## Supporting Information for

# Controlled oligomeric guest stacking by cucurbiturils in water

Fengbo Liu, Amine Kriat, Roselyne Rosas, David Bergé-Lefranc, Didier Gigmes, Simon Pascal, Olivier Siri, Simin Liu, Anthony Kermagoret, David Bardelang

# Table of Contents

### - Experimental procedures

| 1/ Chemical compounds                         | S2 |
|-----------------------------------------------|----|
| 2/ NMR Measurements                           | S2 |
| 3/ ITC measurements                           | S2 |
| 4/ Absorption and fluorescence spectroscopies | S2 |

# - Additional data

| 5/ <sup>1</sup> H NMR spectrum of <b>T-VPI</b>                                                                            | S3  |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| 6/ <sup>1</sup> H NMR spectrum of <b>VPI-N</b>                                                                            | S4  |
| 7/ NMR and ITC study of <b>VPI-N</b> dimerization                                                                         | S5  |
| 8/ <sup>1</sup> H NMR titration of <b>T-VPI</b> with CB[8]                                                                | S7  |
| 9/ <sup>1</sup> H NMR titration of <b>VPI-N</b> with CB[8]                                                                | S7  |
| 10/ Preparation and NMR spectra of CB[8] <sub>2</sub> •T-VPI <sub>2</sub>                                                 | S8  |
| 11/ Preparation and NMR spectra of CB[8]₂●VPI-N₂                                                                          | S9  |
| 12/ Preparation and NMR spectra of <b>T-VPI</b> with CB[10]                                                               | S11 |
| 13/ Preparation and NMR spectra of $CB[10]_2 \bullet VPI-N_3$                                                             | S12 |
| 14/ ITC study of <b>VPI-N</b> with CB[8]                                                                                  | S15 |
| 15/ Competition NMR for the determination of binding constants                                                            | S16 |
| 16/ UV-visible and fluorescence spectra                                                                                   | S20 |
| 17/ Preparation and NMR spectra of CB[8] <sub>2</sub> • <b>T-VPI</b> <sub>2</sub> •Ag <sup>+</sup> <sub>2</sub>           | S22 |
| 18/ Preparation and NMR spectra of CB[8] <sub>2</sub> $\bullet$ VPI-N <sub>2</sub> $\bullet$ Ag <sup>+</sup> <sub>2</sub> | S23 |
| 19/ Preparation and NMR spectra of CB[8] <sub>2</sub> •VPI-N-H <sup>+</sup> <sub>2</sub>                                  | S24 |
| 20/ Preparation and NMR spectra of CB[8] <sub>2</sub> <b>•T-VPI</b> <sub>2</sub> with TFA                                 | S25 |
| 21/ Preparation and NMR spectra of CB[10]₂●VPI-N-H⁺₃                                                                      | S26 |
| 22/ References                                                                                                            | S28 |

### **Experimental Procedures**

**1/ Chemical compounds. T-VPI** and **VPI-N** were obtained following previously described procedures.<sup>[1]</sup> D<sub>2</sub>O, TFA (deuterated trifluoroacetic acid) and DCl in D<sub>2</sub>O (3.5%) were purchased from commercial sources (Aldrich, Acros, ABCR or TCl) and used without further purification. HPLC grade water (purchased from Sigma-Aldrich) was used as deionized water. CB[8] was prepared according to a previous paper.<sup>[2]</sup> CB[10] was obtained following a previously described procedure.<sup>[3]</sup> Di-tolyl viologen (**TVT**) was obtained from a previously reported procedure.<sup>[4]</sup>

**2/ NMR measurements.** NMR measurements were recorded on Bruker AVL 300, 400 and 500 spectrometers (<sup>1</sup>H-NMR 300.13, 400.13 and 500.13 MHz and <sup>13</sup>C-NMR 100.60, and 125.75 MHz). When using D<sub>2</sub>O as the solvent (internal reference, 4.75 ppm) a watergate sequence (water suppress) was applied if necessary. Acetone was also used as internal reference for D<sub>2</sub>O solutions (ref 2.22 ppm).<sup>[5]</sup> Splitting patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet. 2D NMR spectra (COSY and ROESY) were recorded using standard Bruker sequences. ROESY spectra for the CB[8]<sub>2</sub> •**T-VPI**<sub>2</sub> complex was not attempted owing to large signals in the aromatic region usually affording spectra with no cross-peaks. Similarly, the ROESY of the CB[10]<sub>2</sub> •**VPI-N**<sub>3</sub> complex was not recorded for the same reason, but ROESY was obtained for this complex in acidic conditions (sharper peaks compared to neutral conditions, see Figure S33).

**3/ ITC measurements.** Isothermal Titration Calorimetry (ITC) was performed on a Malvern MicroCal PEAQ-ITC at 25 °C. A 1 mM stock solution of **VPI-N** (syringe) was diluted in HPLC grade water (cell) for investigating dimer formation. Results were analyzed using the Malvern MicroCal PEAQ-ITC Analysis Software 1.1.0.1262 considering the dissociation model. For **T-VPI** (1 mM, syringe), titrations were performed with CB[8] solutions at 40  $\mu$ M in HPLC grade water (cell). For **VPI-N** (1 mM, syringe), titrations were analyzed using the Malvern MicroCal PEAQ-ITC Analysis Software using the Malvern MicroCal PEAQ-ITC Analysis Software (cell). For **VPI-N** (1 mM, syringe), titrations were performed with CB[8] solutions at 40  $\mu$ M in HPLC grade water (cell). Results were analyzed using the Malvern MicroCal PEAQ-ITC Analysis Software 1.1.0.1262 considering the one set of sites binding model. The reduced Chi square value [(kJ/mol)<sup>2</sup>] for each titration is indicated hereafter: **VPI-N** dilution: 0.036, **T-VPI** with CB[8]: 0.353, **VPI-N** with CB[8]: 0.385.

