Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Iridium-Catalysed Reductive Allylic Amination of

α, β -Unsaturated Aldehydes

Liang Liu, ^a Renshi Luo^{*, b} Jinghui Tong, ^a Jianhua Liao,^{*, a}

 ^a School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China. Corresponding author: <u>liaojianhua@gmu.edu.cn</u>
^b College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China. Corresponding author: <u>luorenshi@sgu.edu.cn</u>

Supporting Information

Table of Contents

A. General Methods	S2
B. Procedure for the Preparation of 3 and 5	S2
C. Analysis Data for the Products	S2
D. References	S12
E. NMR Spectra	
F. HPLC Spectra	
G. HRMS Spectra	S61

A. General Methods

¹H and ¹³C NMR spectra were recorded by using a Bruker AVANCE-NEO 400M Hz spectrometer (CDCl₃, $\delta_{\rm H}$ =7.26 ppm, $\delta_{\rm C}$ =77.23 ppm). The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively. Chemical shifts (δ) are reported in ppm and quoted to the nearest 0.01 ppm relative to the residual protons in CDCl₃ (7.26 ppm for ¹H) or TMS (0.0 ppm for ¹H) and CDCl₃ (77.0 ppm for ¹³C). The melting point is determined by WRR melting point apparatus. HRMS data were obtained from a high-resolution mass spectrometer (LCMS-IT-TOF). The progress of the reaction is monitored by thin layer chromatography (TLC).

B. Procedure for the Preparation of 3 and 5

To 25.0 mL Schlenk tube was added aldehydes (0.5 mmol), amine (0.6 mmol), TC-5 (1.0 mol%, 2.81 mg), PhSiH₃ (4.0 equivalent, 2.0 mmol), as well as toluene (2.0 mL) were added successively. The mixture was stirred for 13 h under sealed conditions at 80 °C. After the reaction was completed, the solution was quenched with 2.0 mL 3M NaOH aqueous solution and stirred. The mixture was extracted with ethyl acetate (5.0 mL*3). The organic layer was dried with anhydrous MgSO₄, removed in vacuum, and purified by column chromatography on silica gel with dichloromethane/methanol (7:1 ~ 20:1) as eluting solvents to afford the desired products **3 and 5**. The optically pure products was determined with Chiral OD or OJ column.

C. Analysis Data for the Products

1-Cinnamyl-4-methylpiperazine(3aa):^[1] Prepared in 97% yield (105.6mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.9 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.23 (t, J = 7.2 Hz, 1H), 6.53 (d, J = 15.8 Hz, 1H), 6.33-6.23 (m, 1H), 3.17 (d, J = 6.8 Hz, 2H), 2.53 (s, 8H), 2.31 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 136.9, 133.2, 128.6, 127.5, 126.5, 126.3, 61.1, 55.1, 53.2, 46.1.

(E)-1-methyl-4-(3-(p-tolyl)allyl)piperazine(3ba): Prepared in 81% yield (93 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.16 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.41 (d, J = 15.8 Hz, 1H), 6.14 (dt, J = 15.8, 6.8 Hz, 1H), 3.07 (d, J = 6.9 Hz, 2H),

2.41 (s, 8H), 2.25 (s, 3H), 2.22 (s, 3H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃, ppm) δ 137.3, 134.1, 133.0, 129.3, 126.2, 125.5, 61.1, 55.1, 53.2, 46.1, 21.2. HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₅H₂₃N₂ 231.1861; Found 231.1862.

(*E*)-1-(3-(4-methoxyphenyl)allyl)-4-methylpiperazine(3ca): Prepared in 87% yield (107 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.5 Hz, 2H), 6.46 (d, *J* = 15.8 Hz, 1H), 6.18-6.08 (m, 1H), 3.80 (s, 3H), 3.14 (d, *J* = 6.8 Hz, 2H), 2.54 (s, 8H), 2.30 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 159.1, 132.6, 129.7, 127.5, 124.2, 114.0, 61.2, 55.3, 55.1, 53.1, 46.0. HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₅H₂₃N₂O 247.1810; Found 247.1813.

(*E*)-1-(3-(4-fluorophenyl)allyl)-4-methylpiperazine(3da): Prepared in 63% yield (73.7 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, J = 7.8, 5.9 Hz, 2H), 6.99 (t, J = 8.5 Hz, 2H), 6.48 (d, J = 15.8 Hz, 1H), 6.23-6.14 (m, 1H), 3.15 (d, J = 6.8 Hz, 2H), 2.49 (s, 8H), 2.30 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃, ppm) δ 162.2 (d, J = 246.6 Hz), 133.1 (d, J = 3.4 Hz), 131.9, 127.8 (d, J = 8.0 Hz), 126.3 (d, J = 2.3 Hz), 115.5 (d, J = 21.5 Hz), 61.0, 55.1, 53.2, 46.1. ¹⁹F NMR (377 MHz, CDCl₃, ppm) δ -114.62. HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₄H₂₀FN₂ 235.1611; Found 235.1615.

