Supplementary Materials for

Direct Arene Trifluoromethylation Enabled by Promiscuous Activity of Fungal Laccase

Yi Ling Goh,^{†a} Shi Yang Long,^{†a} Mun Fei Wong,^a Lee Ling Tan,^b Elaine Tiong,^b

Fong Tian Wong,^b Zhennan Liu^{*a}

^{a.} Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Republic of Singapore.

^{b.} Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-01, Singapore 138673, Republic of Singapore.

⁺ These authors contributed equally to this work.

I. Materials and Methods	pages 2-8
1. General Methods	
2. General procedure for laccase-catalyzed trifluoromethylation in analytical scale	
3. General procedure for laccase-catalyzed trifluoromethylation in preparative scale	
4. Preparation of laccase sample for ICP-MS analysis	
5. Kinetic isotope experiments	
II. Supplementary figures and tables	pages 9-13
Fig. S1 to S8	
Table S1	
NMR Spectra	pages 14-49
References	page 49

I. Materials and Methods

1. General Methods

Unless otherwise noted, all chemicals, salts, and solvents were reagent grade and used as received from commercial suppliers without further purification. In particular, laccase from Trametes versicolor was purchased from Sigma Aldrich with a specific activity of 0.89 U/mg. The pH of buffers used was adjusted using Mettler Toledo SevenExcellence pH meter with InLab Expert Pro-ISM probe. ¹H NMR, ¹³C NMR, and 2D NMR (nuclear magnetic resonance) spectra were acquired on Bruker AVANCE III 400 MHz with DCH CryoProbe. ¹⁹F NMR spectra were recorded on Bruker AVANCE NEO 400 MHz with RT iProbe. Chemical shifts are reported in parts per million (ppm) on the delta (δ) scale. Chemical shifts for ¹H NMR were referenced to the residual protium in the NMR solvent (CDCl₃: 7.26 ppm; CD₂Cl₂: 5.32; CD₃OD: 3.31 ppm). Chemical shifts for ¹³C NMR were referenced to the carbon resonance of the NMR solvent (CDCl₃: 77.16 ppm; CD₃OD: 49.0 ppm). NMR spectra were processed using MestReNova 12.0.2. Data is presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet), integration and coupling constants (J) in Hertz (Hz). Analytical thin layer chromatography (TLC) was performed using Merck 60 F254, 0.25 µm silica gel plates and spots were visualized by UV and/or potassium permanganate, or ceric ammonium molybdate stain. Flash column chromatography was carried out using Merck 60 F254, 0.040-0.063 µm silica gel. Preparative TLC chromatography was carried out using Merck 60 F254, 0.25 µm silica gel plates. High resolution electrospray ionization (HRMS-ESI) mass spectra were recorded using Agilent 6545B Time-of-Flight (TOF) mass spectrometer. GC-MS (gas chromatography-mass spectrometry) analyses were obtained on an Agilent 7890A GC equipped with Agilent 5975C Inert XL MSD with Triple-Axis Detector and HP-5ms Ultra Inert column (30 m x 0.25 mm ID x 0.25 µm). GC-FID (gas chromatography-flame ionization detector) analyses were obtained on an Agilent 8890 GC equipped with an FID detector and CycloSil-B column (30 m x 0.25 mm ID x 0.25 µm). ICP-MS (inductively coupled plasma-mass spectrometry) analyses were performed with PerkinElmer's NexION 2000C ICP Mass Spectrometer. Names of structures were generated using ChemBioDraw Ultra 21.0.0.28.

2. General procedure for laccase-catalyzed trifluoromethylation in analytical scale

The laccase (4 U) from commercial supplier was dissolved in sodium phosphate buffer (400 μ L, 100 mM, pH 7) prior to addition of a stock solution of substrate in DMSO (100 μ L, 0.2 M). A stock solution of NaSO₂CF₃ (100 μ L, 1 M in H₂O, 5 equiv.) was then added, followed by aqueous *t*BuOOH solution (29 μ L, 70 wt.% in H₂O, 10 equiv.). The reactions were shaken on an orbital shaker at room temperature, 600 rpm. After 15 h, a saturated solution of sodium thiosulfate or sodium bicarbonate in water was added (100 μ L) and the mixture was extracted with a solution of CDCl₃ (1 mL, containing 0.02 mmol 2,2,2-trifluoroacetophenone as internal standard). The organic fraction was washed with water and brine, and dried over Na₂SO₄. The solution was filtered and analyzed by GC-MS, ¹⁹F NMR and/or ¹H NMR.