**4/ Absorption and fluorescence spectroscopies.** UV-visible absorption spectra were recorded in spectrophotometric grade water (*ca*. 10<sup>-5</sup> M) on a VARIAN CARY 50 SCAN spectrophotometer at room temperature with a 300 nm/min scan rate. Emission spectra were measured using a Horiba-Jobin Yvon Fluorolog-3 spectrofluorimeter equipped with a three-slit double-grating excitation and a spectrograph emission mono-chromator with dispersions of 2.1 nm.mm<sup>-1</sup> (1200 grooves per mm). A 450 W xenon continuous wave lamp provided excitation. The luminescence of diluted solutions was detected at right angle using 10 mm quartz cuvettes.

Excitation: the luminescence of diluted solutions was detected at right angle using 10 mm quartz cuvettes. Fluorescence quantum yields  $\Phi$  were measured in diluted absolute ethanol solution with an optical density lower than 0.1 using the following equation:

$$\frac{\Phi_x}{\Phi_r} = \left(\frac{A_r(\lambda)}{A_x(\lambda)}\right) \left(\frac{n_x^2}{n_r^2}\right) \left(\frac{D_x}{D_r}\right)$$

where A is the absorbance at the excitation wavelength ( $\lambda$ ), n the refractive index and D the integrated intensity. "r" and "x" stand for reference and sample. The fluorescence quantum yields were measured relative to anthracene in ethanol ( $\Phi$  = 27%). Excitation of reference and sample compounds was performed at the same wavelength, *ie*. 290 nm for **T-VPI** and 310 nm for **VPI-N** and **T-V-T**.

#### Additional data

#### 5/ <sup>1</sup>H NMR spectrum of T-VPI

<sup>1</sup>H NMR (300 MHz,  $D_2O$ )  $\delta$  9.38 (d, J = 7.1 Hz, 2H, **H5**), 9.32 (d, J = 7.1 Hz, 2H, **H2**), 8.74 (d, J = 7.0 Hz, 2H, **H4**), 8.69 (d, J = 7.0 Hz, 2H, **H3**), 8.31 (d, J = 8.8 Hz, 2H, **H7**), 7.96 (d, J = 8.8 Hz, 2H, **H6**), 7.68 (dd, J = 5.8, 2.8 Hz, 4H, overlapped signals of **Hy** and **H8**), 7.57 (d, J = 8.2 Hz, 2H, **Hx**), 7.32 (dd, J = 6.1, 3.2 Hz, 2H, **H9**), 2.47 (s, 3H, **H1**).



*Figure S1*. <sup>1</sup>H NMR spectrum (300 MHz, D<sub>2</sub>O, 298 K, 1 M) of compound **T-VPI**.

<sup>1</sup>H NMR (500 MHz,  $D_2O$ )  $\delta$  8.95 (d, J = 5.0 Hz, 2H, **H5**), 8.76 (d, J = 5.9 Hz, 2H, **H2**), 8.19 (d, J = 5.0 Hz, 2H, **H4**), 8.13 (d, J = 5.6 Hz, 2H, **H3**), 8.08 (d, J = 8.0 Hz, 2H, **H7**), 7.90 (br s, 2H, **H8**), 7.73 (br s, 2H, **H9** or **H10**), 7.67 (d, J = 8.2 Hz, 2H, **H6**), 7.18 (m, 2H, **H9** or **H10**), 4.31 (s, 3H, **H1**).



*Figure S2.* <sup>1</sup>H NMR spectrum (300 MHz,  $D_2O$ , 298 K, 0.33 M) of compound VPI-N.





*Figure S3.* <sup>1</sup>H NMR spectra of VPI-N alone in D<sub>2</sub>O (top) and in the presence of TFA (bottom).



*Figure S4.* DOSY NMR spectra (500 MHz, D<sub>2</sub>O, 300 K) of **VPI-N** in D<sub>2</sub>O (top) and in the presence of deuterated-TFA (bottom).



**Figure S5.** Evolution of the chemical shift of the <sup>1</sup>H NMR signal of proton H5 in D<sub>2</sub>O (500 MHz, 300 K) as a function of **VPI-N** concentration (in mol.L<sup>-1</sup>).



*Figure S6.* ITC thermogram corresponding to the dilution of a 1 mM solution of VPI-N in water.

8/1H NMR titration of T-VPI with CB[8]



*Figure S7.* <sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of compound CB[8]<sub>2</sub>•T-VPI<sub>2</sub>.



### 9/1H NMR titration of VPI-N with CB[8]



#### 10/ Preparation and NMR spectra of CB[8]2•T-VPI2

A 0.45 mM solution of  $CB[8]_2 \bullet T - VPI_2$  was prepared from a mixture of 0.84 mg of solid CB[8](6.3 × 10<sup>-7</sup> mol, 1.2 equiv.), 263 µL of a 2 mM stock solution of T-VPI (5.3 × 10<sup>-7</sup> mol in D<sub>2</sub>O and 370 µL of D<sub>2</sub>O. Acetone was used as internal reference (2.22 ppm).

