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General information and procedures

All reactions were carried out using air-free techniques under argon or prepared in a glovebox
(Innovative Technology Inc., USA) under a nitrogen atmosphere and sealed, unless otherwise stated.
All reagents and solvents were obtained from commercial suppliers (Fluorochem, Fisher Scientific or
Sigma Aldrich) and used without further purification, unless otherwise stated. Anhydrous hexane,
dichloromethane (DCM) and diethyl ether (Et,0), where employed, were dried using a Pure-Solv 400
solvent purification system (Innovative Technology Inc., USA). Thin Layer Chromatography was
performed on silica gel pre-coated aluminium plates (60 A, F254 UV indicator) purchased from Merck.
The thin layer chromatograms were analysed by UV (254 nm, UVP mineralight UVG-11 lamp) and
staining either with basic KMnO, [KMnO, (6 g), K,CO3 (40 g), NaOH (5 mL, 10% w/w) in water (600 mL)]
or an ethanolic solution of phosphomolybdic acid [phosphomolybdic acid hydrate (10 g) in ethanol
(100 mL)]. Flash Column Chromatography purification was performed with 35-70 um particle size silica
gel 60 A (200-400 mesh) purchased from Prolabo. Melting points were determined using a Gallenkamp
Griffin Melting Point Apparatus. NMR spectroscopy was performed using a Bruker AV3-400
spectrometer. 'H NMR, 3C NMR, 2H NMR and *°F NMR spectra were recorded on this spectrometer
operating at 400 MHz, 101 MHz, 61 MHz and 376 MHz respectively. All spectral data were acquired at
295 K. For 'H and 3C NMR spectra, chemical shifts (6) are quoted in parts per million (ppm) relative
to the following residual solvent peaks; 6, 7.26 and 6. 77.2 ppm for CDCl;, 6,4 7.16 and 6: 128.0 ppm
for CgDg, 6¢ 25.3, 67.5 ppm for dg-THF. 2H NMR spectra chemical shifts are quoted relative to the
residual deuterated solvents at the same ppm as in 'H NMR spectra. 1°F NMR spectra chemical shifts
are quoted relative to a 2,2,2-trifluoroethanol (TFE) internal standard at &6; -77.51 ppm in CDCls.
Coupling constants (J) are reported in Hertz (Hz) to the nearest 0.1 Hz. The multiplicity abbreviations
used are: s (singlet), d (doublet), t (triplet), g (quartet), quin (quintet), m (multiplet), br (broad), dd
(doublet of doublets), dt (doublet of triplets), dq (doublet of quartets), ddd (doublet of doublets of
doublets), ddt (doublet of doublets of triplets). Infrared (IR) spectra were obtained on a Shimadzu
IRAffinity-1 FTIR-ATR spectrometer instrument. GCMS spectra were obtained on an Agilent 7890A GC
system coupled to a 5975C inert XL EI/CI MSD triple axis-mass detector. Electron impact (El) ionisation
was utilised, specifically the method EI320-25-1-SPLIT. The column temperature was 320 °C, and the
carrier gas was helium with a flow rate of 1 mL/min. GC-FID analyses were carried out using either an
Agilent 7890A gas chromatograph fitted with an Agilent HP5 column (30 m x 0.25 mm x 0.25 um), or
a Thermo Finnigan Focus gas chromatograph fitted with an Agilent HP5 column (30 m x 0.32 mm X
0.25 pum). Helium was used as the carrier gas (2.0 mL/min flow rate). The maximum column

temperature was 340 °C and the instrument was operated in a splitless mode.
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General procedure for coupling reaction of simple aryl halides (General procedure A)

~X  Ni(COD)DQ) (10 mol%)
KO'Bu (2 eq.) X

CeHe, 130 °C, 16 h Z

X=1,Br, Cl

An oven-dried 15 mL screw-top pressure flask was charged with aryl halide 1 (0.7 mmol), Ni(COD)(DQ)
(23.2 mg, 0.07 mmol), KO'Bu (157 mg, 1.4 mmol) and anhydrous benzene (5 mL) with a stirbar inside
a glovebox. The flask was capped, removed from the glovebox and stirred in an oil bath at 130°C for
16 h. The reaction mixture was then allowed to cool to room temperature, filtered through a short
Celite plug, washed with hexane/EtOAc and concentrated in vacuo. The crude mixture was then

purified via column chromatography with hexane/EtOAc eluent to yield to product 5.
General procedure for coupling reaction of 2,6-dimethyliodobenzene (General procedure B)
Ni source (10 mol%)

Ligand (20 mol%) O O
' KO'Bu (2 eq.) O . .
CeHe, 130 °C, 16 h O \©/

6 7 5c 8

An oven-dried 15mL screw-top pressure flask was charged with 6 (101 pl, 0.7 mmol), a nickel source
(0.07 mmol), a ligand if used (0.14 mmol), KO'Bu (157 mg, 1.4 mmol) and anhydrous benzene (5 mL)
with a stirbar inside a glovebox. The flask was capped, removed from the glovebox and stirred in an
oil bath at 130°C for 16 h. The reaction mixture was then allowed to cool to room temperature, n-
dodecane was added as an internal standard (approx. 0.1 mmol) and the mixture filtered was through
a short Celite plug and washed with hexane. An aliquot of the mixture was removed, diluted with
CHCl; and product yields determined by GC-FID calibrated with authentic product samples (see page

S24) using n-dodecane as an internal standard.
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Reactant synthesis

Synthesis of Ni(COD)(DQ)*

@N.@ . Me e

Me Me DCM, 45°C, 17 h

In a glovebox, a large oven-dried screw-top pressure flask (35 mL) was charged with a stirbar, Ni(COD),
(1.68 g, 6.1 mmol), duroquinone (1.0 g, 6.1 mmol) and degassed DCM (23.5 mL). Upon the first
addition of DCM, the yellow solids became a black solution. The flask was capped, removed from the
glovebox and heated at 45°C in an oil bath for 17 h. The reaction mixture was then allowed to cool to
room temperature, filtered through a short celite plug and washed with DCM. Volatiles were removed
in vacuo yielding a red lumpy solid. The solid was then washed with a 40:1 mixture of hexane/DCM
(69 mL x 2) to removed free COD, and then dried under high vacuum yielding Ni(COD)(DQ) as a dark
red powder (1.90 g, 94%). *H NMR (400 MHz, CsD¢) &6 3.46 (s, 4H), 1.96 (s, 12H), 1.84 — 1.79 (m, 4H),
1.59 — 1.51 (m, 4H) 3C NMR (101 MHz, C4Dg) 6 155.0, 112.5, 100.0, 29.3, 12.6. IR V,g/cm™ (neat):

1549 (s). The data are consistent with those reported in the literature.?