3. General procedure for laccase-catalyzed trifluoromethylation in preparative scale (for characterization of new compounds)

Laccase from *Trametes versicolor* (200 U) was dissolved in 10 mL reaction buffer (100 mM NaPi at pH 7 or 250 mM NaOAc at pH 5.4). A solution of arene **1** (2.5 mL, 0.4 M in DMSO, 1 mmol) was added to the catalyst solution, followed by addition of stock solutions of NaSO₂CF₃ (2.5 equiv., 2 M in respective buffer) and *t*BuOOH (5 equiv., 70 wt.% in H₂O). The mixture was shaken on an orbital shaker at 600 rpm at room temperature. After 4 h, a second batch of NaSO₂CF₃ (2.5 equiv., 2 M in respective buffer) and *t*BuOOH (5 equiv., 70 wt.% in H₂O) was added and the reaction shaken overnight for another 12 h. The reaction mixture was extracted thrice with diethyl ether (except for **1m** and **1n** - extracted with ethyl acetate). The combined organic fraction was washed twice with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure (25 °C, 400 mbar). The crude residue was purified by silica gel flash chromatography and, if required, a second purification by silica gel flash chromatography was performed to afford the desired trifluoromethylated product **3**. (*Note: Volatile products should not be purified using preparative TLC chromatography.*)

Product Characterization

The NMR data for the products above matched those reported in the literature:

1,3,5-trimethyl-2-(trifluoromethyl)benzene (**3a**),¹ 1,4-dimethoxy-2-(trifluoromethyl)benzene (**3b**),² 1,2dimethoxy-4-(trifluoromethyl)benzene (**3c**),² 2,4-dimethoxy-1-(trifluoromethyl)benzene (**3d**),² 1,3-dimethoxy-2-(trifluoromethyl)benzene (**3d**^{*}),² 1,3,5-trimethoxy-2-(trifluoromethyl)benzene (**3e**),² 1,5-dimethoxy-3-methyl-2-(trifluoromethyl)benzene (**3f**),³ 1,3-dimethoxy-5-methyl-2-(trifluoromethyl)benzene (**3f**^{*}),³ 1,2-dimethoxy-4methyl-5-(trifluoromethyl)benzene (**3g**),⁴ 1-bromo-2,4-dimethoxy-5-(trifluoromethyl)benzene (**3h**),² 2-bromo-1,5-dimethoxy-3-(trifluoromethyl)benzene (**3h**[#]),⁵ 1-bromo-3,5-dimethoxy-2-(trifluoromethyl)benzene (**3i**),³ 5bromo-1,3-dimethoxy-2-(trifluoromethyl)benzene (**3i**^{*}).³

Products from reaction of 1h

1-bromo-2,4-dimethoxy-5-(trifluoromethyl)benzene : 1-bromo-2,4-dimethoxy-3-(trifluoromethyl)benzene : 2-bromo-1,5-dimethoxy-3-(trifluoromethyl)benzene (3h : 3h* : 3h*)

1-bromo-2,4-dimethoxy-5-(trifluoromethyl)benzene (3h)

¹H NMR (400 MHz, CDCl₃) δ 6.52 (s, 1H), 6.52 (s, 1H), 3.95 (s, 3H), 3.92 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.60, 158.52 (q, J_{C-F} = 3.3, 1.5 Hz), 131.49 (q, J_{C-F} = 5.4 Hz), 123.20 (q, J_{C-F} = 271.6

Hz), 112.52 (q, *J*_{C-F} = 31.9 Hz), 101.38, 96.97, 56.60, 56.40.

¹⁹F NMR (376 MHz, CDCl₃) δ -61.5 (s, CF₃).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₉H₉BrF₃O₂⁺ 284.9733; Found 284.9730.

Characterization data were in agreement with literature.²

1-bromo-2,4-dimethoxy-3-(trifluoromethyl)benzene (3h*): 2-bromo-1,5-dimethoxy-3-

(trifluoromethyl)benzene (3h#)

3h* and **3h**[#] were formed in small amount at a ratio of 3.4 : 1 : 0.5 (**3h** : **3h*** : **3h**[#]) in crude ¹⁹F NMR and isolated as a mixture with starting material **1h** at a ratio of 1 : 0.37 : 9 (**3h*** : **3h**[#] : **1h**) in ¹H NMR. Hence, no full characterization was obtained.

3h*: ¹H NMR deduced after matching against NMR data of **3h, 3h**^{#5} and **1h**.

¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 0.6 Hz, 1H), 6.69 (d, J = 9.3 Hz, 1H), 3.87 (s, 2 x 3H).

 ^{19}F NMR (376 MHz, CDCl_3) δ -56.4 (s, CF_3).

3h#: Characterization data were in agreement with patent.⁵

¹H NMR (400 MHz, CDCl₃) δ 6.84 (d, *J* = 2.8 Hz, 1H), 6.63 (d, *J* = 2.8 Hz, 1H), 3.91 (s, 3H), 3.84 (s, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.3 (s, CF₃).

HRMS of **3h*** : **3h**[#] : **1h** mixture: (ESI TOF) *m/z*: [M+H]⁺ Calcd for C₉H₉BrF₃O₂⁺ *m/z* 284.9733; Found 284.9722.