According to the integral value of signals H5 (9.19 ppm, I = 4.00) and the integral value of CB[8] protons (5.83-5.69 ppm, I = 44.20), a CB[8]/**T-VPI** ratio of 2.76/2 is determined.

<sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O) δ 9.19 (br s, 4H, *H5*), 9.05 (br s, 4H, *H2*), 8.38 (br s, 8H, overlapped signals of *H6* and *H7*), 8.01 (br s, 4H, *Hy*), 7.68 (br s, 4H, *Hx*), 7.22 (s, 4H, *H4*), 7.11 (s, 4H, *H3*), 6.69 (s, 4H, *H8* or *H9*), 6.21 (s, 4H, *H8* or *H9*), 5.83 – 5.69 (m, 32H, CB[8]), 5.52 (s, 32H, CB[8]), 4.17 (app t, *J* = 37.3 Hz, 32H, CB[8]), 2.59 (br s, 6H, *H1*), 2.22 (acetone, ref).



*Figure S9.* <sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of compound CB[8]<sub>2</sub>•T-VPl<sub>2</sub>.



Figure S10. COSY NMR (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of compound CB[8]<sub>2</sub>•T-VPI<sub>2</sub>.

#### 11/ Preparation and NMR spectra of CB[8]<sub>2</sub>•VPI-N<sub>2</sub>

A 0.45 mM solution of CB[8]<sub>2</sub>•VPI-N<sub>2</sub> was prepared from a mixture of 0.74 mg of solid CB[8] (5.6 ×  $10^{-7}$  mol, 1.2 equiv.), 115 µL of a 4 mM stock solution of VPI-N (4.6 ×  $10^{-7}$  mol) in D<sub>2</sub>O and 440 µL of D<sub>2</sub>O. Acetone was used as internal reference (2.22 ppm).

According to the integral value of signals H5 (8.90 ppm, I = 4.00) and the integral value of CB[8] protons (5.75 ppm, I = 37.82), a CB[8]/VPI-N ratio of 2.36/2 is determined.

<sup>1</sup>H NMR (500 MHz,  $D_2O$ )  $\delta$  8.90 (d, J = 5.9 Hz, 4H, **H5**), 8.68 (d, J = 6.3 Hz, 4H, **H2**), 8.39 (d, J = 8.4 Hz, 4H, **H6** or **H7**), 7.19 (s, 4H, **H8**), 6.91 (br s, 8H, overlapped signals of **H9** and **H10**), 6.82 (d, J = 6.1 Hz, 4H, **H4**), 6.65 (d, J = 6.2 Hz, 4H, **H3**), 5.75 (dd, J = 26.9, 15.4 Hz, 32H, CB[8]), 5.49 (s, 32H, CB[8]), 4.60 (s, **H1**), 4.19 (dd, J = 15.4, 6.3 Hz, 32H, CB(8]), 2.22 (acetone, ref).



*Figure S11.* <sup>1</sup>H NMR spectrum (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of compound CB[8]<sub>2</sub>•VPI-N<sub>2</sub>.



*Figure S12.* COSY NMR (300 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of compound CB[8]<sub>2</sub>•VPI-N<sub>2</sub>.



*Figure S13.* ROESY NMR (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM, mixing time: 400 ms) of compound CB[8]<sub>2</sub>•VPI-N<sub>2</sub>.

### 12/ Preparation and NMR spectra of T-VPI with CB[10]

A solution of **T-VPI** with CB[10] was prepared from a mixture of 0.47 mg of solid CB[10] ( $2.7 \times 10^{-7}$  mol, 1.1 equiv.), 125 µL of a 2 mM stock solution of **T-VPI** ( $2.5 \times 10^{-7}$  mol) in D<sub>2</sub>O and 400 µL of D<sub>2</sub>O.

<sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O, <u>298 K, Figure S12</u>)  $\delta$  5.8 (br s, CB[10]), 5.5 (br s, CB[10]), 4.1 (br s, CB[10]).

<sup>1</sup>H NMR (500 MHz,  $D_2O$ , <u>340 K, Figure S13</u>)  $\delta$  8.86 (br s), 8.14 (br m), 7.81 (br s), 7.61 (br s), 7.48 – 7.16 (br m), 6.78 (br s), 5.80 (app d, J = 15.0 Hz, CB[10]), 5.50 (s, CB[10]), 4.26 – 4.20 (m, CB[10]), 2.35 (br s, *H1*).







*Figure S15.* <sup>1</sup>H NMR spectrum (500 MHz, D<sub>2</sub>O, <u>340 K</u>, 0.5 mM) of **T-VPI** with CB[10].

### 13/ Preparation and NMR spectra of CB[10]<sub>2</sub>• VPI-N<sub>3</sub>

A 0.17 mM solution of  $CB[10]_2 \bullet VPI-N_3$  was prepared from a mixture of 0.46 mg of solid CB[10](2.8 × 10<sup>-7</sup> mol, 1.0 equiv.), 68 µL of a 4 mM stock solution of VPI-N (2.8 × 10<sup>-7</sup> mol) in D<sub>2</sub>O and 500 µL of D<sub>2</sub>O. Acetone was used as internal reference (2.22 ppm).

