Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

An Assay for Aryl Radicals Using BHAS Coupling ESI file (Supporting Information)

Kenneth F. Clark,^a Seb Tyerman, Laura Evans,^b Craig M. Robertson^c and John A. Murphy^a

^aDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom. ^bAstraZeneca, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom. ^cGSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom

Contents

General Information	S2
General Procedures	S4
2-lodoarene reactions	S8
Example GCMS Traces	S28
Mass spectra of Deuterated Compounds	S30
Calibration Information	S33
GC Data	S38
NMR spectra	S62
References	S73

<u>General Information</u>

All reagents and solvents were obtained from commercial suppliers and were used without further purification unless mentioned otherwise. Where used, diethyl ether and THF were dried using a Pure-Solv 400 solvent purification system (Innovative Technology Inc., USA). Where stated, reactions were prepared in a glovebox supplied by Innovative Technology Inc., USA, which is operated with a nitrogen atmosphere.

Analysis Techniques

Thin Layer Chromatography (TLC) was performed on silica gel pre-coated aluminium plates (60 Å, F254 UV indicator) purchased from Merck. The thin layer chromatograms were analysed by UV (254 nm, UVP mineralight UVG-11 lamp) and staining either with basic KMnO₄ [KMnO₄ (6 g), K₂CO₃ (40 g), NaOH (5 mL, 10% w/w) in water (600 mL)] or an ethanolic solution of phosphomolybdic acid [phosphomolybdic acid hydrate (10 g) in ethanol (100 mL)].

Flash Column Chromatography purification was performed with 35-70 μm particle size silica gel 60 Å (200-400 mesh) purchased from Prolabo.

Melting points were determined using a Gallenkamp Griffin Melting Point Apparatus.

NMR spectroscopy was performed using Bruker spectrometers, either: an AV3-400 and AV3-400Nano. ¹H NMR and ¹³C NMR spectra were recorded on these spectrometers operating at 400 MHz and 100 MHz, respectively. All spectral data were acquired at 295 K. Chemical shifts (δ) are quoted in parts per million (ppm) relative to the following residual solvent peaks, $\delta_{\rm H}$ 7.26 and $\delta_{\rm C}$ 77.16 for CDCl₃ and $\delta_{\rm H}$ 1.72 and $\delta_{\rm C}$ 67.21 for THF-*d*₈. Coupling constants (*J*) are reported in Hertz (Hz) to the nearest 0.1 Hz. The multiplicity abbreviations used are s (singlet), sept (septet), m (multiplet) and broad (br). In experiments involving C₆D₆ or KOtBu-d₉, workup was performed before ²H NMR spectra were acquired. This involved filtration through a short celite pad, followed by evaporation to remove solvent and HOtBu-d₉.

Infrared (IR) spectra were obtained on a Shimadzu IRAffinity-1 FTIR-ATR spectrometer instrument. **GCMS** spectra were obtained on an Agilent 7890A GC system coupled to a 5975C inert XL EI/CI MSD triple axis-mass detector. Electron impact (EI) ionisation was utilised, specifically the method EI320. The column temperature was 320 °C, and the carrier gas was helium with a flow rate of 1 mL/min and was operated in splitless mode. GCMS traces start a few minutes after injection – this is so that the solvents etc are not observed in the chromatography traces and don't over-saturate the mass detector.

GCFID analyses were carried out using an Agilent 7890A gas chromatograph fitted with an Agilent HP5 column (30 m x 0.25 mm x 0.25 μ m). Helium was used as the carrier gas (2.0 mL/min flow rate). The injector temperature was 320 °C and was operated in splitless mode. GCFID traces start a few minutes

after injection – this is so that the solvents etc are not observed in the chromatography traces and don't over-saturate the mass detector.

Experimental

Assigned peaks in the GCFID spectra have been quantitatively calibrated (for calibrations see pages S34 – S38. During the investigation, the column was changed on the GCFID instrument, and so the retention times for all peaks shifted. A repeat calibration for all calibrated compounds was carried out.

General Procedures

General Procedure A - Reactions of 2-Iodo-m-xylene with KO^tBu

To an oven-dried microwave vial, primed with a stirrer bar, in a glovebox was added 2-iodo-*m*-xylene (102 μ L, 0.7 mmol, 1 equiv.), an additive, KO^tBu (157 mg, 1.4 mmol, 2 equiv.) and solvent(s) (7 mL) with the vial subsequently sealed and stirred at 130 °C for 24 h. Once complete, the crude mixture was allowed to cool to room temperature and dodecane (23 μ L) was added as a GC standard and mixed. A 100 μ L aliquot of the crude mixture was then analysed by both GCMS and GCFID.

Preparation of 1,4-Dimethylpiperazine-2,5-dione 16

To a solution of piperazine-2,5-dione **20** (500 mg, 4.4 mmol, 1 equiv.) in dry THF (10 mL) at 0 °C was added NaH (252 mg, 10.6 mmol, 2.4 equiv.) and the mixture stirred for 30 min. Iodomethane (0.7 mL, 11 mmol, 2.5 equiv.) was then added to the mixture at 0 °C and the reaction left to stir for 24 h, whilst being allowed to warm to room temperature. Once complete, the reaction was quenched with water before being extracted into DCM and concentrated *in vacuo*. The aqueous layer was then concentrated *in vacuo* before being diluted with water and extracted into DCM and again concentrated *in vacuo*, to produce 1,4-dimethylpiperazine-2,5-dione **16** (120 mg, 0.85 mmol, 20%) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ 3.98 (s, 4H), 2.98 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.1, 51.6, 33.2. ATR-IR v_{max} (neat)/cm⁻¹ 2967, 2926, 2872, 1618, 1498, 1338, 1251. *m/z* (EI) 142 (M⁺, 35), 113 (9), 85 (14), 57 (100). M.p. 137-140 °C (lit: 136-139 °C).³¹ The data for this compound are consistent with those reported in the literature.