Products from reaction of 1j

2-isopropyl-5-methyl-4-(trifluoromethyl)phenol : 6-isopropyl-3-methyl-2-(trifluoromethyl)phenol (3j : 3j*)

2-isopropyl-5-methyl-4-(trifluoromethyl)phenol (3j)

¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 6.63 (s, 1H), 5.08 (s, 1H), 3.17 (sept, *J* = 6.9 Hz, 1H), 2.38 (d, *J*_{H-F} = 1.6 Hz, 3H), 1.26 (s, 3H), 1.24 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.1 (d, J_{C-F} = 1.0 Hz), 135.8 (q, J_{C-F} = 1.8 Hz), 131.7, 125.1 (q, J_{C-F} = 272.5 Hz),

124.7 (q, $J_{C-F} = 5.6 \text{ Hz}$), 121.6 (q, $J_{C-F} = 29.8 \text{ Hz}$), 118.6, 26.9, 22.5, 19.0 (q, $J_{C-F} = 2.1 \text{ Hz}$).

¹⁹F NMR (376 MHz, CDCl₃) δ -60.0 (s, CF₃).

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcd for C₁₁H₁₄F₃O⁺ 219.0991; Found 219.0983.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ Calcd for C₁₁H₁₂F₃O⁻ 217.0846; Found 217.0841.

6-isopropyl-3-methyl-2-(trifluoromethyl)phenol (3j*)

¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 7.8 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 6.09 (d, *J* = 7.1 Hz, 1H), 3.28 (sept, *J* = 6.8 Hz, 1H), 2.41 (q, *J*_{H-F} = 2.8 Hz, 3H), 1.23 (s, 3H), 1.21 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 151.8 (q, *JC-F* = 2.0 Hz), 135.4 (q, *J_{C-F}* = 1.8 Hz), 135.1, 129.5, 126.5 (q, *JC-F* = 274.9 Hz), 135.4 (q, *J_{C-F}* = 1.8 Hz), 135.1, 129.5, 126.5 (q, *JC-F* = 274.9 Hz), 135.4 (q, *J_{C-F}* = 1.8 Hz), 135.1, 129.5, 126.5 (q, *J_{C-F}* = 274.9 Hz), 135.4 (q, *J_{C-F}* = 1.8 Hz), 135.1, 129.5, 126.5 (q, *J_{C-F}* = 274.9 Hz), 135.4 (q, *J_{C-F}* = 1.8 Hz), 135.1, 129.5, 126.5 (q, *J_{C-F}* = 274.9 Hz), 135.4 (q, *J_{C-F}* = 1.8 Hz), 135.1, 129.5, 126.5 (q, *J_{C-F}* = 274.9 Hz), 135.1 (q, *J_{C-F}* = 1.8 Hz), 135.1 (q, *J_{C-F}* = 274.9 Hz), 135.1 (q, J_{C-F} = 274.9 Hz), 135.1 (q, J_C-F), 135.1 (q, J_

Hz), 124.1, 113.9 (q, *JC-F* = 26.4 Hz), 26.8, 22.6, 20.7 (q, *JC-F* = 3.6 Hz).

 ^{19}F NMR (376 MHz, CDCl_3) δ -53.2 (s, CF_3).

HRMS (ESI-TOF) m/z: [M-H]⁻ Calcd for C₁₁H₁₂F₃O⁻ 217.0846; Found 217.0842.

Products from reaction of 1k

5-isopropyl-2-methyl-4-(trifluoromethyl)phenol : 3-isopropyl-6-methyl-2-(trifluoromethyl)phenol : 5isopropyl-2-methyl-3-(trifluoromethyl)phenol (3k : 3k* : 3k*)

5-isopropyl-2-methyl-4-(trifluoromethyl)phenol (3k) : 5-isopropyl-2-methyl-3-(trifluoromethyl)phenol (3k[#]) 3k[#] was formed in small amount at a ratio of 1 : 0.74 : 0.33 (**3k : 3k^{*} : 3k**[#]) in crude ¹⁹F NMR. **3k** and **3k**[#] were isolated as a mixture at a ratio of 1 : 0.3 (**3k : 3k**[#]) in ¹⁹F and ¹H NMR.

3k: ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 6.82 (s, 1H), 3.34 – 2.90 (m_{H-F}, 1H), 2.23 (s, 3H), 1.23 (s, 3H), 1.22 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.64, 148.04, 128.68 (q, J_{C-F} = 5.9 Hz), 125.03 (q, J_{C-F} = 272.7 Hz), 121.04, 120.15 (q, J_{C-F} = 29.5 Hz), 113.62, 29.13 (q, J_{C-F} = 2.1 Hz), 24.39, 23.90, 15.36.

¹⁹F NMR (376 MHz, CDCl₃) δ -57.7 (s, CF₃).

