290 nm for **T-VPI** and 310 nm for **VPI-N** and **T-V-T**.

^b Slightly underestimated value due to the recording conditions.

Figure S25. Electronic absorption (left) and normalized emission (right) spectra of compounds **T-VPI** (purple), **VPI-N** (orange) and **T-V-T** (green) in water solution (*ca*. 10-5 M).

Figure S26. Electronic absorption (left column) and emission (right column) spectra of **T-VPI** or **VPI-N** in the presence of CB[8] or CB[10] in water (10-5 M).

17/ Preparation and NMR spectra of CB[8]2●T-VPI2●Ag⁺ 2

A 0.45 mM solution of CB[8]2•**T-VPI**2•**Ag⁺** ² was prepared from a mixture of 0.64 mg of solid CB[8] (4.8 \times 10⁻⁷ mol, 1.2 equiv.), 200 µL of a 2 mM stock solution of **T-VPI** (4 \times 10⁻⁷ mol) in D₂O, 40 µL of a 0.2 M solution of AgNO₃ (8.0 \times 10⁻⁶ mol) and 300 µL of D₂O. Acetone was used as internal reference (2.22 ppm).

¹H NMR (500 MHz, D₂O) δ 9.37 (d, *J* = 5.8 Hz, 4H, **H5**), 9.07 (s, 4H, **H2**), 8.47 (d, *J* = 7.6 Hz, 4H, *H7* or *H6*), 8.17 (s, 4H, *H7* or *H6*), 7.98 (d, *J* = 7.5 Hz, 4H, *Hy* or *Hx*), 7.68 (d, *J* = 7.5 Hz, 4H, *Hy* or *Hx*), 7.40 (s, 4H, *H4*), 7.18 (br s, 4H, *H3*), 6.67 (br s, 4H, *H8* or *H9*), 6.38 (s, 4H, *H8* or *H9*), 5.92 – 5.66 (m, 32H, CB[8]), 5.55 (s, 32H, CB[8]), 4.25 (dd, *J* = 15.3, 9.1 Hz, 32H, CB[8]), 2.57 (s, 6H, *H1*), 2.22 (acetone, ref).

Figure S27. **¹H NMR spectrum (500 MHz, D₂O, 298 K, 0.45 mM) of CB[8]₂•T-VPI₂•Ag⁺₂.**

Figure S28. COSY NMR (500 MHz, D2O, 298 K, 0.45 mM) of CB[8]2•**T-VPI**2•**Ag⁺** 2.

18/ Preparation and NMR spectra of CB[8]2●VPI-N2●Ag⁺ 2

To 500 µL of a 0.45 mM solution of CB[8]2•**VPI-N**² were added 50 µL of a 0.2 M solution of AgNO₃ (10⁻⁵ mol) in D₂O. Acetone was used as internal reference (2.22 ppm).

¹H NMR (500 MHz, D₂O) δ 8.94 (d, *J* = 5.3 Hz, 4H, **H5**), 8.75 (d, *J* = 6.3 Hz, 4H, **H2**), 8.48 (d, *J* = 8.4 Hz, 4H, *H6* or *H7*), 8.31 (d, *J* = 8.6 Hz, 4H, *H6* or *H7*), 7.16 (br s, 4H, *H8*, *H9* or *H10*), 6.93 (br s, 8H, *H8*, *H9* or *H10*), 6.83 (d, *J* = 4.6 Hz, 4H, *H4*), 6.69 (d, *J* = 6.3 Hz, 4H, *H3*), 5.73 (app dt, *J* = 43.3, 21.6 Hz, 32H, CB[8]), 5.52 (d, *J* = 24.6 Hz, 32H, CB[8]), 4.64 (br s, *H1*), 4.20 (d, *J* = 15.4 Hz, 32H, CB[8]), 2.22 (acetone, ref).

Figure S29. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 0.45 mM) of CB[8]₂•VPI-N₂•Ag⁺₂.

Figure S30. COSY NMR (500 MHz, D2O, 298 K, 0.45 mM) of CB[8]2•**VPI-N**2**•**Ag⁺ 2.

19/ Preparation and NMR spectra of CB[8]2●VPI-N-H⁺ 2

A 0.45 mM solution of CB[8]₂•VPI-N-H⁺₂ was prepared from a mixture of 0.61 mg of solid CB[8] (4.6 \times 10⁻⁷ mol, 1.2 equiv.), 95 µL of a 4 mM stock solution of **VPI-N** (3.8 \times 10⁻⁷ mol) in D₂O, 20 µL of a 0.2 M solution of **TFA** (4.0 \times 10⁻⁶ mol) and 360 µL of D₂O. Acetone was used as internal reference (2.22 ppm).

¹H NMR (500 MHz, D₂O) δ 8.95 (d, *J* = 6.4 Hz, 4H, **H5**), 8.81 (d, *J* = 6.3 Hz, 4H, **H2**), 8.49 (d, *J* = 8.6 Hz, 4H, *H6* or *H7*), 8.39 (d, *J* = 8.6 Hz, 4H, *H6* or *H7*), 7.32 (s, 4H, *H8*), 6.97 (two d, *J* = 6.3 Hz, 8H, , *H9* and *H10*), 6.87 (d, *J* = 6.5 Hz, 4H, , *H4*), 6.75 (d, *J* = 6.4 Hz, 4H, , *H3*), 5.76 (app dd, *J* = 29.5, 15.4 Hz, 32H, CB[8]), 5.50 (br s, 32H, CB[8]), 4.65 (br s, *H1*), 4.22 (d, *J* = 15.3 Hz, 32H, CB[8]), 2.22 (acetone, ref).