(E)-N, N-dimethyl-4-(3-(4-methylpiperazin-1-yl)prop-1-en-1-yl)anilines(3ea):

Prepared in 63% yield (91 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.15 (m, 2H), 6.57 (d, J = 8.8 Hz, 2H), 6.33 (d, J = 15.8 Hz, 1H), 5.97 (dt, J = 15.8, 6.9 Hz, 1H), 3.03 (dd, J = 7.0, 1.3 Hz, 2H), 2.84 (s, 6H), 2.39 (s, 8H), 2.20 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 163.5, 161.0, 133.1, 131.9, 127.8, 127.8, 126.3, 115.6, 115.4, 61.0, 55.1, 53.2, 46.1. [M+Na]⁺ Calcd for C₁₆H₂₅N₃Na 282.1941; Found 282.1940.

(*E*)-1-(3-(2-bromophenyl)allyl)-4-methylpiperazine(3fa): Prepared in 84% yield (123.5 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, *J* = 7.0 Hz, 2H), 7.21-7.14 (m, 2H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.80 (d, *J* = 15.7 Hz, 1H), 6.15 (dt, *J* = 15.3, 6.7 Hz, 1H), 3.14 (d, *J* = 6.7 Hz, 2H), 2.44 (s, 8H), 2.23 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 136.8, 132.9, 131.8, 129.7, 128.8, 127.5, 127.1, 123.4, 60.9, 55.1, 53.2, 46.1. HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₄H₂₀BrN₂ 295.0810; Found

295.0815.

(*E*)-1-(3-(2-methoxyphenyl)allyl)-4-methylpiperazine(3ga): Prepared in 86% yield (106.3 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 7.7 Hz, 1H), 6.83 (t, *J* = 7.5 Hz, 1H), 6.81-6.73 (m, 2H), 6.27-6.16 (m, 1H), 3.76 (d, *J* = 2.2 Hz, 3H), 3.11 (d, *J* = 6.7 Hz, 2H), 2.43 (s, 8H), 2.22 (d, *J* = 2.1 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 156.5, 128.5, 127.9, 127.1, 126.8, 125.8, 120.6, 110.8, 61.5, 55.4, 55.1, 53.1, 46.0. HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₅H₂₃N₂O 247.1810; Found 247.1812.

(*E*)-1-methyl-4-(3-(m-tolyl)allyl)piperazine(3ha): Prepared in 94% yield (108.2 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.14 (m, 3H), 7.06-7.00 (m, 1H), 6.48 (d, *J* = 15.8 Hz, 1H), 6.25 (dt, *J* = 15.8, 6.8 Hz, 1H), 3.13 (d, *J* = 6.9 Hz, 2H), 2.48 (s, 8H), 2.32 (s, 3H), 2.28 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 138.0, 136.8, 133.2, 128.5, 128.3, 127.1, 126.3, 123.4, 61.1, 55.1, 53.1, 46.0, 21.4. [M+H]⁺ Calcd for C₁₅H₂₃N₂ 231.1861; Found 231.1865.

(*E*)-1-methyl-4-(2-methyl-3-phenylallyl)piperazine(3ia): Prepared in 62% yield (71.3 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.18 (m, 5H), 7.15-7.10 (m, 1H), 6.35 (s, 1H), 2.95-2.92 (m, 2H), 2.39 (s, 8H), 2.22 (s, 3H), 1.83 (d, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 138.0, 135.9, 128.9, 128.1, 127.4, 126.2, 67.8, 55.3, 53.1, 46.1, 16.8. [M+H]⁺ Calcd for C₁₅H₂₃N₂ 231.1861; Found 231.1865.

(*E*)-1-(2-benzylideneheptyl)-4-methylpiperazine(3ja): Prepared in 65% yield (93.0 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.4 Hz, 2H), 7.19-7.10 (m, 3H), 6.35 (s, 1H), 2.92 (s, 2H), 2.38 (s, 8H), 2.19 (d, *J* = 13.0 Hz, 5H), 1.19 (d, *J* = 11.6 Hz, 6H), 0.80 (t, *J* = 6.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 140.4, 138.1, 128.7, 128.1, 127.2, 126.2, 65.1, 55.3, 53.3, 46.1, 32.0, 29.7, 27.9, 22.5, 14.1. [M+H]⁺ Calcd for C₁₉H₃₁N₂ 287.2487; Found 287.2494.

(*E*)-1-(3-(anthracen-9-yl)allyl)-4-methylpiperazine(3ka): Prepared in 65% yield (102.7 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.28-8.26 (m, 1H), 8.22 (d, *J* = 9.7 Hz, 2H), 7.92-7.88 (m, 2H), 7.43-7.38 (m, 4H), 7.22 (d, *J* = 16.1 Hz, 1H), 6.07 (dt, *J* = 16.1, 6.6 Hz, 1H), 3.39 (dd, *J* = 6.6, 1.5 Hz, 2H), 2.55 (s, 8H), 2.27 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 135.0, 132.2, 131.2, 129.2, 128.6, 128.4, 126.1, 125.7, 125.2, 124.8, 61.3, 54.9, 53.0, 45.8. [M+H]⁺ Calcd for C₂₂H₂₅N₂ 317.2018; Found 317.2021.