3k[#]: ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, J_{H-F} = 1.8 Hz, 1H), 6.82 (s, 1H), 2.86 (sept, J = 6.9 Hz, 1H), 2.30 (q, J_{H-F} = 1.6 Hz, 3H), 1.24 (s, 3H), 1.22 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.58, 147.94, 130.25 (q, *J*_{C-F} = 29.2 Hz), 124.63 (q, *J*_{C-F} = 274.8 Hz), 120.15 (q, *J*_{C-F} = 29.5 Hz), 116.61 (q, *J*_{C-F} = 5.56 Hz), 116.56 , 33.85, 24.39, 23.90, 11.25 (q, *J*_{C-F} = 2.1 Hz).

 ^{19}F NMR (376 MHz, CDCl₃) δ -60.5 (s, CF₃).

HRMS of 3k : 3k# mixture:

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcd for C₁₁H₁₄F₃O⁺ 219.0991; Found 219.0984.

HRMS (ESI-TOF) m/z: [M-H]⁻ Calcd for C₁₁H₁₂F₃O⁻ 217.0846; Found 217.0847.

3-isopropyl-6-methyl-2-(trifluoromethyl)phenol (3k*)

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.2 Hz, 1H), 6.92 (d, *J* = 7.9 Hz, 1H), 6.21 (q, *J* = 7.1 Hz, 1H), 3.36 – 3.14 (m_{H-F}, 1H), 2.22 (s, 3H), 1.23 (s, 3H), 1.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.02 (q, *J*_{C-F} = 2.0 Hz), 147.72 (q, *J*_{C-F} = 1.6 Hz), 134.16, 126.59 (q, *J*_{C-F} = 275.3 Hz), 124.52, 118.79, 112.44 (q, *J*_{C-F} = 26.0 Hz), 29.60 (q, *J*_{C-F} = 3.3 Hz), 24.67, 16.21. ¹⁹F NMR (376 MHz, CDCl₃) δ -50.7 (s, CF₃). HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₄F₃O⁺ 219.0991; Found 219.0996. HRMS (ESI-TOF) *m/z*: [M-H]⁻ Calcd for C₁₁H₁₂F₃O⁻ 217.0846; Found 217.0843.

Products from reaction of 1

4-(butoxymethyl)-2-methoxy-5-(trifluoromethyl)phenol : 4-(butoxymethyl)-2-methoxy-6-(trifluoromethyl)phenol : 4-(butoxymethyl)-6-methoxy-2,3-bis(trifluoromethyl)phenol (3I : 3I* : 3I[^])

4-(butoxymethyl)-2-methoxy-5-(trifluoromethyl)phenol (3I)

3I: ¹H NMR (400 MHz, CDCl₃) δ 7.18 (s, 1H), 7.16 (s, 1H), 4.59 (s, 2H), 3.95 (s, 3H), 3.51 (t, *J* = 6.5 Hz, 2H), 1.67 – 1.60 (m_{H-F}, 2H), 1.47 – 1.36 (m_{H-F}, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.89, 144.32, 130.30 (q, J_{C-F} = 1.5 Hz), 124.42 (q, J_{C-F} = 273.0 Hz), 120.60 (q, J_{C-F} = 31.4 Hz), 112.43 (q, J_{C-F} = 5.8 Hz), 111.11, 70.72, 68.52 (q, J_{C-F} = 2.7 Hz), 56.19, 31.95, 19.57, 14.08.

¹⁹F NMR (376 MHz, CDCl₃) δ -58.7 (s, CF₃).

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcd for C₁₃H₁₈F₃O₃⁺ 279.1203; Found 279.1179.

HRMS (ESI-TOF) m/z: [M-H]⁻ Calcd for C₁₃H₁₆F₃O₃⁻ 277.1057; Found 277.1052.

4-(butoxymethyl)-2-methoxy-6-(trifluoromethyl)phenol (3I*): 4-(butoxymethyl)-6-methoxy-2,3-

bis(trifluoromethyl)phenol (3l[^])

3I[^] was formed in small amount at a ratio of 1 : 1.1 : 0.05 (**3I** : **3I**^{*} : **3I**[^]) in crude ¹⁹F NMR. **3I**^{*} and **3I**[^] were isolated as a mixture at a ratio of 1 : 0.2 (**3I**^{*} : **3I**[^]) in ¹⁹F and ¹H NMR. ¹³C NMR data is not available for **3I**[^] because the signals are weak and many of the peaks are buried under those of **3I**^{*}.

3I*: ¹H NMR (400 MHz, CDCl₃) δ 7.08 (s, 1H), 7.04 (s, 1H), 6.09 (s, 1H), 4.43 (s, 2H), 3.94 (s, 3H), 3.46 (t, *J* = 6.6 Hz, 2H), 1.60 – 1.52 (m, 2H), 1.46 – 1.34 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 147.23, 143.72 (q, $J_{\text{C-F}}$ = 3.9, 1.7 Hz), 130.35, 123.65 (q, $J_{\text{C-F}}$ = 272.6 Hz), 117.64 (q,

 $J_{C-F} = 4.9 \text{ Hz}$), 115.87 (q, $J_{C-F} = 31.6 \text{ Hz}$), 113.23, 72.48, 70.42, 56.54, 31.92, 19.52, 14.06.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.0 (s, CF₃).