Preparation of 2,6-Dimethylbiphenyl 12 for calibration experiments

To an oven-dried microwave vial, primed with a stirrer bar, was added 2-iodo-*m*-xylene **7** (94 µL, 0.65 mmol, 1 equiv.), phenylboronic acid **21** (95 mg, 0.78 mmol, 1.2 equiv.), K₂CO₃ (269 mg, 1.95 mmol, 3 equiv.), Pd(PPh₃)₄ (81 mg, 0.07 mmol, 10 mol%) and a dioxane/water (5 mL, 4:1). The vial was subsequently sealed and stirred for 18 h at 100 °C. Once complete, the reaction mixture was diluted with water and extracted with DCM, before being concentrated *in vacuo*. Purification by column chromatography (eluent 100% hexane) afforded 2,6-dimethylbiphenyl **12** as a colourless oil (82 mg, 0.45 mmol, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H), 7.37 – 7.31 (m, 1H), 7.20 – 7.09 (m, 5H) 2.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 141.1, 136.1, 129.0, 128.4, 127.3, 127.0, 126.6, 20.8. ATR-IR v_{max} (neat)/cm⁻¹ 2920, 2851, 1460, 1377, 1186. *m/z* (EI) 182 (M⁺, 85), 167 (100), 89 (14), 63 (6), 55 (6). The data for this compound are consistent with those reported in the literature.³²

Synthesis of mesitylene-d₉ 23³³

NaH (540 mg, 22.5 mmol) was added to a 3-necked round-bottomed flask (100 mL) and evacuated. The flask was placed under Ar, then mesitylene **22** (1.80 g, 15 mmol) and DMSO- d_6 (9.47 g, 113 mmol) were added *via* syringe and stirred to give a pale slurry. A condenser was fitted to the flask under Ar flow, and the reaction was slowly heated to 125 °C, gradually changing to a dark brown. After 20 h, the reaction was allowed to cool to room temperature. The volatiles were then removed by vacuum distillation at 100 °C and collected in a trap cooled in liquid nitrogen. This distillate was washed with water (4 x 25 mL) and the upper mesitylene layer was recovered. The exchange was repeated with fresh DMSO- d_6 and NaH. After vacuum distillation and washing with H₂O, the product **23**- d_9 was recovered as a pale-yellow liquid (1.06 g, 8.18 mmol, 54%). Analysis by ¹H NMR showed a deuterium incorporation of 96%. ²H NMR showed deuterium incorporation on the methyl groups only. ²H NMR spectrum shows deuterium incorporation in mesitylene- d_9 (a trace of a minor peak at 2.07 ppm likely arises from mesitylene- d_8). ¹H NMR (400 MHz, C_6D_6) δ 6.72 (s, 3H), 2.15 – 2.12 (m, 0.4 H). ¹³C NMR (101 MHz, C_6D_6) δ 137.5, 127.4, 21.1 – 19.9 (m). ²H NMR (61 MHz, C_6H_6) δ 2.09 (br), 2.07 (br). IR

v_{max}/cm⁻¹ (neat): 3013, 2924, 2230, 2203, 2127, 2064, 1603, 1443. *m/z* (EI): 129.1 [M]⁺, 111.1, 96.1, 81.1.

Synthesis of nitromesitylene-d₉ 24 ³⁴

A solution of conc. HNO₃ (0.4 mL, 3.7 mmol) and acetic anhydride (2.0 mL) was cooled in an ice bath and added dropwise to a stirred solution of **23**-*d*₉ (426 mg, 3.3 mmol) and acetic anhydride (1.0 mL) under air, also cooled in an ice bath, quickly turning the solution from colourless to orange. After addition, the solution was allowed to warm to room temperature and stirred for a further 1 h. An aqueous K₂CO₃ solution was added until slightly basic, and then the product was precipitated in icewater. The precipitate was vacuum filtered, washed with more ice-water and dried *in vacuo* yielding pale yellow crystals of **24** (465 mg, 2.67 mmol, 81%). A signal at 1724 cm⁻¹ in the IR spectrum indicates that traces of acetic acid are present in the product. ¹H NMR (400 MHz, CDCl₃) δ 6.91 (s, 2H), 2.28 (quin, 2.2 Hz, 0.15 H), 2.25 (quin, 2.2 Hz, 0.27 H). ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 129.0, 128.9, 20.0 – 19.3 (m), 16.8 – 15.8 (m). ²H NMR (61 MHz, CHCl₃) δ 2.29 (s, 3D), 2.26 (s, 6D) IR *v_{max}*/cm⁻¹ (neat): 2924, 2870, 2853, 2233, 2112, 2064, 1724, 1599, 1508, 1364. *m/z* (EI): 174.1 ([M]⁺), 156.1, 144.1, 128.1, 96.1, 81.0.

Synthesis of d₉-1,3,5-trimethylaniline 25

Nitroarene **24** (465 mg, 2.67 mmol) and 20% Pd/C (188 mg, 0.267 mmol) were added to a 3-necked round-bottomed flask (250 mL) and evacuated. The flask was placed under Ar flow and degassed ethanol (20 mL) was added. With vigorous stirring, the Ar atmosphere was replaced with D₂ from a balloon. The reaction was left to stir vigorously for 20 h under an atmosphere of D₂. The reaction mixture was then filtered through a short plug of Celite, washed with EtOAc and then concentrated *in vacuo* yielding **25** as a pale-yellow oil (301 mg, 2.19 mmol, 82%). ¹H NMR showed a fall in deuterium incorporation to 89%, and also showed that the *ortho*-methyl groups are more labelled than the *para*-methyl group (93% vs 81%). Splitting of peaks in the ²H NMR spectrum is due to presence of minor

isotopologues. ¹H NMR (400 MHz, CDCl₃) δ 6.82 (s, 2H), 3.44 (br, 2H), 2.27 − 2.22 (m, ≈0.5H), 2.19 − 2.17 (m, ≈0.5H). ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 128.8, 126.8, 121.6, 20.3 − 19.3 (m), 17.3 − 16.5 (m). ²H NMR (61 MHz, CHCl₃) δ 2.23 (br), 2.19 (br), 2.14 (br). *m/z* (EI): 144.1 ([M]⁺), 125.1, 111.1, 95.0, 80.0, 67.0.