<sup>1</sup>H NMR (300 MHz, <u>298 K</u>, D<sub>2</sub>O)  $\delta$  8.66 (d, *J* = 6.6 Hz, 4H, *H5a*), 8.61 (d, *J* = 6.4 Hz, 4H, *H2a*), 8.45-8.38 (m, 2H, *H5b*), 8.23 (d, *J* = 5.0 Hz, 2H, *H2b*), 8.15 (d, *J* = 8.7 Hz, 4H, *H7a*), 7.81-7.92 (m, 6H, *H7b* and *H6a*), 7.49 (d, *J* = 5.0 Hz, 2H, *H6b*), 6.95-7.15 (br m), 6.94-6.80 (br m), 5.78 (app ddd, *J* = 17.9, 17.0, 10.7 Hz, 40H, CB[10]), 5.50 (app d, 40H, CB[10]), 4.53 (br s, *H1a*), 4.47 (br s, *H1b*), 4.30-4.06 (m, 40H, CB[10]), 2.22 (acetone, ref). Signals *H3a-b*, *H4a-b*, *H8a-b*, *H9a-b* and *H10a-b* were not identified on the <sup>1</sup>H NMR spectrum at 298 K (300 or 500 MHz).

According to the integral value of signals H5a + H5b (8.67 ppm, I = 3.78 and 8.33 ppm, I = 1.93) and the integral value of CB[10] protons (5.92-5.69 ppm, I = 40.00), a CB[10]/VPI-N ratio of 2.1/3 is determined.

<sup>1</sup>H NMR (500 MHz, <u>340 K</u>, D<sub>2</sub>O)  $\delta$  8.67 (d, *J* = 6.3 Hz, 4H, *H5a*), 8.52 (d, *J* = 6.1 Hz, 4H, *H2a*), 8.33 (d, *J* = 5.9 Hz, 2H, *H5b*), 8.18 (d, *J* = 8.4 Hz, 4H, *H7a*), 8.14 (d, *J* = 6.3 Hz, 2H, *H2b*), 7.87 (two d, *J* = 11.6, 8.7 Hz, 6H, overlapped signals of *H7b* and *H6a*), 7.54 (d, *J* = 8.4 Hz, 2H, *H6b*), 7.08 (d, *J* = 6.2 Hz, 4H, *H4a*), 7.00 (d, *J* = 6.2 Hz, 4H, *H3a*), 6.88 (d, *J* = 8.5 Hz, 4H, *H9a*), 6.79 (d, *J* = 6.0 Hz, 2H, *H4b*), 6.74 (d, *J* = 6.2 Hz, 2H, *H3b*), 6.59 (s, 4H, *H10a*), 5.92 – 5.69 (m, 40H, CB[10]), 5.59 – 5.40 (m, 40H, CB[10]), 4.53 (br s, *H1a*), 4.43 (br s, *H1b*), 4.18 (app ddd, *J* = 39.1, 19.6, 11.9 Hz, 40H, CB[10]), 2.22 (acetone, ref). Signals *H8a*, *H8b*, *H9b* and *H10b* were not identified on the <sup>1</sup>H NMR spectrum at 340 K (500 MHz).



Figure S16. <sup>1</sup>H NMR spectrum (300 MHz, D<sub>2</sub>O, <u>298 K</u>, 0.17 mM) of CB[10]<sub>2</sub>•VPI-N<sub>3</sub>.



*igure S17.* <sup>1</sup>H NMR spectra (500 MHz, D<sub>2</sub>O, 300-365 K, 0.17 mM, ref. acetone 2.22 ppm) of CB[10]<sub>2</sub>•VPI-N<sub>3</sub>.



*Figure S18.* <sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O, <u>340 K</u>, 0.17 mM, ref. acetone 2.22 ppm) of CB[10]<sub>2</sub>•VPI-N<sub>3</sub>.



*Figure S19.* COSY NMR (500 MHz, D<sub>2</sub>O, <u>340 K</u>, 0.17 mM) of CB[10]<sub>2</sub>•VPI-N<sub>3</sub>.



*Figure S20.* ITC thermogram corresponding to a solution of **VPI-N** titrated with CB[8] in water.

### 15/ Competition NMR for the determination of binding constants

The binding constants corresponding to the formation of  $CB[8]_2 \bullet T-VPI_2$  and  $CB[8]_2 \bullet VPI-N_2$  were evaluated using <sup>1</sup>H NMR in the presence of a competitor guest, following the procedure of Macartney and co-workers,<sup>[6]</sup> expended to CB[8] 2:2 complexes.<sup>[7]</sup> The NMR spectra were collected at 298 K on a Bruker AC500 (64 scans) from 1 mM solutions of **T-VPI** or **VPI-N** in the presence of 1 equiv. of CB[8] and 1 equiv. of competitor in D<sub>2</sub>O (Figures S28 to S31). The first competitor guest was 1adamantylamine HCl (**Ad**). The binding constant correspond to formation of the CB[8] •**Ad** complex (8.19 ± (1.75) × 10<sup>8</sup> M<sup>-1</sup>, **R1** and **Eq1**) was reported in the literature.<sup>[8]</sup> The chemical shifts of the free **Ad** and CB[8] •**Ad** were determined in D<sub>2</sub>O from 1 mM solutions (Figure S29). The limiting chemical shift values,  $\Delta \delta_{lim}$ , for **Ad** and CB[8] •**Ad** were measured according to the chemical shifts of CH protons (Table S1). Then, <sup>1</sup>H NMR spectra of a mixture of **T-VPI** (1 equiv.), with CB[8] (1 equiv.) and **Ad** (1 equiv.) were recorded to determine the chemical shifts of CH protons of **Ad** (Table S2, **R3** and **Eq3**). Chemical resonances for free and complexed **Ad** suggest fast exchange on the NMR timescale (Figure S29). Following the method of Macartney et al,<sup>[6]</sup> the binding constant corresponding to the formation of the complex from CB[8] and **T-VPI** was calculated from the chemical shifts of the competitive spectra and  $\Delta \delta_{lim}$  (Table S1) and considering equation **Eq4**.