HRMS (ESI-TOF) m/z: [M-H]⁻ Calcd for C₁₃H₁₆F₃O₃⁻ 277.1057; Found 277.1051.

3I[^]: ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 6. (s, 1H), 4.61 (s, 2H), 4.0 (s, 3H), 3.50 (t, J = 6.0 Hz, 2H), 1.60 -

1.52 (m, 2H), 1.46 – 1.33 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -52.04 (q, J = 16.1 Hz), -55.18 (q, J = 16.1 Hz).

HRMS (ESI-TOF) m/z: [M-H]⁻ Calcd for C₁₄H₁₅F₆O₃⁻ 345.0931; Found 345.0923.

Products from reaction of 1m

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid : 2-hydroxy-4-methoxy-5-(trifluoromethyl)benzoic acid : 2-hydroxy-4-methoxy-3,5-bis(trifluoromethyl)benzoic acid (3m : 3m* : 3m^)

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid (3m)

¹H NMR (400 MHz, CD₃OD) δ 8.07 (d, J = 9.0 Hz, 1H), 6.71 (d, J = 9.0 Hz, 1H), 3.93 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 173.37, 165.20, 163.43, 136.72, 125.15 (q, J_{C-F} = 273.9 Hz), 107.78, 106.53 (q, J_{C-F}

= 30.2 Hz), 103.95, 56.97.

 ^{19}F NMR (376 MHz, CD₃OD) δ -56.9 (s, CF₃).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₉H₈F₃O₄⁺ 237.0369; Found 237.0362.

HRMS (ESI-TOF) m/z: [M-H]⁻ Calcd for C₉H₆F₃O₄⁻ 235.0224; Found 235.0230.

2-hydroxy-4-methoxy-5-(trifluoromethyl)benzoic acid (3m*)

 1 H NMR (400 MHz, CD₃OD) δ 8.03 (s, 1H), 6.66 (s, 1H), 3.93 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 172.62, 168.20, 164.35, 130.83 (q, J_{C-F} = 5.5 Hz), 124.81 (q, J_{C-F} = 270.2 Hz),

111.67 (q, *J*_{C-F} = 32.0 Hz), 106.08, 101.37, 56.88.

 ^{19}F NMR (376 MHz, CD₃OD) δ -63.2 (s, CF₃).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₉H₈F₃O₄⁺ 237.0369; Found 237.0362.

HRMS (ESI-TOF) m/z: [M-H]⁻ Calcd for C₉H₆F₃O₄⁻ 235.0224; Found 235.0225.

2-hydroxy-4-methoxy-3,5-bis(trifluoromethyl)benzoic acid (3m[^])

3m[^] was formed in small amount at a ratio of 1.2 : 1 : 0.24 (**3m : 3m**^{*} : **3m**[^]) in crude ¹⁹F NMR. **3m**[^] was isolated as a mixture at a ratio of 1 : 0.13 (**3m : 3m**[^]) in ¹⁹F and ¹H NMR. ¹³C NMR data is not available for **3m**[^] because

the signals are weak and many of the peaks are buried under those of **3m**.

 1 H NMR (400 MHz, CD₃OD) δ 8.32 (s, 1H), 3.88 (s, 3H).

 ^{19}F NMR (376 MHz, CD_3OD) δ -58.9 (s, CF_3), -61.7 (s, CF_3).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₀H₇F₆O₄⁺ 305.0243; Found 305.0259.

HRMS (ESI-TOF) m/z: [M-H]⁻ Calcd for C₁₀H₅F₃O₄⁻ 303.0098; Found 303.0089.

Products from reaction of 1n

4,6-dimethoxy-2-methyl-3-(trifluoromethyl)benzoic acid (3n)

¹H NMR (400 MHz, CD₃OD) δ 6.67 (s, 1H), 3.92 (s, 3H), 3.91 (s, 3H), 2.35 (q, $J_{H-F} = 3.2$ Hz, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 171.57, 162.01 (q, $J_{C-F} = 1.6$ Hz), 160.54, 136.91 (q, $J_{C-F} = 1.3$ Hz), 126.53 (q, $J_{C-F} = 273.6$ Hz), 121.24, 110.85 (q, $J_{C-F} = 29.5$ Hz), 95.45, 56.87, 56.52, 17.89 (q, $J_{C-F} = 4.6$ Hz). ¹⁹F NMR (376 MHz, CD₃OD) δ -54.4 (s, CF₃). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₁H₁₂F₃O₄⁺ 265.0682; Found 265.0676. HRMS (ESI-TOF) m/z: [M-H]⁻ Calcd for C₁₁H₁₀F₃O₄⁻ 263.0537; Found 263.058.