Synthesis of 2-iodomesitylene-d₉ 17³⁵

A solution of NaNO₂ (302 mg, 4.38 mmol) in H₂O (4 mL) was slowly added dropwise to a stirred suspension of **25** (301 mg, 2.19 mmol) and *p*-TsOH (1.67 g, 8.76 mmol) in H₂O (6 mL) under air at 0 °C, yielding a colourless solution that was left to stir for a further 10 min. A solution of KI (1.45 g, 8.76 mmol) in H₂O (4 mL) was added slowly dropwise, which upon the first addition yielded a dark purple solution that persisted once half the KI solution had been added. Once the addition was complete, the dark purple solution was allowed to slowly warm to room temperature and stirred for a further 20 h. The reaction was then extracted with EtOAc (3 x 5 mL), the combined organic fractions were then washed with sat. Na₂S₂O₃ (10 mL) and H₂O (5 mL) twice, then with H₂O (10 mL). The organic fractions were then dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was then purified by column chromatography with hexane eluent to yield **17** as a crystalline white solid (284 mg, 1.11 mmol, 51%). The minor peak in the ²H NMR spectrum is due to incomplete deuterium incorporation. ¹H NMR (400 MHz, CDCl₃) δ 6.88 (s, 2H), 2.43 – 2.37 (m, 0.44 H), 2.24 – 2.19 (m, 0.56 H). ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 137.4, 128.1, 104.3, 30.1 – 28.5 (m), 20.5 – 20.0 (m). ²H NMR (61 MHz, CHCl₃) δ 2.43 (br), 2.44 (br), 2.24 (br), 2.21 (br). IR v_{mox}/cm⁻¹ (neat): 3026, 2922, 2228, 2204, 2106, 2062, 1572, 1410, 1271, 1001. *m/z* (EI): 255.0 ([M]⁺), 127.1, 109.0, 96.1, 81.0, 68.0.

2-Iodo-m-xylene Reactions

Assigned peaks in the GCFID spectra were quantitatively calibrated (for calibrations see pages S34 -S38). During the investigation, the column was changed on the GCFID and so the retention times for all peaks shifted. A repeat calibration for all calibrated compounds was carried out.

Reaction of 2-Iodo-m-xylene **7** *with 1,10-Phenanthroline and KO*^t*Bu* (*Table 1, Entry 1 and Table 2, Entry* 1).

The reaction was conducted according to General Procedure A with 1,10-phenanthroline (50 mg, 0.28 mmol, 40 mol%) and benzene.

GCFID data including table quantitating components that had been quantitatively calibrated (for calibrations see pages S34 – S38):

Retention Time	Sample	Peak Area	%Yield
6.550	<i>m</i> -Xylene 13	12741.2	55%
10.276	Dodecane	4566.74072	N/A
11.657	Biphenyl 3	9882.09375	30%
11.994	2,6-Dimethylbiphenyl 12	2973.54248	8%

*This reaction was carried out in duplicate with the average below

Sample	%Yield
<i>m</i> -Xylene 13	58%
2-lodo- <i>m</i> -xylene 7	0
Biphenyl 3	32.2%
2,6-Dimethylbiphenyl 12	8.1%

Investigation by GCMS of the reaction after 5 h, highlighted the mass of iodobenzene , indicating abstraction of iodine atom from substrate **7** by phenyl radicals **14**. The retention time was confirmed by comparison with a commercial sample.

Spectrum of Iodobenzene:

Iodobenzene Predicted m/z: 203.9436 (100.0%), 204.9469 (6.5%)

Outcome - The reaction of 2-iodo-*m*-xylene **7** with 1,10-phenanthroline and KO^tBu led to complete conversion of the starting material, **7**, and led to the 3 principal compounds **3**, **12** and **13**. The ratio of **12:3** was ~1:3.97.

Reaction of 2-lodo-m-xylene **7** with 1,10-Phenanthroline and KO^tBu in C_6D_6 (Table 2, entry 2) The reaction was conducted according to General Procedure A with 1,10-phenanthroline (50 mg, 0.28 mmol, 40 mol%) and benzene- d_6 .

GCMS Chromatogram

GCFID data including table quantitating components that had been quantitatively calibrated (for calibrations see pages S34 – S38).

Retention Time	Sample	Peak Area	%Yield
6.501	<i>m</i> -Xylene	2575.86035	44%
10.270	Dodecane	1263.06714	N/A
10.803	2-Iodo- <i>m</i> -xylene	710.42322	11%
11.613	Biphenyl	293.99445	4%
11.981	2,6-Dimethylbiphenyl	962.01141	11%

*This reaction was carried out in duplicate with the average below

Sample	%Yield
<i>m</i> -Xylene	45%
2-Iodo- <i>m</i> -xylene	12%
Biphenyl	4%
2,6-Dimethylbiphenyl	11%

Level of *m*-xylene D-incorporation

lodoxylene 7, Phen, C₆D₆, KO^tBu

Examination of the mass spectrum of xylene derived from this experiment (shown below), showed the m/z= 107 peak to be more intense, relative to m/z =106 compared to the unlabelled sample prepared from Phen, C₆H₆, KO^tBu. This indicated approx. 12% monodeuteroxylene.