Figure S31. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 0.45 mM) of CB[8]₂•VPI-N-H⁺₂.

Figure S32. COSY NMR (500 MHz, D2O, 298 K, 0.45 mM) of CB[8]2•**VPI-N**-H⁺ 2.

20/ Preparation and NMR spectra of CB[8]2●T-VPI² with TFA

A solution of **T-VPI**/CB[8]/TFA was prepared from a mixture of 0.66 mg of solid CB[8] (5.0 × 10⁻⁷ mol, 1.2 equiv.), 205 µL of a 2 mM stock solution of **T-VPI** (4.1 \times 10⁻⁷ mol, 1equiv.) in D₂O, 20 µL of a 0.2 M solution of TFA in D₂O (4.0 \times 10⁻⁶ mol) and 280 µL of D₂O. Acetone was used as internal reference (2.22 ppm).

Figure S33. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 1 mM) of 1 equiv. of **T-VPI**, with 1.2 equiv. of CB[8] and 10 mM of TFA.

21/ Preparation and NMR spectra of CB[10]2●VPI-N-H⁺ 3

To 500 µL of a 0.17 mM solution of CB[10]2•**VPI-N**³ were added 10 µL of a 0.2 M solution of TFA in D₂O (2×10^{-6} mol, 12 equiv.). Acetone was used as internal reference (2.22 ppm).

¹H NMR (500 MHz, D₂O) δ 9.13 (br s, 2H, **H2b**), 8.94 (d, J = 6.1 Hz, 4H, **H2a**), 8.36 (br s, 4H, *H5a*), 8.27 (d, *J* = 8.4 Hz, 4H, *H7a*), 8.07 (br s, 2H, *H7b*), 7.94 (br s, 2H, *H5b*), 7.84 (d, *J* = 7.8 Hz, 4H, *H6a*), 7.74 (br s, 2H, *H8b*), 7.64 (br s, 2H, *H3b*), 7.43 (br s, 4H, *H3a*), 7.36 (s, 4H, *H8a*), 7.28 (br s, 2H, *H6b*), 7.16 (m, 6H, overlapped signals of *H4a* and *H9b*), 6.97 (m, 6H, overlapped signals of *H4b* and *H9a*), 6.48 (m, 4H, *H10a*), 6.30 (br s, 2H, *H10b*), 5.91 – 5.69 (m, 48H, CB[10]), 5.52 (d, *J* = 33.7 Hz, 43H, CB[10]), 4.61 (br s, *H1a-b*), 4.20 (ddd, *J* = 23.3, 15.2, 7.4 Hz, 49H, CB[10]), 2.22 (acetone, ref).

Figure S34. ¹H NMR spectrum (500 MHz, D2O, 300 K, 0.17 mM, full a., zoom b.) of CB[10]2•**VPI-N**-H⁺ ³ recorded after 5 days.

Figure S35. COSY NMR (500 MHz, D₂O, 300 K, 0.17 mM) of CB[10]₂•VPI-N-H⁺3.

Figure S36. ROESY NMR (500 MHz, D₂O, 300 K, 0.17 mM, mixing time: 400 ms) of CB[10]2•**VPI-N**-H⁺ 3.

22/ References

- [1] A. Kriat, S. Pascal, B. Kauffmann, Y. Ferrand, D. Bergé-Lefranc, D. Gigmes, O. Siri, A. Kermagoret, D. Bardelang, *Chem. Eur. J.* **2023**, DOI: 10.1002/chem.202300633.
- [2] D. Bardelang, K. A. Udachin, D. M. Leek, J. C. Margeson, G. Chan, C. I. Ratcliffe, J. A. Ripmeester, *Cryst. Growth Des.* **2011**, *11*, 5598–5614.
- [3] X. R. Yang, Z. Y. Zhao, X. Z. Zhang, S. M. Liu, *Sci. China. Chem.* **2018**, *61*, 787–791.
- [4] X. Yang, Q. Cheng, V. Monnier, L. Charles, H. Karoui, O. Ouari, D. Gigmes, R. Wang, A. Kermagoret, D. Bardelang, *Angew. Chem. Int. Ed.* **2021**, *60*, 6617–6623.
- [5] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, *29*, 2176–2179.
- [6] M. A. Gamal-Eldin, D. H. Macartney, *Org. Biomol. Chem.* **2013**, *11*, 1234–1241.
- [7] H. Yin, Q. Cheng, R. Rosas, S. Viel, V. Monnier, L. Charles, D. Siri, D. Gigmes, O. Ouari, R. Wang, A. Kermagoret, D. Bardelang, *Chem. Eur. J.* **2019**, *25*, 12552–12559.
- [8] S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij, L. Isaacs, *J. Am. Chem. Soc.* **2005**, *127*, 15959–15967.