4. Preparation of laccase sample for ICP-MS analysis

A solution of laccase from *Trametes versicolor* (0.89 U/mg, Sigma Aldrich) was prepared in 100 mM NaPi buffer (pH 7) with a concentration of 10 U/mL. 1 mL of laccase solution was digested with 0.5 mL conc. nitric acid (70%, ≥99.999% trace metals basis, Sigma Aldrich). The digested solution was diluted to 25 mL with ultrapure water and analyzed by ICP-MS. The calibration curve of Cu is shown in Fig. S6 and the data from triplicate ICP-MS measurements are listed in Table S1.

5. Kinetic isotope experiment

In kinetic isotope experiment, deuterated analog **1e-D** was prepared following the procedure reported in the literature.⁶ This method gave **1e-D** in 99% deuteration(Fig. S7). The crude NMR of KIE experiment using equal amounts of **1e** and **1e-D** shows the formation of isotopic products at a ratio of approximately 1:1 (Fig. S8).

II. Supplementary figures and tables

Figure S1. Effect of the percentage of DMSO co-solvent on the yield of *TvL*-catalyzed trifluoromethylation of mesitylene. Reaction conditions: mesitylene (0.02 mmol), NaSO₂CF₃ (5 equiv.), *t*BuOOH (10 equiv.), laccase (4 U), x vol.-% DMSO, NaPi buffer (100 mM, pH 7), 25 °C, 600 rpm, 15 h. The relative yields were determined by GC-FID analysis of the crude reaction mixture with 2,2,2-trifluoroacetophenone as internal standard and the yield of the reaction under standard conditions (20 vol.-% DMSO) was normalized as 100%. Data shown are the average from three replicates, with error bars indicating 1 standard deviation.

Figure S2. Effect of the equivalents of *t*BuOOH on the yield of *Tv*L-catalyzed trifluoromethylation of mesitylene. Reaction conditions: mesitylene (0.02 mmol), NaSO₂CF₃ (5 equiv.), *t*BuOOH (x equiv.), laccase (4 U), 20 vol.-% DMSO, NaPi buffer (100 mM, pH 7), 25 °C, 600 rpm, 15 h. The relative yields were determined by GC-FID analysis of the crude reaction mixture with 2,2,2-trifluoroacetophenone as internal standard and the yield of the reaction under standard conditions (10 equiv. *t*BuOOH) was

normalized as 100%. Data shown are the average from three replicates, with error bars indicating 1 standard deviation.

Figure S3. Trifluoromethylation of mesitylene catalyzed by *TvL* and different concentrations of Cu(NO₃)₂. Reaction conditions: mesitylene (0.02 mmol), NaSO₂CF₃ (5 equiv.), *t*BuOOH (10 equiv.), laccase (4 U), 20 vol.-% DMSO, NaPi buffer (100 mM, pH 7), 25 °C, 600 rpm, 15 h. For reactions catalyzed by Cu(NO₃)₂, ultrapure water was used as the solvent as copper phosphate is marginally soluble in water. The relative yields were determined by GC-FID analysis of the crude reaction mixture with 2,2,2-trifluoroacetophenone as internal standard and the yield of the reaction catalyzed by laccase was normalized as 100%. Data shown are the average from three replicates, with error bars indicating 1 standard deviation.

(a) Radical scavenger effect:

Figure S5. Proposed mechanism of laccase-catalyzed trifluoromethylation of arenes.

Figure S6. Calibration curve for ICP-MS quantification of copper.

Figure S7. ¹H NMR of isolated **1e-D**.

Figure S8. ¹H NMR of crude reaction mixture of 1e and 1e-D.

Table S1. The copper concentration in ultrapure water, NaPi buffer and laccase sample solutions measured byICP-MS.

	Cu 63 (ppb)
	Ammonia DRC
Control (H ₂ O)	1.305
100 mM NaPi buffer	1.806
Sample 1 (laccase)	19.967
Sample 2 (laccase)	20.473
Sample 3 (laccase)	16.882
Average [Cu] in laccase sample	17.30±1.94

¹H NMR, ¹³C NMR, HSQC, HMBC and ¹⁹F NMR Spectra

1-bromo-2,4-dimethoxy-5-(trifluoromethyl)benzene (3h), ¹H NMR (400 MHz, CDCl₃)

1-bromo-2,4-dimethoxy-5-(trifluoromethyl)benzene (3h), ¹³C NMR (101 MHz, CDCl₃)

1-bromo-2,4-dimethoxy-5-(trifluoromethyl)benzene (3h), ¹⁹F NMR (376 MHz, CDCl₃)

1-bromo-2,4-dimethoxy-3-(trifluoromethyl)benzene : 2-bromo-1,5-dimethoxy-3-(trifluoromethyl)benzene (3h* : 3h[#] isolated as a mixture with 1h (SM) in the ratio of 1 : 0.37 : 9), ¹H NMR (400 MHz, CDCl₃)