Synthesis of 1-(allyloxy)-2-iodobenzene I-1i

[
©i + BFM Ko,CO3 (2 eq.) ©i|
[ =
OH 15eq. MeCN, 60 °C, 2 h o
11

A 10 ml microwave vial was charged with 2-iodophenol (550 mg, 2.5 mmol), K,CO; (0.69 g, 5 mmol),
then capped and evacuated. The vial was back-filled with Ar, and then allyl bromide (0.32 mL, 3.75
mmol) and degassed MeCN (5 mL) were added via syringe, giving a light brown solution with
insolubles. The reaction was stirred at 60°C for 2 h, after which time the reaction was washed with
H,0O (5 mL) and then extracted into Et,0 (8 mL x 3). The organic layers were then washed with brine
(5 mLx 2), dried over MgS0O, and concentrated giving a yellow oil I-1i (610 mg, 2.36 mmol, 94%) which
was used in subsequent reaction without further purification. *H NMR (400 MHz, CDCl;) 6 7.80 (dd, J
=7.8,1.6 Hz, 1H), 7.31—7.27 (m, 1H), 6.81 (dd, J = 8.2, 1.3 Hz, 1H), 6.75 — 6.70 (m, 1H), 6.07 (ddt, J =
17.3, 10.6, 4.8 Hz, 1H), 5.55 (dd, J = 17.3, 5.1 Hz, 1H), 5.33 (dq, J = 10.6, 1.6 Hz, 1H), 4.60 (dt, J = 4.8,
1.7 Hz, 2H). 3C NMR (101 MHz, CDCl;3) 6 157.1, 139.5, 132.6, 129.4, 122.7, 117.6, 112.6, 86.7, 69.7. IR
Vma/CM™? (neat): 1273, 1244, 926. m/z (El): 260.0 ([M]*, 100), 219.9 (20), 190.9 (20), 133.1 (33), 119.0

(13), 105.1 (60), 92.0 (40). The data are consistent with those reported in the literature.?
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Synthesis of 2,6-dimethylbiphenyl 7

Pd(OAC); (10 mol%)
| PCy3 (20 mol%) ‘
KO'Bu (2 eq.) O + O
CeHe, 130 °C, 22 h

6 7 S1

A sample of compound 7 was prepared by combining 6 (812 mg, 3.5 mmol), Pd(OAc), (78.6 mg, 0.35
mmol), PCy; (196 mg, 0.7 mmol), KO'Bu (786 mg, 7 mmol) and anhydrous benzene (15 mL) in an oven-
dried pressure tube (35 mL) with a stirbar inside a glovebox. The flask was capped, removed from the
glovebox and stirred in an oil bath at 130°C for 22 h, turning the solution from yellow to black. The
reaction mixture was cooled, filtered through a short Celite plug and washed with hexanes. The crude
mixture was concentrated and then purified by column chromatography with hexane as eluent,
yielding a colourless oil (144 mg). 7 *H NMR (400 MHz, CDCl;) 6 7.46 — 7.42 (m, 2H), 7.38 — 7.33 (m,
1H), 7.19 - 7.11 (m, 5H), 2.05 (s, 6H) m/z (El): 182.1 ([M]*, 93), 167.1 (100), 152.1 (33), 139.0 (7), 128.1
(13), 115.0 (20), 89.0 (13), 77.0 (13), 63.0 (13), 51.0 (17).

Analysis by NMR and GCMS showed a 1:0.047 mixture of 7 (0.748 mmol, 21.4 %) and the homocoupled
product S1 (0.0349 mmol, 0.9 %), and thus this impurity is then corrected for in the calibration curve

calculations (Page S25) using the following equation:

Sample mass = mmol(7)*182.27 + mmol(§1)*210.31
Sample mass = mmol(7)*182.27 + mmol(7)*0.0466*210.31

sample mass
mmo](7) = 192.07

Substrate scope

Coupling of I-1a with benzene using Ni(COD)(DQ)

! Ni(COD)(DQ) (10 mol%)
KO'Bu (2 eq.) O
Me Me

O,
a CeHg, 130°C, 16 h 5

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with hexane eluent yielding 5a as a white waxy solid (112 mg, 0.66 mmol,
95%). *H NMR (400 MHz, CDCl;) 6 7.62 — 7.59 (m, 2H), 7.53 — 7.50 (m, 2H), 7.47 - 7.42 (m, 2H), 7.36 —
7.32(m, 1H), 7.29 - 7.26 (m, 2H), 2.42 (s, 3H). *C NMR (101 MHz, CDCl;) 6 141.3, 138.5, 137.1, 129.6,
128.9,127.1, 21.2. IR Ve /cm (neat): 3030, 2916, 1485. m/z (El): 168.2 ([M]*, 100), 152.1 (23), 139.1

S5



(5),128.1(4),115.1(8),91.1(5), 82.3 (5). The data are consistent with those reported in the literature.?

Coupling of I-1b with benzene using Ni(COD)(DQ)

| Ni(COD)(DQ) (10 mol%) ‘
gt iy
MeO CeHg, 130 °C, 16 h MeO

I-1b 5b

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with a 5% EtOAc/hexane eluent yielding 5b as a white solid (111 mg, 0.603
mmol, 86%). M.p. 85-87°C (/it. 88-89°C)’. *H NMR (400 MHz, CDCl3) § 7.57 = 7.52 (m, 4H), 7.44 — 7.39
(m, 2H), 7.33-7.28 (m, 1H), 7.01 - 6.96 (m, 2H), 3.86 (s, 3H). 13C NMR (101 MHz, CDCl;) § 159.3, 141.0,
134.0, 128.9, 128.3, 126.9, 126.2 114.4, 55.5. IR v, /cm™? (neat): 2835, 1483, 1246, 1034. m/z (El):
184.1 ([M]*, 100), 169.1 (47), 152.0 (7), 141.0 (53), 115.0 (40), 89.0 (7), 76.0 (5), 63.0 (8). The data are

consistent with those reported in the literature.?
Coupling of I-1c with benzene using Ni(COD)(DQ)

Ni(COD)(DQ) (10 mol%) ‘
' KO'Bu (2 eq.)
CeHs, 130 °C, 16 h O

I-1c 5c

This reaction was carried out as described in General procedure A. The crude mixture was purified via
column chromatography with hexane eluent yielding 5c¢ as a white solid (95.9 mg, 0.623 mmol, 89%).
M.p. 66-68°C (/it. 68-70°C)%. *H NMR (400 MHz, CDCl3) 6 7.65 — 7.61 (m, 4H), 7.50 — 7.45 (m, 4H), 7.40
—7.36(m, 2H). 3C NMR (101 MHz, CDCl5) & 141.4, 128.9, 127.4, 127.3. IR V,,,/cm™ (neat): 3059, 1476,
1429. m/z (El): 154.1 ([M]*, 100), 76.0 (13), 51.0 (13). The data are consistent with those reported in

the literature.?