On the other hand, since 1-adamantylamine•HCl (Ad) presents a too low CB[8] binding constant compared to VPI-N, we used memantine (3,5-dimethyladamantylamine•HCl, diMeAd) as competitor to evaluate the binding constant for CB[8]<sub>2</sub>•VPI-N<sub>2</sub> (Figures S30-31). The binding constant of CB[8] toward diMeAd<sub>2</sub> is  $4.3 \times 10^{11}$  M<sup>-1</sup>.<sup>[8]</sup> Because the <sup>1</sup>H NMR signals of free/complexed VPI-N/diMeAd were not clear in the aromatic and aliphatic regions (Figure S30), we evaluated the CB[8]<sub>2</sub>•VPI-N<sub>2</sub> binding constant from the integral values of the CB[8] at 5.540 and 5.490 ppm, assigned to CB[8]•diMeAd and CB[8]<sub>2</sub>•VPI-N<sub>2</sub>, respectively (Figure S31). The results are presented in (Table S2). Preparation of the Ad/T-VPI/CB[8] competition solution (Figures S28-29) :

A solution of Ad/T-VPI/CB[8] was prepared from a mixture of 0.81 mg of solid CB[8] ( $6.1 \times 10^{-7}$  mol, 1 equiv.), 304 µL of a 2 mM solution of T-VPI ( $6.1 \times 10^{-7}$  mol, 1 equiv.) in D<sub>2</sub>O, 122 µL of a 5 mM solution of Ad in D<sub>2</sub>O ( $6.1 \times 10^{-7}$  mol) and 200 µL of D<sub>2</sub>O. Acetone was used as internal reference (2.22 ppm). Preparation of the diMeAd/VPI-N/CB[8] competition solution (Figures S30-31) :

A solution of **diMeAd/VPI-N**/CB[8] was prepared from a mixture of 0.54 mg of solid CB[8]  $(4.1 \times 10^{-7} \text{ mol}, 1 \text{ equiv.})$ , 102 µL of a 4 mM stock solution of **VPI-N**  $(4.1 \times 10^{-7} \text{ mol}, 1 \text{ equiv.})$  in D<sub>2</sub>O, 82 µL of a 5 mM solution of **diMeAd** in D<sub>2</sub>O  $(4.1 \times 10^{-7} \text{ mol})$  and 250 µL of D<sub>2</sub>O. Acetone was used as internal reference (2.22 ppm).

| Ratios of                   | $\delta_{{\scriptscriptstyle CH}{\rm (Figure}{ m S29)}^{ m b}}$ | $\Delta\delta$                 | % of free guest | Calculated binding                     |
|-----------------------------|-----------------------------------------------------------------|--------------------------------|-----------------|----------------------------------------|
| Ad/T-VPI/CB[8] <sup>a</sup> |                                                                 |                                | competitor      | constant K <sub>a</sub> d              |
| 1/0/0                       | 2.134 ppm <sup>c</sup>                                          | -                              | 100             | -                                      |
| 1/0/1                       | 1.645 ppm <sup>c</sup>                                          | $\Delta \delta_{\text{lim}} =$ | 0               | -                                      |
|                             |                                                                 | 0.489 ppm                      |                 |                                        |
| 1/1/1                       | 2.049 ppm                                                       | $\Delta \delta_{exp} =$        | 17              | 2.3 × 10 <sup>23</sup> M <sup>-3</sup> |
|                             |                                                                 | 0.085 ppm                      |                 |                                        |

Table S1. <sup>1</sup>H NMR results considering the Ad/T-VPI competition toward CB[8].

<sup>a</sup> 1 mM solution in D<sub>2</sub>O; <sup>b</sup> Chemical shift determined from NMR spectra of Figure S29 and using acetone (2.220 ppm) as internal reference; <sup>c</sup>  $\Delta\delta$ lim determined from for **Ad** and CB[8]•**Ad** spectra; <sup>d</sup> calculated from Eq4.

### Equilibrium reactions:

**R1** Ad + CB[8] = Ad•CB[8] ( $K_{a-Ad}$  = 8.19 × 10<sup>8</sup> M<sup>-1</sup>)

 $\mathbf{Eq1} \ \mathbf{K}_{\mathsf{a}\text{-}\mathsf{Ad}} = \frac{[Ad \bullet CB[8]]}{[Ad].[CB[8]]}$ 

**R2** 2 **T-VPI** + 2 CB[8] = **T-VPI**•CB[8]<sub>2</sub>

 $\mathbf{Eq2} \ \mathbf{K}_{a-\mathbf{TVPI2.CB[8]2}} = \frac{[TVPI2 \bullet CB[8]2]}{[TVPI]^2 . [CB[8]]^2}$ 