(*E*)-1-(3-(furan-2-yl)allyl)-4-methylpiperazine(3la): Prepared in 60% yield (61.8 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 1.3 Hz, 1H), 6.35-6.22 (m, 2H), 6.17-6.05 (m, 2H), 3.06 (d, J = 5.9 Hz, 2H), 2.45 (s, 8H), 2.23 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 152.6, 141.9, 125.3, 121.5, 111.2, 107.4, 60.7, 55.1, 53.1, 46.0. [M+H]⁺ Calcd for C₁₂H₁₉N₂O 207.1497; Found 207.1500.

(*E*)-1-methyl-4-(3-phenylbut-2-en-1-yl)piperazine(3ma): Prepared in 67% yield (77 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.38 (m, 2H), 7.31 (dd, *J* = 8.5, 6.6 Hz, 2H), 7.27-7.23 (m, 1H), 5.89 (m, 1H), 3.21 (d, *J* = 6.8 Hz, 2H), 2.52 (s, 8H), 2.32 (s, 3H), 2.06 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 143.2, 137.8, 128.2, 127.0, 125.6, 124.2, 56.5, 55.0, 53.0, 45.9, 16.2. [M+H]⁺ Calcd for C₁₅H₂₃N₂ 231.1861; Found 231.1861.

1-((2*E***,4***E***)-deca-2,4-dien-1-yl)-4-phenylpiperazine(3nb):** Prepared in 65% yield (96.8 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 7.3 Hz, 1H), 7.25 (d, *J* = 1.0 Hz, 1H), 6.93 (d, *J* = 7.7 Hz, 2H), 6.86 (t, *J* = 7.3 Hz, 1H), 6.18 (dd, *J* = 14.9, 10.4 Hz, 1H), 6.05 (dd, *J* = 15.0, 10.4 Hz, 1H), 5.66 (m, 2H), 3.22 (t, *J* = 5.0 Hz, 4H), 3.08 (d, *J* = 7.0 Hz, 2H), 2.63 (t, *J* = 5.0 Hz, 4H), 2.08 (q, *J* = 6.9 Hz, 2H), 1.36-1.23 (m, 6H), 0.91-0.87 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 151.3, 135.2, 129.5, 129.1, 119.8, 116.1, 60.8, 53.1, 49.1, 32.6, 31.5, 29.0, 22.6, 14.1. [M+H]⁺ Calcd for C₂₀H₃₁N₂ 299.2487; Found 299.2488.

(*E*)-1-(2-methylpent-2-en-1-yl)-4-phenylpiperazine(3ob): Prepared in 72% yield (87.8 mg), yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.29-7.23 (m, 2H), 6.93 (d, *J* = 7.8 Hz, 2H), 6.84 (t, *J* = 7.2 Hz, 1H), 5.33 (t, *J* = 6.7 Hz, 1H), 3.19 (s, 4H), 2.88 (s, 2H), 2.51 (s, 4H), 2.05 (p, *J* = 7.0 Hz, 2H), 1.66 (s, 3H), 1.02-0.91 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 151.5, 131.4, 130.3, 129.1, 119.5, 116.0, 67.4, 53.0, 49.2, 21.1, 15.0, 14.3. [M+H]⁺ Calcd for C₁₆H₂₅N₂ 245.2018; Found 245.2017.

1-Cinnamyl-4-phenylpiperazine(3ab):^[2] Prepared in 88% yield (122.3 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 7.5 Hz, 2H), 7.26-7.12 (m, 5H), 6.84

(d, J = 8.2 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 6.47 (d, J = 15.9 Hz, 1H), 6.23 (dt, J = 15.7, 6.8 Hz, 1H), 3.13 (t, J = 5.2 Hz, 6H), 2.61-2.53 (m, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 151.4, 136.9, 133.4, 129.2, 128.7, 127.7, 126.4, 119.8, 116.2, 61.2, 53.3, 49.2.

1-Benzyl-4-cinnamylpiperazine(3ac):^[3] Prepared in 80% yield (116.8 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 4.9 Hz, 6H), 7.16 (d, *J* = 13.8 Hz, 2H), 6.44 (d, *J* = 15.8 Hz, 1H), 6.20 (dt, *J* = 15.8, 6.8 Hz, 1H), 3.45 (s, 2H), 3.09 (d, *J* = 6.8 Hz, 2H), 2.45 (s, 8H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 138.1, 136.9, 133.1, 129.3, 128.6, 128.2, 127.5, 127.1, 126.6, 126.3, 63.1, 61.1, 53.2, 53.1.