Coupling of I-1d with benzene using Ni(COD)(DQ)

| Ni(COD)(DQ) (10 mol%) O
©: KO'Bu (2 eq.) O
OMe  (CiHg 130°C, 16 h OMe
I-1d 5d

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with a 20% EtOAc/hexane eluent yielding 5d as a pale-yellow oil (101 mg,
0.55 mmol, 78%). *H NMR (400 MHz, CDCl5) & 7.67 — 7.62 (m, 2H), 7.54 — 7.49 (m, 2H), 7.45 — 7.39 (m,
3H), 7.15—-7.11 (m, 1H), 7.08 (d, J = 8.0 Hz, 1H), 3.89 (s, 3H). 3C NMR (101 MHz, CDCl;) § 156.6, 138.7,
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131.0, 130.8, 129.7, 128.7, 128.1, 127.0, 120.9, 111.4, 55.6. IR v, /cm™ (CHCl5): 1481, 1246, 1197,
1182, 1033. m/z (El): 184.1 ([M]*, 100), 169.1 (53), 152.1 (9), 141.1 (40), 115.0 (40). The data are

consistent with those reported in the literature. 3

Coupling of I-1e with benzene using Ni(COD)(DQ)

| Ni(COD)(DQ) (10 mol%) O
@E KO'Bu (2 eq.) O
Me CeHe, 130 °C, 16 h Me
I-1e 5e

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with hexane eluent yielding 5e as a colourless oil (77.6 mg, 0.46 mmol, 66%).
1H NMR (400 MHz, CDCl5) 6 7.47 — 7.42 (m, 2H), 7.39 — 7.35 (m, 3H), 7.31 - 7.27 (m, 4H), 2.31 (s, 3H).
13C NMR (101 MHz, CDCl;) 6 142.1, 135.5, 130.4, 129.9, 129.3, 128.9, 128.2, 127.4, 126.9, 125.9, 20.6.
IR Vg /cmt (CHCI5): 3030, 1477. m/z (El): 168.1 ([M]*, 100), 153.1 (40), 139.1 (7), 128.1 (7), 115.1 (13).

The data are consistent with those reported in the literature.?
Coupling of I-1f with benzene using Ni(COD)(DQ)

Ni(COD)(DQ) (10 mol%) O
Me ' KO'Bu (2 eq.) Me
CeHs, 130°C, 16 h O

I-1f 5f

This reaction was carried out as described in General procedure A. The crude mixture was purified via
column chromatography with hexane eluent yielding 5f as a colourless oil (91.6 mg, 0.54 mmol, 78%).
14 NMR (400 MHz, CDCl;) § 7.71 — 7.67 (m, 2H), 7.55 — 7.49 (m, 4H), 7.46 — 7.41 (m, 2H), 7.28 — 7.25
(m, 1H), 2.52 (s, 3H). 3C NMR (101 MHz, CDCl;) & 141.5, 141.4, 138.4, 128.8, 128.1, 128.1, 127.3,

124.4, 21.7. m/z (El): 168.2 ([M]*). The data are consistent with those reported in the literature.?

Coupling of I-1g with benzene using Ni(COD)(DQ)

| Ni(COD)(DQ) (10 mol%)
/©/ KO'Bu (2 eq.) O
NC CeHe, 130°C, 16 h NC
I-1g 59

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with a 20% EtOAc/hexane eluent yielding 5g as a pale-yellow solid (88.4 mg,
0.47 mmol, 67 %). M.p. 82-84°C (lit. 85-87°C). *H NMR (400 MHz, CDCl;) 6 7.74 — 7.67 (m, 4H), 7.61 —
7.58 (m, 2H), 7.51 - 7.46 (m, 2H), 7.45 - 7.40 (m, 1H). *3C NMR (101 MHz, CDCl;) 6 145.8, 139.3, 132.8,
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129.3, 128.8, 127.9, 127.4, 119.1, 111.1. IR V5, /cm? (neat): 2224, 1477. m/z (El): 179.2 ([M]*, 100),

151.1 (16), 76.1 (7). The data are consistent with those reported in the literature.?

Coupling of I-1h with benzene using Ni(COD)(DQ)

| Ni(COD)(DQ) (10 mol%) O Ph
/@/ KO®Bu (2 eq.) O + /©/
F F Ph

CeHe, 130 °C, 16 h
I-1h 5h s2

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with a 5% EtOAc/hexane eluent yielding a mixture of 5h and p-terphenyl S6
as a yellow solid (96.5 mg). The yield of 5h was determined to be 0.413 mmol (59 %) by °F NMR with
a 2,2,2-trifluoroethanol (TFE) internal standard (55.8 mg), therefore the yield of $2 can be determined
from the total product mass as 26.0 mg (0.11 mmol, 16 %). 5h *H NMR (400 MHz, CDCl;) 6 7.59 — 7.54
(m, 4H), 7.49 — 7.44 (m, 2H), 7.39 — 7.35 (m, 1H), 7.17 — 7.12 (m, 2H). 13C NMR (101 MHz, CDCl;) &
162.6 (d, J = 246.4 Hz), 140.9, 137.5 (d, J = 2.9 Hz), 129.0, 128.8 (d, / = 7.8 Hz), 127.7, 127.4, 115.8 (d,
J=21.6 Hz)'F NMR (376 MHz, CDCl5) & -116.25 — -116.33 (m). IR Vpe/cm (neat): 1477, 1230. m/z
(EI): 172.2 ([M]*, 100), 153.1 (5), 146.1 (7), 133.1 (5), 120.1 (4), 85.1 (7). The data are consistent with

those reported in the literature.3
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Figure S1 — Obtaining °F NMR yield for compound 5h with a TFE internal standard (55.8 mg).

Coupling of I-1i with benzene using Ni(COD)(DQ)
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| Ni(COD)(DQ) (10 mol%) ‘
©i KO'Bu (2 eq.) O
o CeHs, 130°C, 16 h oﬁ

I-1i 5i

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with hexane eluent yielding 5i as a colourless oil (90 mg, 0.43 mmol, 61%).
1H NMR (400 MHz, CDCl;) 6 7.66 — 7.62 (m, 2H), 7.51 — 7.43 (m, 3H), 7.42 — 7.33 (m, 2H), 7.20 - 7.15
(m, 1H), 7.14 - 7.10 (m, 1H), 6.42 — 6.38 (m, 1H), 4.92 — 4.83 (m, 1H), 1.71 (dd, J = 6.8, 1.3 Hz, 3H). 13C
NMR (101 MHz, CDCl3) 6 154.5, 141.5, 138.0, 131.7, 131.0, 129.6, 128.7, 128.0, 127.1, 122.9, 115.9,
107.2, 9.6. m/z (El): 210.2 ([M]*, 100), 195.1 (29), 181.1 (73), 169.1 (44), 152.1 (47), 141.1 (33), 115.1

(40). The data are consistent with those reported in the literature.*

Coupling of Br-1c with benzene using Ni(COD)(DQ)

Br Ni(COD)(DQ) (10 mol%) O
©/ KO®Bu (2 eq.) O
CeHg, 130 °C, 16 h
Br-1c 5c

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with hexane eluent yielding 5¢ as a white solid (86.2 mg, 0.56 mmol, 80%).

Data are consistent with those reported above.

Coupling of Br-1b with benzene using Ni(COD)(DQ)

Br  Ni(COD)(DQ) (10 mol%) ‘
/©/ KO'Bu (2 eq.) O
MeO CeHs, 130°C, 16 h  MeO
Br-1b 5b

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with a 2% EtOAc/hexane eluent yielding 5b as a white solid (109 mg, 0.59

mmol, 84%). Data are consistent with those reported above.

Coupling of Br-1a with benzene using Ni(COD)(DQ)

Br  Ni(COD)(DQ) (10 mol%) ‘
/©/ KO'BU (2 eq.) O
Me CeHe, 130 °C, 16 h Me

Br-1a 5a
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10

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with hexane eluent yielding 5a as a white waxy solid (91.6 mg, 0.55 mmol,

78%). Data are consistent with those reported above.

Coupling of Br-1d with benzene using Ni(COD)(DQ)

Br Ni(COD)(DQ) (10 mol%) ‘

KO'Bu (2 eq.)