Left: mass spectrum of *m*-xylene, formed by reaction of iodoxylene **7** with KOtBu, and phenanthroline in C_6H_6 . Right: mass spectrum of *m*-xylene, formed by reaction of iodoxylene **7** with KOtBu, and phenanthroline in C_6D_6 . The level of deuteration (107 mass speak) is 12%.

Outcome - The reaction of 2-iodo-*m*-xylene **7** with 1,10-phenanthroline and KO^tBu in C₆D₆ led to the formation of the 3 principal compounds **3**- d_{10} , **12**- d_5 and **13**. Some starting material **7** remained after the 24 h. An isotope effect was observed for the formation of deuterated biphenyl **3**- d_{10} as expected, while the amount of dimethylbiphenyl- d_5 **12**- d_5 remained constant with the amount seen in the parent conditions. The majority of the *m*-xylene **13** formed in this experiment was NOT labelled and the level of mono-deuteration was estimated at 12%.

Preparation of Potassium 2-(methyl-d₃)propan-2-olate-1,1,1,3,3,3-d₆ 33

In an oven-dried three necked flask, primed with a stirrer bar, and back filled with nitrogen was added KH (400 mg, 10 mmol, 1 equiv.) and Et_2O (10 mL) and the solution stirred at 0 °C. To this solution was added *tert*-butanol- d_{10} **32** (0.94 mL, 10 mmol, 1 equiv.) and the solution was stirred for 4 h. Once complete, the Et_2O was removed using the house vacuum until dryness. This yielded potassium 2-(methyl- d_3)propan-2-olate-1,1,1,3,3,3- d_6 **33** (KO^tBu- d_9) as a white powder (1.119 mg, 9.2 mmol, 92%).

¹³**C NMR** (101 MHz, THF-*d*₈) δ 66.2, δ 34.6 (sept, *J* = 18.7 Hz) [Confirmed by comparing with ¹³C NMR spectrum of *tert-butanol-d*₁₀: ¹³**C NMR** (101 MHz, THF-*d*₈) δ 57.4, 30.5 (sept, *J* = 18.9 Hz)].

Reaction of 2-Iodo-m-xylene **7** with 1,10-Phenanthroline and KO^tBu-d_9 in C_6D_6 (Table 2, entry 3) The reaction was conducted according to General Procedure A with KO^tBu-d_9 (216 mg, 1.4 mmol, 2 equiv.), 1,10-phenanthroline (50 mg, 0.28 mmol, 40 mol%) and benzene- d_6 (7 mL).

GCMS Chromatogram

GCFID data including table quantitating components that had been quantitatively calibrated (for calibrations see pages S34 – S38):

Retention Time	Sample	Peak Area	%Yield
6.950	<i>m</i> -Xylene	4427.48828	28.6%
10.619	Dodecane	3215.67139	N/A
11.170	2-Iodo- <i>m</i> -xylene	5234.70898	35.1%
11.935	Biphenyl	664.98743	3.2%
12.323	2,6-Dimethylbiphenyl	2384.65942	10.5%

*This reaction was carried out in duplicate with the average below

Sample	%Yield
<i>m</i> -Xylene	30.4%
2-Iodo- <i>m</i> -xylene	31.0%
Biphenyl	3.5%
2,6-Dimethylbiphenyl	10.7%

For representative mass spectra of $3-d_{10}$, $12-d_5$ and 13 see pages S31-S34.

Outcome - The 2-lodo-*m*-xylene **7** with 1,10-phenanthroline and KO^tBu- d_9 in C₆D₆ led to the formation of the 3 principal compounds **3**- d_{10} , **12**- d_5 and **13**. Some starting material was left remaining after the 24 h. The majority of the *m*-xylene **13** formed in this experiment was NOT labelled.

Reaction of 2-iodo-m-xylene **7** *with piperazinedione* **16** *and KO*^t*Bu (Table 1, Entry 2))* **The reaction was conducted according to General Procedure A with 1,4-dimethylpiperazine-2,5-dione**

16 (20 mg, 0.14 mmol, 20 mol%), and benzene.

GCMS Chromatogram

GCFID data including table quantitating components that had been calibrated (for calibrations see pages S34 – S38).

Retention Time	Sample	Peak Area	%Yield
6.550	<i>m</i> -Xylene	9537.06055	48.2%
10.281	Dodecane	4045.83838	N/A
10.840	2-lodo- <i>m</i> -xylene	7196.21875	38.1%
11.645	Biphenyl	3934.50757	13.9%
11.993	2,6-Dimethylbiphenyl	1204.87329	3.6%

*This reaction was carried out in duplicate with the average below

Sample	%Yield
<i>m</i> -Xylene	47.9%
2-Iodo- <i>m</i> -xylene	35.3%
Biphenyl	12.5%
2,6-Dimethylbiphenyl	3.0%

Outcome - The reaction of 2-iodo-*m*-xylene **7** with piperazinedione **16** and KO^tBu led to the formation of the 3 principal compounds **3**, **12** and **13**. Some starting material **7** remained after the 24 h. The ratio of **12:3** was ~1:4.17.

Reaction of 2-lodo-m-xylene **7** *with Piperazinedione* **16** *and* KO^tBu *in* C_6D_6 The reaction was conducted according to General Procedure A with 1,4-dimethylpiperazine-2,5-dione

(20 mg, 0.14 mmol, 20 mol%), and benzene- d_6 .

GCMS Chromatogram

GCFID data including table quantitating components that had been quantitatively calibrated (for calibrations see pages 34– 38).