1-Cinnamyl-4-cyclohexylpiperazine(3ad): Prepared in 81% yield (115.3 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 7.4 Hz, 2H), 7.22 (dd, J = 14.4, 6.7 Hz, 2H), 7.15 (t, J = 7.2 Hz, 1H), 6.45 (d, J = 15.8 Hz, 1H), 6.22 (dt, J = 15.8, 6.8 Hz, 1H), 3.08 (d, J = 6.7 Hz, 2H), 2.56 (s, 8H), 2.17 (dt, J = 10.3, 5.2 Hz, 1H), 1.82 (d, J = 8.8 Hz, 2H), 1.76-1.68 (m, 2H), 1.55 (d, J = 12.2 Hz, 1H), 1.23-1.00 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 136.9, 133.1, 128.6, 127.5, 126.7, 126.3, 63.5, 61.2, 53.7, 48.9, 29.0, 26.3, 25.9. [M+H]⁺ Calcd for C₁₉H₂₉N₂ 285.2331; Found 285.2333.

(4-Cinnamylpiperazin-1-yl)(phenyl)methanone(3ae): Prepared in 51% yield (78.3 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 15.2 Hz, 7H), 7.24 (t, J = 7.6 Hz, 2H), 7.17 (d, J = 10.2 Hz, 1H), 6.46 (d, J = 15.7 Hz, 1H), 6.23-6.12 (m, 1H), 3.75 (s, 2H), 3.38 (s, 2H), 3.12 (d, J = 6.8 Hz, 2H), 2.44 (d, J = 60.3 Hz, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 170.4, 136.7, 135.8, 133.6, 129.7, 128.6, 128.5, 127.7, 127.1, 126.4, 125.8, 61.0. [M+H]⁺ Calcd for C₂₀H₂₃N₂O 307.1810; Found 307.1816.

1-Benzyl-4-cinnamyl-1,4-diazepane(3af): Prepared in 83% yield (127.0 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.21 (m, 8H), 7.19-7.06 (m, 3H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.28-6.15 (m, 1H), 3.55 (s, 2H), 3.19 (d, *J* = 6.6 Hz, 2H), 2.70-2.59 (m, 8H), 1.72 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 139.60, 137.11, 132.4, 128.9, 128.6, 128.2, 127.9, 127.4, 126.9, 126.3, 62.9, 61.1, 55.3, 54.9, 54.5, 27.7.

 $[M+H]^+$ Calcd for C₂₁H₂₆N₂ 307.2174; Found 307.2179.

(*E*)-3-phenyl-*N*, *N*-dipropylprop-2-en-1-amine(3ag):^[4] Prepared in 82% yield (89.0 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.38 (d, *J* = 7.0 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.25-7.19 (m, 1H), 6.50 (d, *J* = 15.9 Hz, 1H), 6.29 (dt, *J* = 15.9, 6.6 Hz, 1H), 3.24 (dd, *J* = 6.6, 1.4 Hz, 2H), 2.46-2.38 (m, 4H), 1.55-1.43 (m, 4H), 0.88 (t, *J* = 7.4 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 137.3, 131.9, 128.6, 128.1, 127.3, 126.3, 56.8, 56,0, 20.2, 12.1.

N-butyl-*N*-cinnamylbutan-1-amine(3ah):^[1] Prepared in 86% yield (105.4 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.0 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.22 (q, J = 6.8 Hz, 1H), 6.50 (d, J = 15.9 Hz, 1H), 6.29 (m, 1H), 3.24 (dd, J = 6.7, 1.4 Hz, 2H), 2.49-2.41 (m, 4H), 1.51-1.41 (m, 4H), 1.34-1.26 (m, 4H), 0.91 (t, J = 7.3 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 137.3, 132.0, 128.6, 128.1, 127.3, 126.3, 56.7, 53.6, 29.2, 20.8, 14.2.

(E)-N-methyl-N-(naphthalen-2-ylmethyl)-3-phenylprop-2-en-1-amine(3ai):^[5]

Prepared in 93% yield (133.5 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 7.6 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.44-7.26 (m, 6H), 7.23-7.16 (m, 2H), 7.11 (dt, J = 8.8, 4.7 Hz, 1H), 6.46 (d, J = 15.8 Hz, 1H), 6.32-6.22 (m, 1H), 3.82 (s, 2H), 3.15 (d, J = 6.9 Hz, 2H), 2.15 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 137.2, 135.0, 134.0, 132.8, 132.6, 128.7, 128.6, 128.6, 128.1, 127.7, 127.6, 127.5, 126.5, 126.0, 125.7, 125.3, 124.8, 60.6, 60.2, 42.6.

1-Benzhydryl-4-cinnamylpiperazine(3aj):^[1] Prepared in 75% yield (138.1 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.0 Hz, 4H), 7.36 (d, J = 8.1 Hz, 2H), 7.32-7.27 (m, 3H), 7.23 (d, J = 10.7 Hz, 3H), 7.19-7.13 (m, 2H), 6.51 (d, J = 15.8 Hz, 1H), 6.27 (m, 1H), 4.23 (s, 1H), 3.18 (d, J = 6.8 Hz, 2H), 2.54 (s, 8H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 142.8, 137.0, 133.1, 128.6, 128.5, 128.0, 127.5, 126.9, 126.6, 126.4, 61.1, 53.5, 51.9.