OMe  CgHg, 130°C, 16 h OMe
Br-1d 5d

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with a 5% EtOAc/hexane eluent yielding 5d as a pale-yellow oil (99.6 mg,

0.54 mmol, 77%). Data are consistent with those reported above.

Coupling of Br-1j with benzene using Ni(COD)(DQ)

N Br Ni(COD)t(DQ) (10 mol%) N
| KO'Bu (2 eq.) | ~
=
CgHs, 130 °C, 16 h =
Br-1j 5§

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with a 5% EtOAc/hexane eluent yielding 5j as a pale-yellow oil (55.2 mg, 0.36
mmol, 51%). *H NMR (400 MHz, CDCl;) 6 8.71 —8.69 (m, 1H), 8.01 — 7.98 (m, 2H), 7.77 = 7.72 (m, 2H),
7.51-7.46 (m, 2H), 7.44 —-7.39 (m, 1H), 7.25-7.21 (m, 1H). 13C NMR (101 MHz, CDCl;) 6 157.6, 149.8,
139.6, 136.9, 129.1, 128.9, 127.1, 122.2, 120.7. m/z (El): 155.1 ([M]*, 100). The data are consistent

with those reported in the literature.?

Coupling of Br-1k with benzene using Ni(COD)(DQ)

«_Br N(COD)(DQ) (10 moi%)
©\/j/ KO'Bu (2 eq.)
N/

CeHe, 130 °C, 16 h
Br-1k

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with a 5% EtOAc/hexane eluent yielding 5k as an orange oil (70.4 mg, 0.34
mmol, 49%). *H NMR (400 MHz, CDCl;) 6 9.19 (d, J = 2.3 Hz, 1H), 8.30 (d, / = 2.1 Hz, 1H), 8.15 (d, /= 8.9
Hz, 1H), 7.88 (dd, J = 8.1, 1.3 Hz, 1H), 7.74 — 7.70 (m, 3H), 7.58 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.55 -
7.50 (m, 2H), 7.46 —7.41 (m, 1H). 3C NMR (101 MHz, CDCl;) § 150.1, 147.5, 138.0, 134.0, 133.4, 129.5,
129.4,129.3,128.2,128.1,127.6,127.1. m/z (El): 205.1 ([M]*, 100). The data are consistent with those

reported in the literature.®
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Coupling of Cl-1c with benzene using Ni(COD)(DQ)

KO'Bu (2 eq.)

CeHe, 130°C, 16 h
Cl-1c 5¢

: cl Ni(COD)(DQ) (10 mol%) O

This reaction was carried out as described in General procedure A. The crude mixture was purified by
column chromatography with hexane eluent yielding 5c¢ as a white solid (14.5 mg, 0.094 mmol, 14%).

Data are consistent with those reported above.

Coupling of I-1a with benzene without a nickel source

|
/©/ KO®Bu (2 eq.) O
Me

CgHe, 130°C, 16 h Me

I-1a 5a
This reaction was carried out as described in General procedure A, except a Ni source was excluded.
The crude mixture was purified by column chromatography with hexane eluent yielding 5a as a white

waxy solid (15.9 mg, 0.094 mmol, 13%). Data are consistent with those reported above.

Coupling of I-1b with benzene without a nickel source

|
/©/ KO®Bu (2 eq.) O
MeO MeO

CeHe, 130 °C, 16 h
I-1b 5b

This reaction was carried out as described in General procedure A, except a Ni source was excluded.
The crude mixture was purified by column chromatography with a 2% EtOAc/hexane eluent yielding

5b as a white solid (19.1 mg, 0.107 mmol, 15.2%). Data are consistent with those reported above.

Coupling of I-1a with benzene using Ni(OAc),

| Ni(OAc), (10 mol%)
/©/ KO'Bu (2 eq.) O
Me

CeHe, 130 °C, 16 h Me

I1a 5a
This reaction was carried out as described in General procedure A, except Ni(OAc), (12.4 mg, 0.07
mmol) was employed. The crude mixture was purified by column chromatography with hexane eluent
yielding 5a as a white waxy solid (17.8 mg, 0.106 mmol, 15.1%). Data are consistent with those

reported above.

Coupling of I-1b with benzene using Ni(OAc),
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12

I Ni(OAc), (10 mol%) ‘
/©/ KO'Bu (2 eq.) O
MeO CgHg, 130°C, 16 h  MeO
I-1b 5b
This reaction was carried out as described in General procedure A, except Ni(OAc), (12.4 mg, 0.07
mmol) was employed. The crude mixture was purified by column chromatography with a 2%

EtOAc/hexane eluent yielding 5b as a white solid (26.3 mg, 0.143 mmol, 20.4%). Data are consistent

with those reported above.

Coupling of I-1a with benzene using Ni(acac),

| Ni(acac), (10 mol%) ‘
Iogic iy
Me CeHs, 130°C, 16 h Me
I-1a 5a

This reaction was carried out as described in General procedure A, except Ni(acac), (18.0 mg, 0.07
mmol) was employed. The crude mixture was purified by column chromatography with hexane eluent
yielding 5a as a white waxy solid (81.4 mg, 0.484 mmol, 69.1%). Data are consistent with those

reported above.

Coupling of I-1b with benzene using Ni(acac),

| Ni(acac), (10 mol%) O
/©/ KO'®Bu (2 eq.) O
MeO CeHe, 130°C, 16h  MeO

I-1b 5b

This reaction was carried out as described in General procedure A, except Ni(acac), (18.0 mg, 0.07
mmol) was employed. The crude mixture was purified by column chromatography with a 2%
EtOAc/hexane eluent yielding 5b as a white solid (85.2 mg, 0.463 mmol, 66.1%). Data are consistent

with those reported above.

Coupling of I-1a with benzene using Ni(PPh;),

I Ni(PPhs)s (10 mol%) ‘
Jogii il
Me CgHe, 130 °C, 16 h Me
I-1a 5a

This reaction was carried out as described in General procedure A, except Ni(PPhs), (77.5 mg, 0.07
mmol) was employed. The crude mixture was purified by column chromatography with hexane eluent
yielding 5a as a white waxy solid (81.2 mg, 0.441 mmol, 63.0%). Data are consistent with those

reported above.
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Coupling of I-1b with benzene using Ni(PPh;),

| Ni(PPh3)4 (10 mol%)
O Deea
MeO

CgHg, 130°C,16h  MeO

I-1b 5b
This reaction was carried out as described in General procedure A, except Ni(PPhs), (77.5 mg, 0.07
mmol) was employed. The crude mixture was purified by column chromatography with a 2%
EtOAc/hexane eluent yielding 5b as a white solid (83.2 mg, 0.452 mmol, 64.6%). Data are consistent

with those reported above.

Coupling of I-1a with benzene using Ni(COD),

| Ni(COD), (10 mol%)
/©/ KO'Bu (2 eq.) O
Me

CeHe, 130 °C, 16 h Me

I-1a 5a
This reaction was carried out as described in General procedure A, except Ni(COD), (19.3 mg, 0.07
mmol) was employed. The crude mixture was purified by column chromatography with hexane eluent
yielding 5a as a white waxy solid (81.3 mg, 0.484 mmol, 69.1%). Data are consistent with those

reported above.