**R3** Ad•CB[8] + **T-VPI** = Ad + 0.5 **T-VPI**<sub>2</sub>•CB[8]<sub>2</sub>

 $\mathbf{Eq3} \ \mathsf{K}_{\mathsf{a}\text{-competition}} = \frac{\sqrt{[TVPI2 \bullet CB[8]2]}.[Ad]}{[Ad \bullet CB[8]].[TVPI]} = \frac{\sqrt{Ka - TVPI2.CB[8]2}}{Ka - Ad}$ 

$$\mathbf{Eq4} \ \mathbf{K}_{a-\mathbf{TVPI2.CB[8]2}} = \left[\frac{Ka - Ad.\sqrt{[TVPI2 \bullet CB[8]2].[Ad]}}{[Ad \bullet CB[8]].[TVPI]}\right]^{2}$$

| Table S2. | <sup>1</sup> H NMR resu | Its considering | the <b>diMe</b> | Ad/VPI-N c | competition  | toward CB[8]. |
|-----------|-------------------------|-----------------|-----------------|------------|--------------|---------------|
| 14010 021 | 11111111111110000       |                 |                 |            | Johnpolation | comara objoj. |

| Ratios  | of                                     | $\delta_{\scriptscriptstyle CB[8]}$ | Integral            | % of complex | Calculated binding                         |
|---------|----------------------------------------|-------------------------------------|---------------------|--------------|--------------------------------------------|
| diMeA   | d/VPI-N/CB[8]ª                         |                                     | values              |              | constant K <sub>a</sub> d                  |
|         |                                        |                                     |                     |              |                                            |
|         |                                        |                                     |                     |              |                                            |
| - 10 IA |                                        | 5 5 4 0                             | 46.44.116           | 720/         |                                            |
| 1/1/1   | CB[8]•dIIVIEAd                         | 5.540 ppm                           | 16.11 H             | /3%          | -                                          |
|         | CB[8] <sub>2</sub> •VPI-N <sub>2</sub> | 5.490 ppm                           | 6.03 H <sup>c</sup> | 27%          | 6.4 × 10 <sup>24</sup> M <sup>-3</sup>     |
| 0/1/1   | CB[8] <sub>2</sub> •VPI-N <sub>2</sub> | 5.490 ppm <sup>b</sup>              | 32 H                | 100%         | -                                          |
| 1/0/1   | CB[8]•diMeAd                           | 5.540 ppm <sup>b</sup>              | 16 H                | 100%         | 4.3 × 10 <sup>11</sup> M <sup>-1 [8]</sup> |

<sup>a</sup> 1 mM solution in D<sub>2</sub>O; <sup>b</sup> Chemical shift determined from NMR spectra of Figure S31

and using acetone (2.220 ppm) as internal reference; <sup>c</sup> Integral values based on  $-CH_3$  signals of **diMeAd** in the competition solution; <sup>d</sup> calculated from Eq4.



**Figure S21.** <sup>1</sup>H NMR spectrum (500 MHz, D<sub>2</sub>O, 298 K) of a mixture of 1 equiv. of **T-VPI**, 1 equiv. of CB[8] and 1 equiv. of 1-adamantylamine•HCl (**Ad**).



Figure S22. <sup>1</sup>H NMR spectra (500 MHz, D<sub>2</sub>O, 298 K, zoom of 0.9-3 ppm region) of: a. a mixture of T-VPI/CB[8]/Ad (1 equiv.), b. of a mixture of 1.2 equiv. of CB[8] and 1 equiv. of 1-adamantylamine•HCl (Ad), and c. 1-adamantylamine•HCl (Ad, 1 mM) in D<sub>2</sub>O.





#### 16/ UV-visible and fluorescence spectra

|                             | $λ_{abs}$ [nm] (ε [M <sup>-1</sup> cm <sup>-1</sup> ]) | λ <sub>em</sub> [nm] | Φ[%] <sup>ª</sup> |
|-----------------------------|--------------------------------------------------------|----------------------|-------------------|
| Τ-٧ΡΙ                       | 344 (16000), 295 (22500), 247 (16900)                  | 378                  | 0.88              |
| <b>T-VPI</b> + CB[8] (1:1)  | 378 (12900), 300 (19200), 246 (15500)                  | 381                  | 0.65              |
| <b>T-VPI</b> + CB[10] (2:1) | 360 (15200), 296 (21500), 245 (16700)                  | 381                  | 0.68              |
| <b>T-VPI</b> + CB[10] (1:1) | 371 (14800), 299 (19400), 245 (15400)                  | 385                  | 0.47              |
| VPI-N                       | 343 (19400), 273 (44500), 221 (38900)                  | 424                  | 0.45              |
| <b>VPI-N</b> + CB[8] (1:1)  | 365 (13900), 274 (32500)                               | 415                  | 0.36              |
| <b>VPI-N</b> + CB[10] (1:1) | 359 (14700), 275 (33000)                               | 422                  | 0.11              |
| т-v-т                       | 338 (18100), 252 (14500)                               | 528                  | ~1.3 <sup>b</sup> |

Table S3. Summary of the optical properties in water solution.

<sup>a</sup> Fluorescence quantum yields in deionized water, relative to anthracene in ethanol ( $\Phi$  = 27%). Excitation of reference and sample compounds was performed at the same wavelength, *i.e.* 290 nm for **T-VPI** and 310 nm for **VPI-N** and **T-V-T**.

<sup>b</sup> Slightly underestimated value due to the recording conditions.



*Figure S25.* Electronic absorption (left) and normalized emission (right) spectra of compounds T-VPI (purple), VPI-N (orange) and T-V-T (green) in water solution (*ca.* 10<sup>-5</sup> M).



*Figure S26.* Electronic absorption (left column) and emission (right column) spectra of **T-VPI** or **VPI-N** in the presence of CB[8] or CB[10] in water (10<sup>-5</sup> M).