Retention Time	Sample	Peak Area	%Yield
6.529	<i>m</i> -Xylene	5513.38672	24.5%
10.282	Dodecane	4504.60400	N/A
10.847	2-Iodo- <i>m</i> -xylene	9336.28711	43.7%
11.612	Biphenyl	330.86661	1%
11.979	2,6-Dimethylbiphenyl	782.20575	2.1%

*This reaction was carried out in duplicate with the average below

Sample	%Yield
<i>m</i> -Xylene	25.5%
2-Iodo- <i>m</i> -xylene	43.9%
Biphenyl	0.9%
2,6-Dimethylbiphenyl	2.1%

Level of *m*-xylene D-incorporation

Iodoxylene 7, N, N'-dimethylpiperazinedione, C₆D₆, KO^tBu

Examination of the mass spectrum of xylene (m/z 106) derived from this experiment (shown below), showed the m/z= 107 peak to be equally intense, but not notably more intense, relative to m/z =106 compared to the unlabelled sample prepared from N,N'-dimethylpiperazinedione, C₆H₆, KO^tBu.

Outcome - The Reaction of 2-lodo-*m*-xylene **7** with piperazinedione **16** and KO^tBu in C_6D_6 led to the formation of the 3 principal compounds **3**-*d*₁₀, **12**-*d*₅ and **13**. Some starting material was left remaining after the 24 h. An isotope effect was observed for the formation of deuterated biphenyl **3**-*d*₁₀ as expected, while the amount of dimethylbiphenyl-*d*₅ **12**-*d*₅ remained constant with the parent conditions. The extent of labelling of *m*-xylene **13** formed in this experiment was low and so could not be accurately determined from the mass spectrum [consistent with formation of low amount (0.9%) of **3**-*d*₁₀.

The reaction was conducted according to General Procedure A, except that iodomesitylene- d_9 **17** (132 mg, 0.52 mmol) was employed as the substrate, with 1,10-phenanthroline (38 mg, 0.21 mmol, 40 mol%), KO^tBu- d_9 (126 mg, 1.04 mmol) and benzene- d_6 (3.7 mL).

Analysis by GCMS showed complete consumption of the substrate **17**, with production of 2,4,6trimethylbiphenyl **18**, biphenyl- d_{10} **3** and mesitylene **19**. Due to incomplete deuteration of substrate **17**, it was impossible to use mass spectrometry to determine whether mesitylene **19** was labelled at the aryl position; accordingly, ²H NMR was therefore employed to elucidate this. ²H NMR shows a signal at δ 6.87 ppm in CHCl₃ (Figure **S1**), corresponding to the Ar-D position of mesitylene- d_{10} **19**. Peaks at δ 9.26 and 8.32 ppm are also observed, corresponding to deuteration of 1,10-phenanthroline, which was also observed by GC-MS (Figure **S2**). The chemical shifts of these peaks are in agreement with the ¹H NMR of commercial 1,10-phenanthroline in CDCl₃ (Figure **S3**).

crude reaction mixture.

Figure S3 – ¹H spectrum of commercial 1,10-phenanthroline in CDCl₃.

The ¹H NMR spectrum of commercial non-deuterated mesitylene is provided for reference, showing a peak at δ 6.83 ppm (Figure **S4**), and the ¹H NMR for our synthesised mesitylene-*d*₉ shows the same peak at δ 6.72 ppm (in C₆D₆). The literature value for the ²H NMR spectrum of mesitylene-*d*₃ (1,3,5-C₆Me₃D₃) gives a value of δ 7.03 ppm,³⁶ which is expected to be shifted further downfield than **19** as the longer benzylic C-H bond length (compared to C-D) makes CH₃ a less inductively donating group. Based on this result, it is concluded that under these conditions the mesityl radical favourably abstracts deuterium atoms from the benzylic positions of **19**.

Experiments with (i) deuterated phenanthroline that show exchange with iodoxylene and xylene and (ii) and with deuterated mesitylene that show exchange with phenanthroline in the presence of KOtBu acting as base.

Preparation of 1,10-phenanthroline-d₈*

The product was prepared according to a modified literature procedure by Beller *et. al.*³⁷ An ovendried 25 mL Schlenk flask was charged with 1,10-phenanthroline (540.9 mg, 3 mmol) and KO^tBu (336.6 mg, 3 mmol, 1 eq.), evacuated for 30 mins and then backfilled with argon. DMSO- d_6 (3.6 mL, 51 mmol, 17 eq.) and D₂O (60 µL, 3.3 mmol, 1.1 eq.) were then added by syringe, immediately giving a red solution and red solids. The mixture was heated at 120°C for 16 h, giving a dark green solution. The solution was cooled, opened to air and diluted with DCM (250 mL), washed with brine (100 mL) and then extracted into DCM (2 x 50 mL). The combined organics were dried over MgSO₄ and concentrated *in vacuo*. The product was purified by column chromatography (column 1: DCM to 2% MeOH/DCM, column 2: CHCl3 to 2% MeOH/DCM) yielding **15**- d_8 as an off-white solid (171 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.16 (br), 8.22 – 8.19 (m), 7.74 (s), 7.61 – 7.57 (m). ²H NMR (61 MHz, CHCl₃) δ 9.24 (br), 8.31 (br), 7.85 (br), 7.69 (br). ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 146.4, 135.9 – 135.3 (m), 128.6 (d, *J* = 6.9 Hz), 126.5 (d, *J* = 12.5 Hz), 123.1 – 122.4 (m). *m/z* (EI): 188.1 (M- d_8 , 2.8), 187.1 (M- d_7 , 22.9), 186.1 (M- d_{6r} , 75.2), 185.1 (M- d_{5r} , 100), 184.1 (M- d_4 , 73.4), 183.1 (M- d_3 , 36.7), 182.1 (M- d_2 , 11.9), 181.1 (M- d_1 , 1.8). The data are consistent with those reported.