Coupling of I-1b with benzene using Ni(COD),

| Ni(COD), (10 mol%)
MeO CeHs, 130°C, 16h  MeO
I-1b 5b

This reaction was carried out as described in General procedure A, except Ni(COD), (19.3 mg, 0.07
mmol) was employed. The crude mixture was purified by column chromatography with a 2%
EtOAc/hexane eluent yielding 5b as a white solid (82.5 mg, 0.448 mmol, 63.9%). Data are consistent

with those reported above.

Coupling of I-1a with benzene using Ni(COD)(DQ) for 4 h

| Ni(COD)(DQ) (10 mol%)
/©/ KO'Bu (2 eq.) O
Me

CgHg, 130°C, 4 h Me
I-1a 5a

This reaction was carried out as described in General procedure A, except the reaction was run for 4
h. The crude mixture was purified by column chromatography with hexane eluent yielding 5a as a

white waxy solid (85.6 mg, 0.510 mmol, 72.8%). Data are consistent with those reported above.
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Coupling of I-1b with benzene using Ni(COD)(DQ) for 4 h

oy
MeO

I-1b

Ni(COD)(DQ) (10 mol%)

KO'Bu (2 eq.)

CeHe, 130°C, 4 h

MeO

5b

14

This reaction was carried out as described in General procedure A, except the reaction was run for 4

h. The crude mixture was purified by column chromatography with a 2% EtOAc/hexane eluent yielding

5b as a white solid (104.7 mg, 0.569 mmol, 81.3%). Data are consistent with those reported above.

2,6-Dimethyliodobenzene reaction condition screen

The reactions were carried out according to General procedure B, unless stated otherwise. When the

product signal is too weak to be integrated the products are labelled ‘trace’ and are < 0.8% yield.

Ni source (10 mol%)

KO®Bu (2 eq.)

CeHe, 130 °C, 16 h

' O

e

6 7 8

Entry Ni source Ligand Dodecane Dodecane 6 (peak 6 (% 7 (peak 7(% 5 (peak 5(% 8 (peak 8(%

added (peak area) yield) area) yield) area) yield) area) yield)
(mg) area)

1 18.5 792.0 2913.6 88.3 trace trace trace trace trace trace
2 NiCl, 18.6 779.6 2834.2 87.7 trace trace trace trace trace trace

3 Ni(OAc), 18.3 793.4 2905.2 86.9 trace trace trace trace 26.7 0.8
4 Ni(acac), 20.4 938.8 2361.4 66.6 79.9 1.5 235.9 4.8 511.1 13.9
5 Ni(PPh3), 15.1 362.2 793.6 43.0 36.7 13 120.4 4.7 305.6 15.9
6 Ni(COD), - 16.3 477.4 1124.96 49.0 41.2 1.2 114.0 3.6 667.4 31.0
7 Ni(COD)(DQ) 17.8 436.0 trace trace 176.6 6.1 576.2 22.1 1485.5 75.9
8 Ni(COD)(DQ) 18.5 386.5 554.5 34.4 117.2 4.8 324.7 14.6 886.3 53.0

9b Ni(COD)(DQ) 16.9 600.9 2616.1 95.4 21.6 0.5 38.7 1.0 191.8 6.7
10¢ Ni(COD)(DQ) 18.3 331.0 798.8 57.2 59.6 2.8 154.6 8.0 562.1 38.9
11¢ Ni(COD)(DQ) 19.5 1912.2 3986.6 52.7 299.7 2.6 975.2 9.3 2676.9 34.1
12¢ Ni(COD)(DQ) 19.6 2908.2 5331.5 46.6 568.6 33 1516.9 9.6 4311.3 36.3
13f DQ 17.9 415.5 1411.8 78.9 56.2 1.0 90.4 1.8 391.2 21.0

14 PPh; 13.0 518.9 3033.2 98.6 trace trace trace trace 33.4 1.0

15 acac 12.9 587.5 3268.1 93.1 trace trace 73.9 15 181.3 5.0

168 Ni(COD)(DQ) 17.8 1325.3 70.3 0.9
17h 18.2 1190.7 0 0

Table S1- Screen of various conditions using substrate 6. %5 mol% of Ni(COD)(DQ). 1 mol% of Ni(COD)(DQ). <5 h
reaction time. YReaction at 110 °C. ¢Carried out under an atmosphere of air. 10 mol% DQ and excluding
Ni(COD)(DQ). ?Reaction carried out in the absence of 6 "Reaction carried out in absence of Ni(COD)(DQ) or 6.
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Deuterated solvent experiments

These reactions were carried as outlined in General procedure B, except that ds-benzene (5 mL) was

used as solvent.

Hs/Dsg
| : o //
Ni(COD)(DQ) (10 mol%), ‘ H
\@/ KO'Bu (2 eq.) N .
CgHg or CgDg, 130 °C, 16 h +
7
7 lds-7 8
Entry Solvent Dodecane Dodecane 6 (peak 6(% 7 (peak 7 (% 5 (peak 5(% 8 (peak 8 (%
added (mg) (peak area) area) yield) area) yield) area) yield) area) yield)
1 CeHs 17.8 436.0 trace trace 176.6 6.1 576.2 221 1485.5 75.9
2 CeDs 20.1 575.0 672.7 304 140.9 4.2 443 1.5 1107.0 48.4

Table 2 — GC-FID data for kinetic isotope effect experiments.

Investigating the source of hydrogen atom abstraction

In this section, the source of abstracted H in xylene product 8 was investigated. Table S3 shows the
outcome of the reaction carried out without labelled components (entry 1). Entry 2 shows the effect
of adding COD (20 mol%). This did not substantially increase the amount of xylene 8 and so was not
a major contributor to the H of xylene.

KO!Bu-dy was then prepared. This was used to test if D atom abstraction from KO!Bu-dy would be
observed or if using this isotopologue of KO!Bu inhibited the coupling reaction. If so, this would
indicate that abstraction of H from KO®Bu is important. Table S3 (entry 3) shows the outcome of the
coupling reaction using ds-KO'Bu + C¢Dg This did not lead to deuteration of the xylene product.

To test if the methyl groups of iodo-m-xylene underwent hydrogen atom abstraction by xylyl
radicals, we thought to prepare iodo-m-xylene-d;, featuring deuterated methyl groups. However,
the synthesis of iodomesitylene- dy was more convenient, and so this was prepared as a model for
iodo-m-xylene-dg.

These reactions were carried out as described in General procedure B, except where stated. Yields

were obtained via GC-FID (Table S3), while determination of deuterium incorporation was determined

by GC-MS.
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Ni(COD)(DQ) (10 mol%) O H
éi KO'Bu (2 eq.) .
.
CgHe, 130°C, 16 h O O

6 7 5 8
Entry | Conditions Dodecane Dodecane 6 6 (% 7 7 (% 5 (peak 5(% 8 (peak 8(% Deuteration
changed added (peak (peak yield) (peak yield) area) yield) area) yield) of 8
(mg) area) area) area) observed
by GCMS?
1 - 17.8 436.0 trace trace 176.6 6.1 576.2 22.1 1485.5 75.9 N/A
2 20 mol % 17.8 13214 2224 3.9 383.6 4.4 1354.3 171 4590.7 77.3 N/A
cob
3 dg-KO'Bu + 18.7 1056.2 551.4 12.7 339.6 5.1 164.0 2.7 2207.9 20.6 No
CsDs

Table S3 — GC-FID data for COD/ds-KO'Bu experiments.