1-(Bis(4-fluorophenyl)methyl)-4-cinnamylpiperazine(3ak):^[4] Prepared in 79% yield (159.5 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.0 Hz, 4H), 7.36 (d, J = 8.1 Hz, 2H), 7.33-7.27 (m, 3H), 7.23 (d, J = 10.2 Hz, 2H), 7.17 (t, J = 7.2 Hz, 2H), 6.51 (m, 1H), 6.27 (m, 1H), 4.23 (s, 1H), 3.18 (d, J = 6.8 Hz, 2H), 2.53 (s,

8H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 161.8 (d, J = 245.6 Hz), 138.2 (d, J = 3.2 Hz), 136.8, 133.4, 129.3 (d, J = 7.9 Hz), 128.6, 127.6, 126.3, 126.1, 115.4 (d, J = 21.2 Hz), 75.5, 60.9, 53.3, 51.6.¹⁹F NMR (377 MHz, CDCl₃, ppm) δ -115.69.

(E)-N-(2-(1H-indol-2-yl)ethyl)-N-benzyl-3-phenylprop-2-en-1-amine(3al):^[6]

Prepared in 90% yield (164.5 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.49 (d, J = 8.3 Hz, 1H), 7.39- 7.27 (m, 9H), 7.25-7.18 (m, 2H), 7.17-7.12 (m, 1H), 7.02 (ddd, J = 8.0, 6.9, 1.0 Hz, 1H), 6.91 (d, J = 2.3 Hz, 1H), 6.57-6.50 (m, 1H), 6.31 (dt, J = 15.9, 6.6 Hz, 1H), 3.75 (s, 2H), 3.36 (dd, J = 6.6, 1.4 Hz, 2H), 3.04-2.94 (m, 2H), 2.91-2.83 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 139.6, 137.3, 136.3, 132.5, 129.1, 128.6, 128.3, 127.8, 127.6, 127.4, 127.0, 126.4, 121.9, 121.6, 119.2, 119.0, 114.6, 111.1, 58.4, 56.3, 54.2, 23.1.

N-Cinnamylaniline(5aa):^[7] Prepared in 96% yield (100.7 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.33 (m, 2H), 7.29 (dd, *J* = 8.3, 6.6 Hz, 2H), 7.24-7.15 (m, 3H), 6.75-6.56 (m, 4H), 6.30 (dt, *J* = 15.9, 5.7 Hz, 1H), 3.90 (dd, J = 5.8, 1.6 Hz, 2H), 3.70 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 148.1, 136.9, 131.6, 129.4, 128.7, 127.6, 127.1, 126.4, 117.7, 113.1, 46.3.

N-Cinnamyl-4-methoxyaniline(5ab):^[7] Prepared in 70% yield (84.0 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 9.1 Hz, 2H), 7.29 (t, J = 6.6 Hz, 2H), 7.21 (t, J = 7.7 Hz, 1H), 6.82-6.74 (m, 2H), 6.65-6.55 (m, 3H), 6.31 (dt, J = 15.9, 5.8 Hz, 1H), 3.86 (d, J = 5.9 Hz, 2H), 3.72 (s, 3H), 3.54 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 152.3, 142.3, 137.0, 131.5, 128.7, 127.6, 127.4, 126.4, 114.9, 114.5, 55.8, 47.3.

N-Cinnamyl-4-fluoroaniline(5ac):^[8] Prepared in 86% yield (97.6 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.27 (m, 4H), 7.23 (t, J = 7.1 Hz, 1H), 6.89 (t, J = 8.1 Hz, 2H), 6.60 (dd, J = 10.2, 5.0 Hz, 3H), 6.30 (dt, J = 15.8, 5.7 Hz, 1H), 3.88 (d, J = 5.8 Hz, 2H), 3.73 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 156.0 (d, J = 235.0 Hz), 144.4, 144.4, 136.8, 131.7, 128.7, 127.7, 126.9, 126.4, 115.7 (d, J = 22.4 Hz), 113.9 (d, J = 7.3 Hz), 46.9.¹⁹F NMR (377 MHz, CDCl₃, ppm) δ -127.78.

Cinnamyl-4-(trifluoromethyl)aniline(5ad):^[4] Prepared in 93% yield (129.0 mg), white solid; m.p.72-74°C. ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.28 (m, 6H), 7.25 (d, J

= 7.1 Hz, 1H), 6.68-6.56 (m, 3H), 6.28 (dt, J = 15.8, 5.7 Hz, 1H), 4.21 (s, 1H), 3.96 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 150.4, 136.6, 132.0, 128.7, 127.8, 126.7 (q, J = 3.8 Hz), 126.4, 125.9, 123.7, 119.0 (q, J = 32.3 Hz), 112.1, 45.7. ¹⁹F NMR (377 MHz, CDCl₃, ppm) δ -60.98.

Methyl 4-(cinnamylamino)benzoate(5ae):^[8] Prepared in 75% yield (100.3 mg), white solid, m.p.88-90°C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.5 Hz, 2H), 7.33 (dd, J = 16.0, 7.5 Hz, 4H), 7.23 (s, 1H), 6.62-6.55 (m, 3H), 6.26 (dt, J = 15.9, 5.6 Hz, 1H), 4.38 (s, 1H), 3.96 (s, 2H), 3.84 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 167.4, 151.8, 136.6, 132.0, 131.6, 128.7, 127.8, 126.4, 125.8, 118.5, 111.8, 51.6, 45.5.