### 17/ Preparation and NMR spectra of CB[8]<sub>2</sub>•T-VPl<sub>2</sub>•Ag<sup>+</sup><sub>2</sub>

A 0.45 mM solution of CB[8]<sub>2</sub>•**T-VPI**<sub>2</sub>•**Ag**<sup>+</sup><sub>2</sub> was prepared from a mixture of 0.64 mg of solid CB[8] ( $4.8 \times 10^{-7}$  mol, 1.2 equiv.), 200 µL of a 2 mM stock solution of **T-VPI** ( $4 \times 10^{-7}$  mol) in D<sub>2</sub>O, 40 µL of a 0.2 M solution of AgNO<sub>3</sub> ( $8.0 \times 10^{-6}$  mol) and 300 µL of D<sub>2</sub>O. Acetone was used as internal reference (2.22 ppm).

<sup>1</sup>H NMR (500 MHz,  $D_2O$ )  $\delta$  9.37 (d, J = 5.8 Hz, 4H, **H5**), 9.07 (s, 4H, **H2**), 8.47 (d, J = 7.6 Hz, 4H, **H7** or **H6**), 8.17 (s, 4H, **H7** or **H6**), 7.98 (d, J = 7.5 Hz, 4H, **Hy** or **Hx**), 7.68 (d, J = 7.5 Hz, 4H, **Hy** or **Hx**), 7.40 (s, 4H, **H4**), 7.18 (br s, 4H, **H3**), 6.67 (br s, 4H, **H8** or **H9**), 6.38 (s, 4H, **H8** or **H9**), 5.92 – 5.66 (m, 32H, CB[8]), 5.55 (s, 32H, CB[8]), 4.25 (dd, J = 15.3, 9.1 Hz, 32H, CB[8]), 2.57 (s, 6H, **H1**), 2.22 (acetone, ref).



*Figure S27.* <sup>1</sup>H NMR spectrum (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of CB[8]<sub>2</sub>•T-VPl<sub>2</sub>•Ag<sup>+</sup><sub>2</sub>.



*Figure S28.* COSY NMR (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of CB[8]<sub>2</sub>•T-VPl<sub>2</sub>•Ag<sup>+</sup><sub>2</sub>.

### 18/ Preparation and NMR spectra of CB[8]<sub>2</sub>•VPI-N<sub>2</sub>•Ag<sup>+</sup><sub>2</sub>

To 500  $\mu$ L of a 0.45 mM solution of CB[8]<sub>2</sub>•**VPI-N**<sub>2</sub> were added 50  $\mu$ L of a 0.2 M solution of AgNO<sub>3</sub> (10<sup>-5</sup> mol) in D<sub>2</sub>O. Acetone was used as internal reference (2.22 ppm).

<sup>1</sup>H NMR (500 MHz,  $D_2O$ )  $\delta$  8.94 (d, J = 5.3 Hz, 4H, **H5**), 8.75 (d, J = 6.3 Hz, 4H, **H2**), 8.48 (d, J = 8.4 Hz, 4H, **H6** or **H7**), 8.31 (d, J = 8.6 Hz, 4H, **H6** or **H7**), 7.16 (br s, 4H, **H8**, **H9** or **H10**), 6.93 (br s, 8H, **H8**, **H9** or **H10**), 6.83 (d, J = 4.6 Hz, 4H, **H4**), 6.69 (d, J = 6.3 Hz, 4H, **H3**), 5.73 (app dt, J = 43.3, 21.6 Hz, 32H, CB[8]), 5.52 (d, J = 24.6 Hz, 32H, CB[8]), 4.64 (br s, **H1**), 4.20 (d, J = 15.4 Hz, 32H, CB[8]), 2.22 (acetone, ref).



*Figure S29.* <sup>1</sup>H NMR spectrum (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of CB[8]<sub>2</sub>•VPI-N<sub>2</sub>•Ag<sup>+</sup><sub>2</sub>.



*Figure S30.* COSY NMR (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of CB[8]<sub>2</sub>•VPI-N<sub>2</sub>•Ag<sup>+</sup><sub>2</sub>.

### 19/ Preparation and NMR spectra of CB[8]<sub>2</sub>•VPI-N-H<sup>+</sup><sub>2</sub>

A 0.45 mM solution of CB[8]<sub>2</sub>•VPI-N-H<sup>+</sup><sub>2</sub> was prepared from a mixture of 0.61 mg of solid CB[8] ( $4.6 \times 10^{-7}$  mol, 1.2 equiv.), 95 µL of a 4 mM stock solution of VPI-N ( $3.8 \times 10^{-7}$  mol) in D<sub>2</sub>O, 20 µL of a 0.2 M solution of **TFA** ( $4.0 \times 10^{-6}$  mol) and 360 µL of D<sub>2</sub>O. Acetone was used as internal reference (2.22 ppm).

<sup>1</sup>H NMR (500 MHz,  $D_2O$ )  $\delta$  8.95 (d, J = 6.4 Hz, 4H, **H5**), 8.81 (d, J = 6.3 Hz, 4H, **H2**), 8.49 (d, J = 8.6 Hz, 4H, **H6** or **H7**), 7.32 (s, 4H, **H8**), 6.97 (two d, J = 6.3 Hz, 4H, **H9** and **H10**), 6.87 (d, J = 6.5 Hz, 4H, **H4**), 6.75 (d, J = 6.4 Hz, 4H, **H3**), 5.76 (app dd, J = 29.5, 15.4 Hz, 32H, CB[8]), 5.50 (br s, 32H, CB[8]), 4.65 (br s, **H1**), 4.22 (d, J = 15.3 Hz, 32H, CB[8]), 2.22 (acetone, ref).