*Deuterium incorporation was determined by comparison with an internal standard. **15**- d_8 (6.0 mg, 0.032 mmol) and 1,3,5-trimethoxybenzene (7.0 mg, 0.045 mmol) were dissolved in CDCl₃ and analysed by ¹H NMR, giving the following D-incorporations: position 2 = 47%, position 3 = 76%, position 4 = 97%, position 5 = 95%.

Below: 1H NMR spectrum from such an experiment, incorporating 1,3,5-trimethoxy benzene as an internal standard

Reaction of iodoxylene 7 with 1,10-phenanthroline-d₈ and KO^tBu in C₆H₆

The reaction was conducted according to general procedure A with iodoxylene **7** (50.5 μ L, 0.35 mmol), 1,10-phenanthroline- d_8 **15**- d_8 (25.9 mg, 0.14 mmol, 0.4 eq.), KO^tBu (78.5 mg, 0.7 mmol, 2 eq.) and C₆H₆ (2.5 mL). A dodecane internal standard was added (11.9 mg) and a 100 μ L aliquot was used for analysis by GC-FID and GC-MS. The volatiles were then removed from the crude under reduced pressure, which was then diluted with CHCl₃ and analysed by ²H NMR.

Retention Time	Sample	Peak Area	%Yield
6.997	<i>m</i> -Xylene	1201.57	33.6
10.600	Dodecane	1063.78	N/A
11.165	2-Iodo- <i>m</i> -xylene	1942.19	56.4
11.961	Biphenyl	282.52	5.9
12.359	2,6-Dimethylbiphenyl	119.39	2.3

GC-MS spectra (below) show deuteration of xylene, iodo-*m*-xylene and 2,6-dimethylbiphenyl by comparison of the intensity of M^+ and $[M+1]^+$ peaks.

The spectra also show the polydeuterated phenanthroline before the reaction (most intense peak 185) and after the reaction (most intense peak 181) showing significant loss of deuterium label during the reaction. By ²H NMR, it is observed that D-incorporation on *m*-xylene **13** occurs only at the benzylic positions.

In the above experiment, it is clear that exchange has taken place from perdeuterated phenanthroline into the methyl groups of xylene and iodoxylene.. In an additional experiment, mesitylene- d_9 was used to show that D-exchange to phenanthroline takes place through base-catalysed D⁺ transfer.

A 15 mL microwave was charged with **23** (45.2 mg, 0.35 mmol), 1,10-phenanthroline (25.2 mg, 0.14 mmol, 0.4 eq.), KO^tBu (78.5 mg, 0.7 mmol, 2 eq.) and C₆H₆ (2.5 mL) in the glovebox. The flask was capped, removed from the box and stirred at 130°C for 24 h. The reaction was cooled to room temperature and a small aliquot removed for analysis by GC-MS. The volatiles were then removed from the crude, which was diluted with CHCl₃ and analysed by ²H NMR. The GC-MS shows an increase in the deuterium incorporation on phenanthroline **15**, (intensity of peak at *m/z* 181 relative to *m/z* 180) and a decrease in the deuterium incorporation on mesitylene **23**, (intensity of peak at *m/z* 129 relative to *m/z* 128). Below the mass spectra, the ²H NMR spectrum of the phenanthroline shows more clearly the incorporation of deuterium at all positions.

Example GCMS Mass Traces

Mass spectra obtained for the products that were commonly found (together with their approximate retention times on GCMS):

m-Xylene – Retention time = ~6.2 min

2-lodo-m-xylene – Retention time = ~10.3 min

/ Predicted *m/z*: 231.97 (100.0%), 232.98 (8.8%)

Biphenyl – Retention time = ~11.1 min

2,6-Dimethylbiphenyl – Retention time = ~11.5 min

12 Predicted *m/z*: 182.11 (100.0%), 183.11 (15.1%), 184.12 (1.1%)

Individual Mass Spectra of Deuterated Compounds

Method of analysis – Picking the peaks on the GCMS software generates an average mass across the peak area. In some cases, the deuterated compounds have slightly differing retention times when compared to their unlabelled counterparts. Analysing across sections of the peak area at different time points can show different isotopologue mass ions.

This is best demonstrated with *m*-xylene **13**: when conducting the reaction of 2-iodo-*m*-xylene **7** with KO^tBu and 1,10-phenanthroline in C₆D₆, the average mass across the whole *m*-xylene peak is the unlabelled compound m/z = 106. However, averaging the very start of the peak does indeed highlight that some **13-d**₁ has formed as demonstrated with the mass spectrum below showing the m/z of 107.

This method of analysis, using averaging across the peak, was used for all isotope studies.

Calibration Information **Method**

Commercial samples of 2-iodo-*m*-xylene **7**, biphenyl **3** and *m*-xylene **13** were weighed out at several, different mmol and diluted with chloroform. 2,6-Dimethylbiphenyl **12** was prepared and weighed out at several, different mmol and diluted with chloroform. ~17 μ L of dodecane was then added to each sample, with the exact weight of dodecane added noted in each case so the exact mmol added was known. 100 μ L aliquots of each solution was then taken and made up to 1 mL with chloroform. Each sample was then run on the GCFID using the GC320 method. Once complete, the peak area for both the dodecane and sample was noted in each case.

To plot graphs for each sample:

- Mmol ratio was calculated by dividing the mmol of sample by mmol of dodecane.
- The area ratio was then calculated by dividing the sample area by the dodecane area.
- Scatter graphs were then plotted using the mmol ratio against the sample area ratio.

Calibration Graphs

The column was changed on the GCFID and so the retention times for all peaks shifted. A repeat calibration was therefore done.