2-Chloro-*N***-cinnamylaniline(5af)**:^[9] Prepared in 51% yield (62.0 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 4H), 7.26-7.21 (m, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 7.9 Hz, 1H), 6.65- 6.56 (m, 2H), 6.51 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.28 (dt, *J* = 15.8, 5.4 Hz, 1H), 3.90 (d, *J* = 6.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 149.1, 136.7, 135.1, 131.9, 130.3, 128.7, 127.7, 126.4, 126.3, 117.5, 112.6, 111.3, 46.0.

N-Cinnamyl-2-iodoaniline(5ag):^[10] Prepared in 93% yield (155.8 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 7.8, 1.5 Hz, 1H), 7.39-7.16 (m, 6H), 6.69-6.57 (m, 2H), 6.50-6.40 (m, 1H), 6.31 (dt, J = 15.9, 5.6 Hz, 1H), 4.39 (s, 1H), 3.97 (t, J = 6.3 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 147.1, 139.1, 136.7, 131.8, 129.5, 128.7, 127.7, 126.5, 126.3, 118.9, 111.1, 85.5, 46.4.

N-Cinnamylnaphthalen-2-amine(5ah): ^[10] Prepared in 65% yield (84.3 mg), white solid; m.p.45-46°C. ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.48 (m, 3H), 7.29-7.18 (m, 5H), 7.11 (dd, J = 16.4, 7.2 Hz, 2H), 6.82- 6.71 (m, 2H), 6.53 (d, J = 15.9 Hz, 1H), 6.24 (dt, J = 15.9, 5.6 Hz, 1H), 3.88 (d, J = 5.8 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 145.7, 136.9, 135.3, 131.8, 129.1, 128.7, 127.8, 127.7, 126.7, 126.5, 126.1, 122.2, 118.1, 104.9, 46.2.

(*E*)-3-Phenyl-*N*-(1-phenylethyl)prop-2-en-1-amine(5ai):^[4] Prepared in 73% yield (86.5 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.19 (m, 11H), 6.50-6.42 (m, 1H), 6.28 (dt, *J* = 15.8, 6.3 Hz, 1H), 3.86 (q, *J* = 6.6 Hz, 1H), 3.26 (d, *J* = 6.4 Hz,

2H), 1.39 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 145.4, 137.2, 131.2, 128.6, 128.5, 127.4, 127.0, 126.7, 126.3, 57.6, 49.7, 24.3.

N-(1-(naphthalen-1-yl)ethyl)-3-phenylprop-2-en-1-amine(5aj): Prepared in 60% yield (86.3 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.4 Hz, 1H), 7.87-7.81 (m, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.66 (d, J = 7.1 Hz, 1H), 7.49-7.41 (m, 3H), 7.33-7.23 (m, 4H), 7.17 (t, J = 7.2 Hz, 1H), 6.42 (d, J = 15.9 Hz, 1H), 6.29 (dt, J = 15.9, 6.2 Hz, 1H), 4.69 (q, J = 6.6 Hz, 1H), 3.31 (qd, J = 14.0, 6.2 Hz, 2H), 1.67 (s, 1H), 1.49 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 141.2, 137.3, 134.1, 131.5, 131.4, 129.2, 128.7, 128.7, 127.5, 127.4, 126.4, 126.0, 125.9, 125.5, 123.1, 122.8, 52.8, 49.9, 23.8. [M+H]⁺ Calcd for C₂₁H₂₂N 288.1752; Found 288.1749. (*E*)-*N*-benzhydryl-3-phenylprop-2-en-1-amine(5ak):^[5] Prepared in 90% yield (135.0 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.38 (m, 4H), 7.37-7.34 (m, 2H), 7.29 (td, J = 7.7, 2.2 Hz, 6H), 7.23-7.18 (m, 3H), 6.53-6.44 (m, 1H), 6.31 (dt, J = 15.9, 6.2 Hz, 1H), 4.91 (s, 1H), 3.36 (dd, J = 6.3, 1.4 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 144.0, 137.2, 131.4, 128.6, 128.6, 128.5, 128.5, 127.4, 127.1, 126.3, 66.6, 50.0.

(*E*)-*N*-(3,3-diphenylpropyl)-3-phenylprop-2-en-1-amine(5al): Prepared in 80% yield (130.5 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 5H), 7.26-7.10 (m, 10H), 6.44 (d, *J* = 15.8 Hz, 1H), 6.22 (dt, *J* = 15.8, 6.3 Hz, 1H), 4.01 (t, *J* = 7.8 Hz, 1H), 3.32 (d, *J* = 6.3 Hz, 2H), 2.61 (t, *J* = 7.3 Hz, 2H), 2.26 (q, *J* = 7.5 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 144.8, 137.2, 131.3, 128.6, 128.6, 128.4, 127.9, 127.4, 126.3, 126.3, 51.8, 49.2, 47.9, 36.0. [M+H]⁺ Calcd for C₂₄H₂₆N 328.2065; Found 328.2068.