Synthesis of d,-KO'Bu

oD KH (1 eq.) OK
D D
Ne CD%: 3 Et,O, rt, 16 h D5C CDC;D3

An oven-dried 3-neck round-bottom flask (100 mL) was charged with KH (205 mg, 5.11 mmol) in a
glovebox. The flask was removed from the glovebox, cooled to 0 °C in an ice bath and under a flow of
Ar, dry Et,0 (8 mL) was added via syringe. With stirring, dry d;,-ButOD (0.48 mL, 5.11 mmol) was added
dropwise to the stirred slurry. After the addition, the flask was left to stir at 0 °C for 20 min, and then
allowed to slowly warm to room temperature and stirred for a further 16 h. The solvent was removed
in vacuo, yielding an off-white solid. The solid was extracted into dry THF (2 x 5 mL) and concentrated
in vacuo yielding ds-ButOK as a white solid (431 mg, 3.55 mmol, 70%). The product was characterised
by comparison of its 3C NMR spectrum to the spectra of d;,-ButOD. The C-O peak shifts from 6 57.37
ppm to 66.2 ppm, and the CD; peak shifts from 630.5 ppm to 33.6 ppm.2H NMR (61 MHz, THF) 6 1.04
(br). 3C NMR (101 MHz, ds-THF) & 66.2, 34.2 —33.0 (m).

Synthesis of d,-mesitylene S3°

dg-DMSO (7.5 eq.)

Ds;C CD
NaH (1.5 eq.) 3 3
125 °C, 20 h, 2 exchanges

CD3
S3
54% yield
96% D incorporation
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NaH (540 mg, 22.5 mmol) was added to a 3-necked round-bottomed flask (100 mL) and evacuated.
The flask was placed under Ar, then mesitylene (1.80 g, 15 mmol) and ds-DMSO (9.47 g, 113 mmol)
were added via syringe and stirred to give a pale slurry. A condenser was fitted to the flask under Ar
flow and the reaction was slowly heated to 125°C, gradually changing to a dark brown. After 20 h the
reaction was allowed to cool to room temperature. The volatiles were then removed by vacuum
distillation at 100 °C and collected in a trap cooled in liquid nitrogen. This distillate was washed with
water (4 x 25 mL) and the upper mesitylene layer was recovered. The exchange was repeated with
fresh d;-DMSO and NaH. After vacuum distillation and washing with H,0 the product $3 was recovered
as a pale-yellow liquid (1.06 g, 8.18 mmol, 54%). Analysis by 'H NMR showed a deuterium
incorporation of 96%. 2H NMR showed deuterium incorporation on the methyl groups only. 2H NMR
spectrum shows deuterium incorporation as mesitylene-dy (a trace of a minor peak at 2.07 ppm likely
arises from mesitylene-dg). The signals in the IR spectrum between 2060 — 2230 cm™ are due to the
benzylic C-D bonds, confirmed by comparison to non-deuterated mesitylene. *H NMR (400 MHz, C¢Dg)
6 6.72 (s, 3H), 2.15—-2.12 (m, 0.4H). 3C NMR (101 MHz, C4D) 6 137.5,127.4,21.1-19.9 (m). 2H NMR
(61 MHz, CsHg) & 2.09 (br), 2.07 (br). IR v,q/cm™ (neat): 3013, 2924, 2230, 2203, 2127, 2064, 1603,
1443. m/z (El): 129.1 [M]*, 111.1, 96.1, 81.1.

Synthesis of do- nitromesitylene S4’

NO,
DsC CDs  1iNO; (1.05eq) D3C CDs
_ >
Ac,0, 1t, 1 h
CD3 CD3
S3 sS4
81% yield

95% D incorporation

A solution of conc. HNO; (0.4 mL, 3.7 mmol) and acetic anhydride (2.0 mL) was cooled in an ice bath
and added dropwise to a stirred solution of $3 (426 mg, 3.3 mmol) and acetic anhydride (1.0 mL) under
air, also cooled in an ice bath, quickly turning the solution from colourless to orange. After addition,
the solution was allowed to warm to room temperature and stirred for a further 1 h. An aqueous
K,COj3 solution was added until slightly basic, and then the product was precipitated in ice-water. The
precipitate was vacuum filtered, washed with more ice-water and dried in vacuo yielding pale-yellow
crystals of S4 (465 mg, 2.67 mmol, 81%). A signal at 1724 cm™ in the IR spectrum indicates traces of

acetic acid are present in the product. *H NMR (400 MHz, CDCl;) 6 6.91 (s, 2H), 2.28 (quin, 2.2 Hz,
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0.15H), 2.25 (quin, 2.2 Hz, 0.27H). 3C NMR (101 MHz, CDCl;3) & 139.7, 129.0, 128.9, 20.0 — 19.3 (m),
16.8 — 15.8 (m). 2H NMR (61 MHz, CHCl;) 6 2.29 (s, 3D), 2.26 (s, 6D) IR v,,/cm™ (neat): 2924, 2870,
2853, 2233, 2112, 2064, 1724, 1599, 1508, 1364. m/z (El): 174.1 ([M]*), 156.1, 144.1, 128.1, 96.1, 81.0.

Synthesis of ds-1,3,5-trimethylaniline S5

NO, NH,
DsC CD3 Pd/C (10 mol%) DsC CDs
D, balloon
EtOH, rt, 20 h
CDs CD3
S4 S5
82% yield

89% D incorporation

Nitroarene S$4 (465 mg, 2.67 mmol) and 20% Pd/C (188 mg, 0.267 mmol) were added to a 3-necked
round-bottomed flask (250 mL) and evacuated. The flask was placed under Ar flow and degassed
ethanol (20 mL) was added. With vigorous stirring, the Ar atmosphere was replaced with D, from a
balloon. The reaction was left to stir vigorously for 20 h under an atmosphere of D,. The reaction
mixture was then filtered through a short plug of Celite, washed with EtOAc and the concentrated in
vacuo yielding S5 as a pale-yellow oil (301 mg, 2.19 mmol, 82 %). 'H NMR showed a fall in deuterium
incorporation to 89%, and also showed that the ortho-methyl groups are more labelled than the para-
methyl group (93% vs 81%). Splitting of peaks in the 2H NMR spectrum is due to the presence of minor
isotopomers. *H NMR (400 MHz, CDCl;) 6 6.82 (s, 2H), 3.44 (br, 2H), 2.27 —2.22 (m, 0.56H), 2.19-2.17
(m, 0.45H). 13C NMR (101 MHz, CDCl5) & 140.2, 128.8, 126.8, 121.6, 20.3 — 19.3 (m), 17.3 — 16.5 (m).
2H NMR (61 MHz, CHCl3) 6 2.23 (br), 2.19 (br), 2.14 (br). m/z (El): 144.1 ([M]*), 125.1, 111.1, 95.0, 80.0,
67.0.