2-Iodo-m-xylene – First Set of Calibration Graphs 2-iodo-m-xylene

1,1'-Biphenyl

2,6-Dimethylbiphenyl

m-Xylene

2-Iodo-m-xylene – Second Set of Calibration Graphs 2-iodo-m-xylene

Biphenyl

2,6-Dimethylbiphenyl

m-Xylene

GC data 2-Iodo-m-xylene – First Set of GCFID Data **2-Iodo-m-xylene**

0.02 mmol

Retention Time	Sample	Peak Area
10.478	Dodecane	164328
10.928	2-lodo- <i>m</i> -xylene	18814.7

0.05 mmol

Retention Time	Sample	Peak Area
10.397	Dodecane	64068.3
10.912	2-Iodo- <i>m</i> -xylene	21218.7

0.1 mmol

Retention Time	Sample	Peak Area
10.365	Dodecane	37932.2
10.908	2-lodo- <i>m</i> -xylene	22214.8

0.2 mmol

Retention Time	Sample	Peak Area
10.364	Dodecane	37309.1
10.959	2-Iodo- <i>m</i> -xylene	49616.7

0.3 mmol

Retention Time	Sample	Peak Area
10.328	Dodecane	16580
10.921	2-lodo- <i>m</i> -xylene	31079.9

0.4 mmol

Retention Time	Sample	Peak Area
10.323	Dodecane	14086.6
10.934	2-Iodo- <i>m</i> -xylene	38264.4

For determination of yields:

Example used for Reaction of 2-Iodo-m-xylene 7 with Piperazinedione 16 and KO'Bu

For 2-lodo-*m*-xylene:

- Area of 2-lodo-*m*-xylene = **7196.2**
- Area of dodecane = **4045.8**
- Exact mass of dodecane added to vial = 16.7 mg = 0.098 mmol
- Area Ratio: 7196.2/4045.8 = **1.778**
- To determine mmol of sample: (Area ratio*mmol of dodecane)/gradient of the calibration curve = (1.778*0.098)/0.6535= **0.267**
- %yield = (mmol of sample/starting mmol of reaction)*100 = (0.267/0.7)*100 = **38.1%**

Biphenyl

0.01 mmol

Retention Time	Sample	Peak Area
10.467	Dodecane	149030
11.709	Biphenyl	20026.9

0.05 mmol

Retention Time	Sample	Peak Area
10.431	Dodecane	100446
11.753	Biphenyl	50585.4

0.1 mmol

Retention Time	Sample	Peak Area
10.401	Dodecane	70144.2
11.773	Biphenyl	69248.1

0.2 mmol

Retention Time	Sample	Peak Area
10.344	Dodecane	25473.5
11.773	Biphenyl	38464.5

0.3 mmol

Retention Time	Sample	Peak Area
10.350	Dodecane	29547.5
11.783	Biphenyl	79621.3

0.4 mmol

Retention Time	Sample	Peak Area
10.312	Dodecane	10280.9
11.732	Biphenyl	38048.0

For determination of yields:

Example used for Reaction of 2-Iodo-m-xylene 7 with Piperazinedione 16 and KO'Bu

For Biphenyl:

- Area of Biphenyl = **3934.5**
- Area of dodecane = **4045.8**
- Exact mass of dodecane added to vial = 16.7 mg = 0.098 mmol
- Area Ratio: 3934.5/4045.8 = **0.972**
- To determine mmol of sample: (Area ratio*mmol of dodecane)/gradient of the calibration curve = (0.972*0.098)/0.975= **0.098**
- %yield = (mmol of sample/starting mmol of reaction)*100 = (0.098/0.7)*100 = **14.0%**

2,6-Dimethylbiphenyl

0.01 mmol

Retention Time	Sample	Peak Area
10.435	Dodecane	105351
12.059	2,6-Dimethylbiphenyl	19519.2

0.06 mmol

Retention Time	Sample	Peak Area
10.442	Dodecane	115829.0
12.134	2,6-Dimethylbiphenyl	78888.5

0.1 mmol

Retention Time	Sample	Peak Area
10.405	Dodecane	74090.1
12.134	2,6-Dimethylbiphenyl	80332.6

0.2 mmol

Retention Time	Sample	Peak Area
10.348	Dodecane	27600.9
12.114	2,6-Dimethylbiphenyl	60205.5

0.3 mmol

Retention Time	Sample	Peak Area
10.365	Dodecane	38696.9
12.175	2,6-Dimethylbiphenyl	133795.0

0.4 mmol

Retention Time	Sample	Peak Area
10.311	Dodecane	9779.35352
12.093	2,6-Dimethylbiphenyl	42358.7

For determination of yields:

Example used for Reaction of 2-Iodo-m-xylene 7 with Piperazinedione 16 and KO'Bu

For 2,6-Dimethylbiphenyl:

- Area of 2,6-Dimethylbiphenyl = 820.8
- Area of dodecane = 4045.8
- Exact mass of dodecane added to vial = 16.7 mg = 0.098 mmol
- Area Ratio: 820.8/4045.8 = **0.20**
- To determine mmol of sample: (Area ratio*mmol of dodecane)/gradient of the calibration curve = (0.20*0.098)/1.1654= **0.017**
- %yield = (mmol of sample/starting mmol of reaction)*100 = (0.017/0.7)*100 = 2.4%

m-Xylene

0.01 mmol

Retention Time	Sample	Peak Area
6.511	<i>m</i> -Xylene	4179.44189
10.379	Dodecane	56734.4

0.3 mmol

Retention Time	Sample	Peak Area
6.706	<i>m</i> -Xylene	97344.0
10.371	Dodecane	51171.6

0.5 mmol

Retention Time	Sample	Peak Area
6.768	<i>m</i> -Xylene	153825.0
10.372	Dodecane	52679.4