N-Cinnamyloctan-1-amine(5am):^[4] Prepared in 77% yield (94.0 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.17 (m, 5H), 6.56-6.47 (m, 1H), 6.30 (dt, *J* = 15.9, 6.4 Hz, 1H), 3.41 (dd, *J* = 6.4, 1.5 Hz, 2H), 2.64 (t, *J* = 7.3 Hz, 2H), 1.51 (p, *J* = 7.0 Hz, 2H), 1.35-1.21 (m, 11H), 0.91-0.84 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 137.1, 131.3, 128.6, 128.5, 127.4, 126.3, 52.0, 49.5, 31.9, 30.1, 29.6, 29.3, 27.4, 22.7, 14.2.

N-Cinnamyl-2,3-dihydro-1H-inden-1-amine(5an): Prepared in 67% yield (82.5

mg), yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.44-7.16 (m, 9H), 6.62-6.53 (m, 1H), 6.36 (dt, J = 15.8, 6.3 Hz, 1H), 4.31 (t, J = 6.5 Hz, 1H), 3.59-3.47 (m, 2H), 3.02 (ddd, J = 15.9, 8.5, 4.9 Hz, 1H), 2.81 (ddd, J = 15.7, 8.2, 7.0 Hz, 1H), 2.48-2.38 (m, 1H), 1.86 (dddd, J = 12.9, 8.5, 7.0, 6.1 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 145.2, 143.7, 137.2, 131.3, 128.7, 128.6, 127.5, 127.4, 126.3, 124.9, 124.2, 62.8, 49.6, 33.8, 30.4. [M+H]⁺ Calcd for C₁₈H₂₀N 250.1596; Found 250.1600.

(*E*)-3-Phenyl-*N*-(3-phenylpropyl)prop-2-en-1-amine(5ao): Prepared in 71% yield (89.3 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.16 (m, 10H), 6.51 (dt, *J* = 15.7, 1.5 Hz, 1H), 6.29 (dt, *J* = 15.8, 6.4 Hz, 1H), 3.40 (dd, *J* = 6.4, 1.5 Hz, 2H), 2.68 (dt, *J* = 11.9, 7.6 Hz, 4H), 1.85 (dt, *J* = 14.3, 7.7 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 142.1, 137.1, 131.4, 128.6, 128.4, 128.4, 128.3, 127.4, 126.3, 125.9, 51.9, 48.9, 33.7, 31.7. [M+H]⁺ Calcd for C₁₈H₂₂N 252.1752; Found 252.1750.

(*E*)-*N*-(2-ethylhex-2-en-1-yl)aniline(5pa): Prepared in 69% yield (70.0 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (dd, J = 8.5, 7.3 Hz, 2H), 6.70-6.65 (m, 1H), 6.62-6.58 (m, 2H), 5.37 (t, J = 7.3 Hz, 1H), 3.76-3.60 (m, 3H), 2.06 (dq, J = 33.0, 7.4 Hz, 4H), 1.39-1.33 (m, 2H), 1.01 (t, J = 7.6 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 148.7, 138.1, 129.2, 126.3, 117.1, 112.9, 49.4, 29.6, 23.0, 22.0, 13.9, 13.4. [M+H]⁺ Calcd for C₂₁H₂₂N 204.1752; Found 204.1757.

D. References

- [1] Xie, Y.; Hu, J.; Wang, Y.; Xia, C.; Huang, H. J. Am. Chem. Soc. **2012**, 134, 20613-20616.
- [2] G. Hirata, H. Satomura, H. Kumagae, A. Shimizu, G. Onodera, M. Kimura, Org. Lett., 2017, 19, 6148.
- [3] Liang, H.; Bao, L.; Du, Y.; Zhang, Y.; Pang, S.; Sun, C. Synlett. 2017, 28, 2675-2679.
- [4] D. Banerjee, R. V. Jagadeesh, K. Junge, H. Junge, M. Beller, *ChemSusChem.*, 2012, 5, 2039
- [5] (a) J.-Y. Jing, X.-H. Huo, J.-F. Shen, J.-K. Fu, Q.-H. Meng, W.-B. Zhang, Chem. Commun., 2017, 53, 5151
- [6] Y. Jin, Y. Jing, C. Li, M. Li, W. Wu, Z. Ke, H. Jiang, Nat. chem., 2022, 14, 1118.
- [7] Niu, Z.; Zhang, W.; Lan, P. C.; Aguila, B.; Ma, S. Angew. Chem. Int. Ed. 2019, 58, 7420-7424.
- [8] T. Ohshima, Y. Miyamoto, J. Ipposhi, Y. Nakahara, M. Utsunomiya, K. Mashima, J. Am. Chem. Soc., 2009, 131, 14317.
- [9] Voronov, A. A.; Alekseeva, K. A.; Ryzhkova, E. A.; Zarubaev, V. V.; Galochkina, A. V.; Zaytsev, V. P.; Majik, M. S.; Tilve, S. G.; Gurbanov, A. V.; Zubkov, F. I. *Tetrahedron Lett.* 2018, 59, 1108-1111.
- [10] Takale, B. S.; Tao, S. M.; Yu, X. Q.; Feng, X. J.; Jin, T.; Bao, M.; Yamamoto, Y. Org. Lett. 2014, 16, 2558-2561.