Synthesis of do- 2-iodomesitylene S6°

NH 1) p-TSOH (4 eq.) |
DsC CDs ”')ii';‘)ami (e2q.e)q.) DsC CDs
H,0, rt, 20 h
CD3 CD3
s5 s6
51% yield

89% D incorporation
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A solution of NaNO, (302 mg, 4.38 mmol) in H,O (4 mL) was slowly added dropwise to a stirred
suspension of S5 (301 mg, 2.19 mmol) and p-TsOH (1.67 g, 8.76 mmol) in H,0 (6 mL) under air at 0°C,
yielding a colourless solution that was left to stir for a further 10 min. A solution of KI (1.45 g, 8.76
mmol) in H,0 (4 mL) was added slowly dropwise, which upon the first addition yielded a dark purple
solution that persisted once half the Kl solution had been added. Once the addition was complete, the
dark purple solution was allowed to slowly warm to room temperature and stirred for a further 20 h.
The reaction was then extracted with EtOAc (3 x 5 mL), the combined organic fractions were then
washed with sat. Na,S,05 (10 mL) and H,0 (5 mL) twice, then with H,O (10 mL). The organic fractions
were then dried over MgSO,, filtered and concentrated in vacuo. The crude product was then purified
by column chromatography with hexane eluent to yield S6 as a crystalline white solid (284 mg, 1.11
mmol, 51 %). Splitting of peaks in the 2H NMR spectrum is due to the presence of minor isotopomers.
1H NMR (400 MHz, CDCl;) & 6.88 (s, 2H), 2.43 — 2.37 (m, 0.44H), 2.24 — 2.19 (m, 0.56H). 3C NMR (101
MHz, CDCl;) 6 141.8, 137.4, 128.1, 104.3, 29.2 — 28.3 (m), 20.8 — 19.8 (m). 2H NMR (61 MHz, CHCl;) 6
2.43 (br), 2.41 (br), 2.24 (br), 2.21 (br). IR v,,q/cm™ (neat): 3026, 2922, 2228, 2204, 2106, 2062, 1572,
1410, 1271, 1001. m/z (El): 255.1 ([M]*), 127.1, 109.0, 96.1, 81.0, 68.0. HRMS Found: 255.0454.
CoH,Dgl* (M*) requires 255.0465 (deviation 4.3 ppm). (Ref 8 describes the synthesis of the

corresponding non-deuterated compound. Our data are consistent with the data in that paper).

Reaction employing substrate S6

. CD: =~
DsC cp, N(COD)(DQ) (10 moi%) 3 \+d5 = g, DC CD;
dg-KO'Bu (2 eq.) . X
_- N +
CeDs, 130°C,16h  pyc CDs IS
CD; CD3
S6 S7 d10-5C S8

This reaction was carried out as described in General Procedure B, except substrate S6, ds-benzene
and do-KO'Bu were employed. The crude reaction mixture was analysed by GC-MS, in which coupled
product S7 and S8 were observed, along with trace amounts of d;4-5¢, with the majority of the starting

material S6 remaining unconsumed (Figure S2).
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Figure S2 — GC-MS spectrum of crude reaction mixture for coupling reaction of substrate S6.

Due to the incomplete deuteration of substrate $6, determining whether deuterium atom abstraction
by the mesityl radical to form S8 had occurred was impossible by mass spectrometry, and thus 2H NMR
was employed. Analysis of the reaction mixture by 2H NMR shows a signal at 6 6.86 ppm (Figure S3),
which corresponds to Ar-D position of compound S8, indicating that deuterium atom abstraction has
occurred, from the benzylic positions of $S6. An analogous reaction was carried out using non-
deuterated iodomesitylene (with CgHg and KO'Bu), giving mostly mesitylene and biphenyl as product
with small quantities of heterocoupled mesitylbenzene product. The *H NMR of the crude reaction
mixture shows a peak at § 6.81 ppm corresponding to the Ar-H position of mesitylene (Figure S4),
supporting the assignment of the ArMes-D peak in Figure S3. The *H NMR spectrum of commercial non-
deuterated mesitylene is provided for reference, showing a peak at 6 6.83 ppm (Figure S5), and the
IH NMR for our synthesised do-mesitylene shows the same peak at & 6.72 ppm (in C¢Dg). The literature
value for the 2H NMR spectrum of ds;-mesitylene (1,3,5-CsMe;Ds3) gives a value of 6 7.02 ppm,*2 which
is expected to be shifted further downfield than S8 as the longer benzylic C-H bond length (compared
to C-D) makes CHj; a less inductively donating group. Based on these facts the signal at 6 6.86 ppm in
Figure S3 corresponds to deuterated S8, resulting from deuterium atom abstraction by the mesityl

radical from the benzylic positions of S6.
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Figure S5 — 'H NMR (CDCl;) spectrum of non-deuterated mesitylene.

Radical scavenging experiments with TEMPO

These reactions were carried out as outlined in General Procedure B, except radical scavenger TEMPO

was added (54.7 mg, 0.35 mmol or 328 mg, 2.1 mmol).

Ni(COD)(DQ) (10 mol%)

KO'Bu (2 eq.) O O
I TEMPO (0.5 0r3eq)

SO *
CgHg, 130 °C, 16 h

6 7 5 8
Entry TEMPO Dodecane Dodecane 6 (peak 6 (% 7 (peak 7 (% 5 (peak 5(% 8 (peak 8 (%
added (mg) (peak area) area) yield) area) yield) area) yield) area) yield)
1 - 17.8 436.0 trace trace 176.6 6.1 576.2 22.1 1485.5 75.9
2 0.5eq. 19.5 1327.1 1379.2 26.3 229.3 2.9 490.1 6.8 1634.5 30.0
3 3.0eq. 17.9 428.7 1507.7 81.7 trace trace trace trace trace trace

Table S4 — GC-FID for reactions with added TEMPO.

GC-FID calibration information

To obtain yields for inseparable mixtures of compounds 6, 7, 5 and 8, calibration curves were

constructed for each compound using GC-FID using n-dodecane as an internal standard. Authentic
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samples of compounds 6, 5 and 8 were bought from commercial sources, while compound 7 was
synthesised using the procedure outlined above and corrected for the homocoupled impurity S1. To
construct each calibration curve, known amounts of each compound (approximately 0.01 mmol - 0.1
mmol) were mixed with a known amount of dodecane (approximately 0.1 mmol). The mixtures were
then diluted with CHCI; and analysed on the GC-FID to obtain the peak area for both the sample

compound (SC) and dodecane internal standard (IS). Calibration curves were constructed by plotting:

mmol(SC)  area (SC)
mmol(1S) ys. area (1S)

The plots are forced through the origin, with the gradient representing the response factor (RF) for
each compound against n-dodecane. To obtain the composition of relevant reaction mixtures from
these curves, a known mass of dodecane was added to the reaction mixture, an aliquot of which was
then removed, diluted with CHCI; and analysed by GC-FID. The peak areas for each compound were
then input into the following equation to obtain the moles of 6, 7, 5 and 8:

area(SC) * mmol(1S)
area(lS) * RF =mmol(5C)