0.7 mmol

Retention Time	Sample	Peak Area
6.817	<i>m</i> -Xylene	211125
10.372	Dodecane	52021.0

For determination of yields:

Example used for Reaction of 2-Iodo-m-xylene 7 with Piperazinedione 16 and KO'Bu

For *m*-Xylene:

- Area of *m*-Xylene = **9449.6**
- Area of dodecane = **4045.8**
- Exact mass of dodecane added to vial = 16.7 mg = 0.098 mmol
- Area Ratio: 9449.6/4045.8 = **2.34**
- To determine mmol of sample: (Area ratio*mmol of dodecane)/gradient of the calibration curve = (2.34*0.098)/0.6853= **0.334**
- %yield = (mmol of sample/starting mmol of reaction)*100 = (0.334/0.7)*100 = 47.7%

2-lodo-m-xylene – Second Set of GCFID Data

2-Iodo-m-xylene

0.02 mmol

Retention Time	Sample	Peak Area
10.736	Dodecane	59545.4
11.238	2-lodo- <i>m</i> -xylene	11457.0

0.04 mmol

Retention Time	Sample	Peak Area
10.723	Dodecane	48829.4
11.242	2-Iodo- <i>m</i> -xylene	12907.3

0.1 mmol

Retention Time	Sample	Peak Area
10.696	Dodecane	27416.6
11.246	2-Iodo- <i>m</i> -xylene	16799.3

0.2 mmol

Retention Time	Sample	Peak Area
10.682	Dodecane	18276.5
11.266	2-Iodo- <i>m</i> -xylene	27341.3

0.4 mmol

Retention Time	Sample	Peak Area
10.671	Dodecane	12433.8
11.270	2-lodo- <i>m</i> -xylene	29666.8

0.6 mmol

Retention Time	Sample	Peak Area
10.667	Dodecane	10198.2
11.288	2-Iodo- <i>m</i> -xylene	40482.1

Biphenyl

0.01 mmol

Retention Time	Sample	Peak Area
10.746	Dodecane	68957.4
12.025	Biphenyl	9428.4

0.04 mmol

Retention Time	Sample	Peak Area
10.742	Dodecane	65096.8
12.070	Biphenyl	33761.9

0.1 mmol

Retention Time	Sample	Peak Area
10.682	Dodecane	18326.8
12.043	Biphenyl	19101.4

0.3 mmol

Retention Time	Sample	Peak Area
10.669	Dodecane	11200.1
12.072	Biphenyl	34515.8

0.7 mmol

Retention Time	Sample	Peak Area
10.649	Dodecane	5400.0
12.073	Biphenyl	37752.0

2,6-Dimethylbiphenyl

0.01 mmol

Retention Time	Sample	Peak Area
10.742	Dodecane	62881.5
12.376	2,6-Dimethylbiphenyl	6115.4

0.04 mmol

Retention Time	Sample	Peak Area
10.708	Dodecane	36554.7
12.388	2,6-Dimethylbiphenyl	12765.3

0.08 mmol

Retention Time	Sample	Peak Area
10.684	Dodecane	20688.2
12.394	2,6-Dimethylbiphenyl	16138

0.2 mmol

Retention Time	Sample	Peak Area
10.664	Dodecane	10923.1
12.405	2,6-Dimethylbiphenyl	22237.2

0.5 mmol

Retention Time	Sample	Peak Area
10.653	Dodecane	6931.01709
12.419	2,6-Dimethylbiphenyl	32072.9

m-Xylene

0.02 mmol

Retention Time	Sample	Peak Area
7.100	<i>m</i> -Xylene	12578.9
10.769	Dodecane	98487.2

0.08 mmol

Retention Time	Sample	Peak Area
7.163	<i>m</i> -Xylene	42401.7
10.755	Dodecane	84773.8

0.1 mmol

Retention Time	Sample	Peak Area
7.116	<i>m</i> -Xylene	18433.6
10.694	Dodecane	26890.0

0.3 mmol

Retention Time	Sample	Peak Area
7.149	<i>m</i> -Xylene	32922.7
10.676	Dodecane	16190.1

0.8 mmol

Retention Time	Sample	Peak Area
7.163	<i>m</i> -Xylene	40651.0
10.656	Dodecane	7618.8

1 mmol

Retention Time	Sample	Peak Area
7.156	<i>m</i> -Xylene	36894.7
10.650	Dodecane	5652.2

NMR Spectra

S66

S67

S69

References

- [31] M. Jainta, M. Nieger, S. Bräse, *Eur. J. Org. Chem.* **2008**, 5418–5424.
- [32] D. Rendón-Nava, A. Álvarez-Hernández, A. L. Rheingold, O. R. Suárez-Castillo and D. Mendoza-Espinosa, *Dalton Trans.* **2019**, 48, 3214–3222.
- [33] D. O'Hare, S. J. Heyes, S. Barlow, S. Mason, *Dalton Trans.* **1996**, 2989–2993.
- [34] E. M. Leitao, S. R. Dubberley, W. E. Piers, Q. Wu, R. McDonald, *Chem. Eur. J.* 2008, 14, 11565–11572.
- [35] Q. Liu, Y. Lan, J. Liu, G. Li, Y. D. Wu, A. Lei, J. Am. Chem. Soc. 2009, 131, 10201–10210.
- [36] S. Guo, S. K. Mohapatra, A. Romanov, T. V. Timofeeva, K. I. Hardcastle, K. Yesudas, C. Risko, J. L.
 Brédas, S. R. Marder, S. Barlow, *Chem. Eur. J.* 2012, 18, 14760–14772.
- [37] S. Kopf, J. Liu, R. Franke, H. Jiao, H. Neumann, M. Beller, *Eur. J. Org. Chem.* **2022**, 202200204.