 $^{13}\mathrm{C}$ NMR Spectrum of 3aa in CDCl3 at 100 MHz

¹³C NMR Spectrum of **3ba** in CDCl₃ at 100 MHz

¹³C NMR Spectrum of **3ca** in CDCl₃ at 100 MHz

¹³C NMR Spectrum of **3da** in CDCl₃ at 100 MHz

¹H NMR Spectrum of **3ha** in CDCl₃ at 400 MHz

¹H NMR Spectrum of **3ia** in CDCl₃ at 400 MHz

S25

S26

¹H NMR Spectrum of **3ab** in CDCl₃ at 400 MHz

 $^1\mathrm{H}$ NMR Spectrum of 3ad in CDCl3 at 400 MHz

¹H NMR Spectrum of **3af** in CDCl₃ at 400 MHz

Triving spectrum of **Sag** in CDC13 at 400 Min

¹³C NMR Spectrum of **3al** in CDCl₃ at 100 MHz

 $\begin{array}{c} 7.37\\ 7.37\\ 7.34\\ 7.34\\ 7.34\\ 7.34\\ 7.34\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.22\\$

 ^{13}C NMR Spectrum of **5aa** in CDCl₃ at 100 MHz

¹³C NMR Spectrum of **5ab** in CDCl₃ at 100 MHz

¹³C NMR Spectrum of **5ac** in CDCl₃ at 100 MHz

 $^{19}\mathrm{F}$ NMR Spectrum of 5ad in CDCl3 at 377 MHz

¹³C NMR Spectrum of **5ae** in CDCl₃ at 100 MHz

¹³C NMR Spectrum of **5ag** in CDCl₃ at 100 MHz

¹³C NMR Spectrum of **5ah** in CDCl₃ at 100 MHz

¹³C NMR Spectrum of **5ai** in CDCl₃ at 100 MHz

¹³C NMR Spectrum of **5aj** in CDCl₃ at 100 MHz

 ^{13}C NMR Spectrum of 5ak in CDCl3 at 100 MHz

¹³C NMR Spectrum of **5am** in CDCl₃ at 100 MHz

 $^{13}\mathrm{C}$ NMR Spectrum of **5an** in CDCl₃ at 100 MHz

¹³C NMR Spectrum of **5ao** in CDCl₃ at 100 MHz

F. HPLC spectra

Peak	RetTime	Туре	Width	Area	Height	Arer
#	[min]		[min]	[mAu*s]	[mAu]	%
1	10.736	BB	0.2819	7507.10986	405.62988	50.0104
2	13.465	BB	0.3587	7503.97949	316.43756	49.9896

Peak	RetTime	Туре	Width	Area	Height	Arer
#	[min]		[min]	[mAu*s]	[mAu]	%
1	13.047	BB	0.4708	4.95305e4	1420.49255	100.0000

Peak	RetTime	Туре	Width	Area	Height	Arer
#	[min]		[min]	[mAu*s]	[mAu]	%
1	8.060	MM R	0.1797	6931.49561	642.76056	49.9672
2	8.450	MM R	0.1971	6940.59229	587.04022	50.0328

Peak	RetTime	Туре	Width	Area	Height	Arer
#	[min]		[min]	[mAu*s]	[mAu]	%
1	8.405	VB R	0.1985	2.12833e4	1663.42688	100.0000

Peak	RetTime	Туре	Width	Area	Height	Arer
#	[min]		[min]	[mAu*s]	[mAu]	%
1	8.128	BV	0.2000	1.47689e4	1148.91370	49.8949
2	8.747	VB	0.2169	1.48312e4	1062.42920	50.1051

Peak	RetTime	Туре	Width	Area	Height	Arer
#	[min]		[min]	[mAu*s]	[mAu]	%
1	8.546	BV R	0.2799	5.31265e4	2974.11206	100.0000

G. HRMS Spectra

HRMS Spectrum of 3ba

HRMS Spectrum of 3ca

282.1940

281.1717

281.1955

281.0 282.0

HRMS Spectrum of 3ea

284.2115

284.1422

. 284.0 285.2139

285.0

283.1971

283.0

100-

%

0-

278,1865

278.0

277.9463

279.1862

279.0

280.1782

280.0

9.29e+004

287.1958287.5532

m/z

286.2254 287.1 286.0 287.0

HRMS Spectrum of 3ja

HRMS Spectrum of 3ia

HRMS Spectrum of 3ha

HRMS Spectrum of 31a

HRMS Spectrum of 3af

HRMS Spectrum of 5ao

HRMS Spectrum of 5pa

HRMS Spectrum of 5aj