1- bromo-2,4-dimethoxy-3-(trifluoromethyl)benzene : 2-bromo-1,5-dimethoxy-3-(trifluoromethyl)benzene

 $(3h^*: 3h^#$ isolated as a mixture with 1h (SM) in the ratio of 1: 0.37: 9), ¹³C NMR (101 MHz, CDCl₃)

1-bromo-2,4-dimethoxy-3-(trifluoromethyl)benzene : 2-bromo-1,5-dimethoxy-3-(trifluoromethyl)benzene $(3h^* : 3h^{\#} isolated as a mixture with 1h (SM) in the ratio of 1 : 0.37 : 9), HSQC (CDCl₃)$

1-bromo-2,4-dimethoxy-3-(trifluoromethyl)benzene : 2-bromo-1,5-dimethoxy-3-(trifluoromethyl)benzene (3h* : 3h# isolated as a mixture with 1h (SM) in the ratio of 1 : 0.37 : 9), HMBC (CDCl₃)

1-bromo-2,4-dimethoxy-3-(trifluoromethyl)benzene : 2-bromo-1,5-dimethoxy-3-(trifluoromethyl)benzene $(3h^*: 3h^{\#} isolated as a mixture with 1h (SM) in the ratio of 1: 0.37: 9), {}^{19}F NMR (376 MHz, CDCl_3)$

2-isopropyl-5-methyl-4-(trifluoromethyl)phenol (3j), ¹H NMR (400 MHz, CDCl₃)

2-isopropyl-5-methyl-4-(trifluoromethyl)phenol (3j), HSQC (CDCl₃)

2-isopropyl-5-methyl-4-(trifluoromethyl)phenol (3j), ¹⁹F NMR (376 MHz, CDCl₃)

6-isopropyl-3-methyl-2-(trifluoromethyl)phenol (3j*), ¹H NMR (400 MHz, CDCl₃)

6-isopropyl-3-methyl-2-(trifluoromethyl)phenol (3j*), ¹³C NMR (101 MHz, CDCl₃)

6-isopropyl-3-methyl-2-(trifluoromethyl)phenol (3j*), HSQC (CDCl₃)

6-isopropyl-3-methyl-2-(trifluoromethyl)phenol (3j*), ¹⁹F NMR (376 MHz, CDCl₃)

5-isopropyl-2-methyl-4-(trifluoromethyl)phenol : 5-isopropyl-2-methyl-3-(trifluoromethyl)phenol (3k : 3k[#] in ratio of 1 : 0.3), ¹H NMR (400 MHz, CDCl₃)

5-isopropyl-2-methyl-4-(trifluoromethyl)phenol : 5-isopropyl-2-methyl-3-(trifluoromethyl)phenol (3k : 3k[#] in ratio of 1 : 0.3), ¹³C NMR (101 MHz, CDCl₃)

5-isopropyl-2-methyl-4-(trifluoromethyl)phenol : 5-isopropyl-2-methyl-3-(trifluoromethyl)phenol (3k : 3k[#] in ratio of 1 : 0.3), HSQC (CDCl₃)

5-isopropyl-2-methyl-4-(trifluoromethyl)phenol : 5-isopropyl-2-methyl-3-(trifluoromethyl)phenol (3k : 3k[#] in ratio of 1 : 0.3), HMBC (CDCl₃)

3-isopropyl-6-methyl-2-(trifluoromethyl)phenol(3k*), ¹H NMR (400 MHz, CDCl₃)

3-isopropyl-6-methyl-2-(trifluoromethyl)phenol(3k*), ¹³C NMR (101 MHz, CDCl₃)

٠

•

•

3.5

3.0

1

Ţ

,

2.0

2.5

3-isopropyl-6-methyl-2-(trifluoromethyl)phenol(3k*), HSQC (CDCl₃)

_

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0 f2 (ppm)

- 120

- 130 140

- 150

- 160

٠ŧ

1.0

1.5

3-isopropyl-6-methyl-2-(trifluoromethyl)phenol(3k*), ¹⁹F NMR (376 MHz, CDCl₃)

4-(butoxymethyl)-2-methoxy-5-(trifluoromethyl)phenol (3I), ¹H NMR (400 MHz, CDCl₃)

4-(butoxymethyl)-2-methoxy-5-(trifluoromethyl)phenol (3I), HSQC (CDCl₃)

4-(butoxymethyl)-2-methoxy-5-(trifluoromethyl)phenol (31), HMBC (CDCl₃)

4-(butoxymethyl)-2-methoxy-5-(trifluoromethyl)phenol (3I), ¹⁹F NMR (376 MHz, CDCl₃)

4-(butoxymethyl)-2-methoxy-6-(trifluoromethyl)phenol : 4-(butoxymethyl)-6-methoxy-2,3bis(trifluoromethyl)phenol (3I*: 3I[^] in the ratio of 1 : 0.2), ¹H NMR (400 MHz, CDCl₃)

utoxymethyl)-2-methoxy-6-(trifluoromethyl)phenol : 4-(butoxymethyl)-6-methoxy-2,3-

bis(trifluoromethyl)phenol (3I*: 3I^ in the ratio of 1 : 0.2), 13 C NMR (101 MHz, CDCl₃)