Entr | Mass | mmol Mass mmol mmol ratio Area of 8 Area Dodecane Area ratio
y of 8 of 8 dodecan | dodecane
(mg) e (mg)
1 2.1 0.019 18.8 0.1100 0.1800 12578.9 98487.2 0.1277
8
2 8.6 0.081 17.6 0.1030 0.7864 42401.7 84773.8 0.5001
0
3 11.0 | 0.104 17.9 0.1050 0.9904 18433.6 26890.0 0.6855
0
4 33.2 0.313 18.2 0.1070 2.9252 32922.7 16190.1 2.0335
0
5 84.6 0.797 17.4 0.1020 7.8137 40651.0 7618.8 5.3356
0
6 105. 0.997 17.2 0.1010 9.8712 36894.7 5652.2 6.5274
8 0
Table S5 — Calibration curve data for m-xylene 8.
Entr | Mass | mmol Mass mmol mmol ratio Area of 5 Area Dodecane Area ratio
y of 5 of 5 dodecan | dodecane
(mg) e (mg)
1 2.1 0.013 15.2 0.0892 0.1524 9428.4 68957.4 0.1367
6
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2 75 | 0.048 14.4 0.0845 0.5751 33761.9 65096.8 0.5186
6
3 16.0 | 0.104 14.7 0.0863 1.2050 19101.4 18326.8 1.0422
0
4 47.2 | 0.306 14.7 0.0863 3.5457 34515.8 11200.1 3.0817
0
5 109. | 0.713 15.6 0.0916 7.7838 37752.0 5400.0 6.9911
9 0
Table S6 — Calibration curve data for biphenyl! 5.
Entry | Massof | mmol of Mass mmol mmol ratio Area of 7 Area Dodecane Area ratio
sample 7 dodecane | dodecane
(mg) (mg)
! 2.0 0.0104 18.0 0.106 0.0982 6115.4 62881.5 0.0972
2 7.8 0.0406 19.9 0.117 0.3470 12765.3 36554.7 0.3492
3 15.3 0.0796 17.5 0.103 0.7733 16138 20688.2 0.7800
4 44.1 0.2296 18.9 0.111 2.0685 22237.2 10923.1 2.0357
> 94,5 0.4920 17.9 0.105 4.6857 32072.9 6931 4.6274
Table S7 — Calibration curve data for 2,6-dimethylbiphenyl 7, with correction for impurity of S1.
Entry | Mass mmol Mass mmol mmol ratio Area of 6 Area Dodecane Area ratio
of 6 of 6 dodecane dodecane
(mg) (mg)
! 6.1 | 0.0263 16.4 0.0962 0.2734 11457.0 59542.4 0.1924
2 9.3 | 0.0401 17.1 0.100 0.4010 12907.3 48829.4 0.2643
3 21.7 | 0.0935 16.9 0.0992 0.9425 16799.3 27416.6 0.6127
4 50.8 | 0.219 16.4 0.0963 2.2741 273413 18276.5 1.4960
> 87.5 | 0377 17.4 0.102 3.6961 29666.8 12433.8 2.3860
6 133.1 | 0.574 15.9 0.0933 6.1522 40482.1 10198.2 3.9695

Table S8 — Calibration curve data for 2,6-dimethyliodobenzene 6.
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Figure S11 — GC-FID calibration curve for biphenyl 5.
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GC-FID calibration curve for 2,6-dimethylbiphenyl (7)
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Figure S12 — GC-FID calibration curve for 2,6-dimethylbiphenyl! 7.
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Figure S13— GC-FID calibration curve for 2,6-dimethyliodobenzene 6
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GC-FID traces

Approximate retention times: 6 RT = 11.2 min, 7 RT = 12.4 min, 5 RT = 12.0 min, 8 RT = 7.1 min, n-
dodecane RT = 10.6 min.

GC-FID traces for reaction condition screen (Page S15, Table S1)
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FID1 A, Front Signal (DEF_GC 2023-04-12 13-35-1115T4_0M8.D)
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GC-FID traces for solvent deuteration experiments (Page S15, Table S2)

"

Yields for deuterated analogues of compounds were measured in the same way as non-deuterated

analogues.
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GC-FID traces for COD/ds-KO'Bu experiments (Page S16, Table S3)

Yields for deuterated analogues of compounds were measured in the same way as non-deuterated

analogues.
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Entry 3 — For this single experiment, due to breakage of the GC-FID used in the rest of the study, a different GC-
FID instrument was used to obtain data. New calibration curves were constructed for the new instrument,

however this turned out to be unnecessary because results on either machine could be input into either set of
calibrations to obtain identical yields. This is because our calibration method simply compares peak ratios

between the internal standard and the target compound. The approximate retention times on this instrument

are: m-xylene RT = 5.9 min, n-dodecane RT = 11.5 min, 2-iodo-m-xylene RT = 12.4 min, bipheny! RT = 13.9 min,

2,6-dimethylbiphenyl RT = 14.7.
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GC-FID traces for TEMPO reactions (Page S23, Table S4)
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GC-FID traces for m-xylene calibration curve (Page S23, Table S5)

Samples of 0.02-1.0 mmol m-xylene 8 (RT = 7.1 min) and 0.1 mmol dodecane (RT = 10.7 min).

Norm. |
14000

12000
10000 -
8000 +
6000 +
4000 4

2000

FID1 A, FID1A, Front Signal (C:\CHEM32\1\DATANOVEMBER2112021-12-02\ST_CAL12.D)

5 %
5 ¢
G

®

63

T
10

1 12 13

Entry 1

Norm.
14000

12000
10000
8000+
6000
4000 3

2000 -

FID1 A, FID1A, Front Signal (C:\CHEM32\1\DATAINOVEMBER21\2021-12-02\ST_CAL13.D)

7.163
K

A,
Ao
1

S63



FID1 A, FID1A, Front Signal (C\CHEM32\1\DATAINOVEMBER21\2021-12-02\ST_CAL14.D)

10.694

7.116

64

T T T T T T T
7 8 9 10 1" 12 13

mir

Entry 3

FID1 A, FID1A, Front Signal (C:\CHEM32\1\DATA\NOVEMBER21\2021-12-02\ST_CAL15.D)

7.149

10.676

min

S64



8000 -
6000
4000

2000

FID1 A, FID1A, Front Signal (C:\CHEM32\1\DATAINOVEMBER21\2021-12-02\ST_CAL16.D)

7.163

10.656

65

Entry 5

FID1 A, FID1A, Front Signal (C:\CHEM32\1\DATA\NOVEMBER2112021-12-02\ST_CAL17.D)

7.156

S65



66

GC-FID traces for biphenyl calibration curve (Page $23, Table S6)

Samples of 0.014-0.7 mmol biphenyl 5 (RT = 12.0 min) and 0.1 mmol dodecane (RT = 10.7 min).
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GC-FID traces for 2,6-dimethylbiphenyl calibration curve (Page $24, Table S7)

69

Samples of 0.01-0.5 mmol 2,6-dimethlybiphenyl 7 (RT = 12.4 min) and 0.1 mmol dodecane (RT = 10.7

min).
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FID1 A, FID1A, Front Signal (C:\CHEM32\1\DATA\NOVEMBER2112021-12-03 1\ST_CAL22.D)
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GC-FID traces for 2,6-dimethyliodobenzene calibration curve (Page S24, Table S8)

Samples of 0.02-0.6 mmol 2,6-dimethlyiodobenzene 6 (RT = 11.2 min) and 0.1 mmol dodecane (RT =
10.7 min).
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FID1 A, FID1A, Front Signal (C:\CHEM32\1\DATAINOVEMBER21\2021-12-02\ST_CAL11.D)
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