*Figure S31.* <sup>1</sup>H NMR spectrum (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of CB[8]<sub>2</sub>•VPI-N-H<sup>+</sup><sub>2</sub>.



*Figure S32.* COSY NMR (500 MHz, D<sub>2</sub>O, 298 K, 0.45 mM) of CB[8]<sub>2</sub>•VPI-N-H<sup>+</sup><sub>2</sub>.

### 20/ Preparation and NMR spectra of CB[8]<sub>2</sub>•T-VPI<sub>2</sub> with TFA

A solution of **T-VPI**/CB[8]/TFA was prepared from a mixture of 0.66 mg of solid CB[8] (5.0 ×  $10^{-7}$  mol, 1.2 equiv.), 205 µL of a 2 mM stock solution of **T-VPI** (4.1 ×  $10^{-7}$  mol, 1equiv.) in D<sub>2</sub>O, 20 µL of a 0.2 M solution of TFA in D<sub>2</sub>O (4.0 ×  $10^{-6}$  mol) and 280 µL of D<sub>2</sub>O. Acetone was used as internal reference (2.22 ppm).



*Figure S33.* <sup>1</sup>H NMR spectrum (500 MHz, D<sub>2</sub>O, 298 K, 1 mM) of 1 equiv. of **T-VPI**, with 1.2 equiv. of CB[8] and 10 mM of TFA.

### 21/ Preparation and NMR spectra of CB[10]<sub>2</sub>•VPI-N-H<sup>+</sup><sub>3</sub>

To 500  $\mu$ L of a 0.17 mM solution of CB[10]<sub>2</sub>•VPI-N<sub>3</sub> were added 10  $\mu$ L of a 0.2 M solution of TFA in D<sub>2</sub>O (2 × 10<sup>-6</sup> mol, 12 equiv.). Acetone was used as internal reference (2.22 ppm).

<sup>1</sup>H NMR (500 MHz,  $D_2O$ )  $\delta$  9.13 (br s, 2H, *H2b*), 8.94 (d, J = 6.1 Hz, 4H, *H2a*), 8.36 (br s, 4H, *H5a*), 8.27 (d, J = 8.4 Hz, 4H, *H7a*), 8.07 (br s, 2H, *H7b*), 7.94 (br s, 2H, *H5b*), 7.84 (d, J = 7.8 Hz, 4H, *H6a*), 7.74 (br s, 2H, *H8b*), 7.64 (br s, 2H, *H3b*), 7.43 (br s, 4H, *H3a*), 7.36 (s, 4H, *H8a*), 7.28 (br s, 2H, *H6b*), 7.16 (m, 6H, overlapped signals of *H4a* and *H9b*), 6.97 (m, 6H, overlapped signals of *H4b* and *H9a*), 6.48 (m, 4H, *H10a*), 6.30 (br s, 2H, *H10b*), 5.91 – 5.69 (m, 48H, CB[10]), 5.52 (d, J = 33.7 Hz, 43H, CB[10]), 4.61 (br s, *H1a-b*), 4.20 (ddd, J = 23.3, 15.2, 7.4 Hz, 49H, CB[10]), 2.22 (acetone, ref).



Figure S34. <sup>1</sup>H NMR spectrum (500 MHz, D<sub>2</sub>O, 300 K, 0.17 mM, full a., zoom b.) of CB[10]<sub>2</sub>•VPI-N-H<sup>+</sup><sub>3</sub> recorded after 5 days.



*Figure S35.* COSY NMR (500 MHz, D<sub>2</sub>O, 300 K, 0.17 mM) of CB[10]<sub>2</sub>•VPI-N-H<sup>+</sup><sub>3</sub>.



**Figure S36.** ROESY NMR (500 MHz, D<sub>2</sub>O, 300 K, 0.17 mM, mixing time: 400 ms) of CB[10]<sub>2</sub>•VPI-N-H<sup>+</sup><sub>3</sub>.

#### 22/ References

- [1] A. Kriat, S. Pascal, B. Kauffmann, Y. Ferrand, D. Bergé-Lefranc, D. Gigmes, O. Siri, A. Kermagoret, D. Bardelang, *Chem. Eur. J.* **2023**, DOI: 10.1002/chem.202300633.
- [2] D. Bardelang, K. A. Udachin, D. M. Leek, J. C. Margeson, G. Chan, C. I. Ratcliffe, J. A. Ripmeester, *Cryst. Growth Des.* **2011**, *11*, 5598–5614.
- [3] X. R. Yang, Z. Y. Zhao, X. Z. Zhang, S. M. Liu, Sci. China. Chem. 2018, 61, 787–791.
- [4] X. Yang, Q. Cheng, V. Monnier, L. Charles, H. Karoui, O. Ouari, D. Gigmes, R. Wang, A. Kermagoret, D. Bardelang, *Angew. Chem. Int. Ed.* 2021, *60*, 6617–6623.
- [5] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176–2179.
- [6] M. A. Gamal-Eldin, D. H. Macartney, Org. Biomol. Chem. 2013, 11, 1234–1241.
- [7] H. Yin, Q. Cheng, R. Rosas, S. Viel, V. Monnier, L. Charles, D. Siri, D. Gigmes, O. Ouari, R. Wang, A. Kermagoret, D. Bardelang, *Chem. Eur. J.* **2019**, *25*, 12552–12559.
- [8] S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij, L. Isaacs, *J. Am. Chem. Soc.* **2005**, *127*, 15959–15967.