4(b

44-(butoxymethyl)-2-methoxy-6-(trifluoromethyl)phenol : 4-(butoxymethyl)-6-methoxy-2,3bis(trifluoromethyl)phenol (3I*: 3I[^] in the ratio of 1 : 0.2), HSQC (CDCl₃)

(butoxymethyl)-2-methoxy-6-(trifluoromethyl)phenol : 4-(butoxymethyl)-6-methoxy-2,3bis(trifluoromethyl)phenol (3I*: 3I[^] in the ratio of 1 : 0.2), HMBC (CDCl₃)

4-(butoxymethyl)-2-methoxy-6-(trifluoromethyl)phenol : 4-(butoxymethyl)-6-methoxy-2,3-bis(trifluoromethyl)phenol ($3I^*$: $3I^\circ$ in the ratio of 1 : 0.2), ¹⁹F NMR (376 MHz, CDCl₃)

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid (3m), ¹H NMR (400 MHz, CD₃OD)

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid (3m),¹³C NMR (101 MHz, CD₃OD)

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid (3m), HSQC (CD₃OD)

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid (3m), ¹⁹F NMR (376 MHz, CD₃OD)

3.01 0.44

4.0 3.5 3.0

2.5

2.0 1.5 1.0

0.5

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid : 2-hydroxy-4-methoxy-3,5bis(trifluoromethyl)benzoic acid (3m: 3m[^] in ratio of 1 : 0.13), ¹H NMR (400 MHz, CD₃OD)

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid : 2-hydroxy-4-methoxy-3,5-

6.0

9

7.0 6.5

0.13H 1.03H

8.0

7.5

8.5

9.0

0.0 9.5

bis(trifluoromethyl)benzoic acid (3m: 3m[^] in ratio of 1 : 0.13), ¹³C NMR (101 MHz, CD₃OD)

5.5

5.0

5.0 f1 (ppm)

4.5

-20

0.0

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid : 2-hydroxy-4-methoxy-3,5bis(trifluoromethyl)benzoic acid (3m: $3m^{\circ}$ in ratio of 1 : 0.13), HSQC (CD₃OD)

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid : 2-hydroxy-4-methoxy-3,5bis(trifluoromethyl)benzoic acid (3m: 3m[^] in ratio of 1 : 0.13), HMBC (CD₃OD)

2-hydroxy-4-methoxy-3-(trifluoromethyl)benzoic acid : 2-hydroxy-4-methoxy-3,5-

bis(trifluoromethyl)benzoic acid (3m: 3m[^] in ratio of 1 : 0.13), ¹⁹F NMR (376 MHz, CD₃OD)

2-hydroxy-4-methoxy-5-(trifluoromethyl)benzoic acid (3m*), ¹H NMR (400 MHz, CD₃OD)

2-hydroxy-4-methoxy-5-(trifluoromethyl)benzoic acid (3m*), HSQC (CD₃OD)

2-hydroxy-4-methoxy-5-(trifluoromethyl)benzoic acid (3m*), ¹⁹F NMR (376 MHz, CD₃OD)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

4,6-dimethoxy-2-methyl-3-(trifluoromethyl)benzoic acid (3n), ¹H NMR (400 MHz, CD₃OD)

4,6-dimethoxy-2-methyl-3-(trifluoromethyl)benzoic acid (3n), ¹³C NMR (101 MHz, CD₃OD)

4,6-dimethoxy-2-methyl-3-(trifluoromethyl)benzoic acid (3n), HSQC (CD₃OD)

4,6-dimethoxy-2-methyl-3-(trifluoromethyl)benzoic acid (3n), HMBC (CD₃OD)

4,6-dimethoxy-2-methyl-3-(trifluoromethyl)benzoic acid (3n), ¹⁹F NMR (376 MHz, CD₃OD)

References

- 1. E. O. Bortnikov, B. S. Smith, D. M. Volochnyuk and S. N. Semenov, *Chem. Eur. J.*, 2023, **29**, e202203825.
- 2. S. Seo, J. B. Taylor and M. F. Greaney, *ChemComm*, 2013, **49**, 6385-6387.
- 3. D. Wang, G.-J. Deng, S. Chen and H. Gong, *Green Chem.*, 2016, **18**, 5967-5970.
- 4. L. Li, X. Mu, W. Liu, Y. Wang, Z. Mi and C.-J. Li, J. Am. Chem. Soc., 2016, **138**, 5809-5812.
- 5. Patent UNILEVER (PLC & NV) US2014/0256830, 2014, A1.
- 6. Z. Huang, D. Zhang, X. Qi, Z. Yan, M. Wang, H. Yan and A. Lei, *Org. Lett.*, 2016, **18**, 2351-2354.