Supporting Information

Sterically Demanding Csp² (*ortho*-Substitution)–Csp³ (Tertiary) Bond Formation via Carboxylate Directed Mizoroki-Heck Reaction Under Extra Ligand-Free Conditions

Wei Zeng,^{+a,b} Ai-Wen Chen,^{+a,b} Ming-Jie Yan^{a,b} and Jie Wang^{a,b,c}*

^a School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China. Email: jiewang@simm.ac.cn

^b State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

^c University of Chinese Academy of Sciences, Beijing 100049, China.

⁺These authors contributed equally to this work.

Tabl	e of	Conte	nts
		Conte	

General Experimental	
Optimization Details	6
Experimental Procedure and Characterization Data for Compound S1	9
Compound S1	9
General Procedure for the Carboxylate Directed Heck Reaction	
Experimental Procedures and Characterization Data	
Compound 3	
Compound 4	
Compound 5	
Compound 6	
Compound 7	
Compound 8	
Compound 9	
Compound 10	
Compound 11	
Compound 12	
Compound 13	
Compound 14	
Compound 15	
Compound 16	
Compound 17	
Compound 18	
Compound 19	
Compound 20	
Compound 21	
Compound 22	
Compound 23	
Compound 24	
Compound 25	
Compound 26	
Compound 27	
Compound 28	
Compound 29	
Compound 30	
Compound 31	
Compound 32	
Compound 33	
Compound 34	
Compound 35	

	Compound 36	. 25
	Compound 37	. 25
	Compound 38	. 26
	Compound 39	. 26
	Compound 40	. 27
	Compound 41	. 27
	Compound 42	. 27
	Compound 43	. 28
	Compound 45	. 28
	Compound 46	. 29
	Compound 47	. 29
	Compound 44	. 30
	Compound 48	. 30
	Compound 49	. 31
Ref	erence	. 32
NN	IR Spectra	. 33
	Compound S1 ¹ H NMR	. 33
	Compound S1 ¹³ C NMR	. 34
	Compound 3 ¹ H NMR	. 35
	Compound 3 ¹³ C NMR	. 36
	Compound 4 ¹ H NMR	. 37
	Compound 4 ¹³ C NMR	. 38
	Compound 5 ¹ H NMR	. 39
	Compound 5 ¹³ C NMR	. 40
	Compound 6 ¹ H NMR	. 41
	Compound 6 ¹³ C NMR	. 42
	Compound 7 ¹ H NMR	. 43
	Compound 7 ¹³ C NMR	. 44
	Compound 8 ¹ H NMR	. 45
	Compound 8 ¹³ C NMR	. 46
	Compound 8 ¹⁹ F NMR	. 47
	Compound 9 ¹ H NMR	. 48
	Compound 9 ¹³ C NMR	. 49
	Compound 10 ¹ H NMR	. 50
	Compound 10 ¹³ C NMR	. 51
	Compound 11 ¹ H NMR	. 52
	Compound 11 ¹³ C NMR	. 53
	Compound 12 ¹ H NMR	. 54
	Compound 12 ¹³ C NMR	. 55
	Compound 13 ¹ H NMR	. 56

Compound 13 ¹³ C NMR	57
Compound 14 ¹ H NMR	58
Compound 14 ¹³ C NMR	59
Compound 15 ¹ H NMR	60
Compound 15 ¹³ C NMR	61
Compound 16 ¹ H NMR	62
Compound 16 ¹³ C NMR	63
Compound 17 ¹ H NMR	64
Compound 17 ¹³ C NMR	65
Compound 18 ¹ H NMR	66
Compound 18 ¹³ C NMR	67
Compound 19 ¹ H NMR	68
Compound 19 ¹³ C NMR	69
Compound 20 ¹ H NMR	
Compound 20 ¹³ C NMR	71
Compound 21 ¹ H NMR	
Compound 21 ¹³ C NMR	73
Compound 22 ¹ H NMR	74
Compound 22 ¹³ C NMR	75
Compound 23 ¹ H NMR	
Compound 23 ¹³ C NMR	77
Compound 24 ¹ H NMR	
Compound 24 ¹³ C NMR	79
Compound 24 ¹⁹ F NMR	80
Compound 25 ¹ H NMR	81
Compound 25 ¹³ C NMR	82
Compound 26 ¹ H NMR	83
Compound 26 ¹³ C NMR	
Compound 27 ¹ H NMR	85
Compound 27 ¹³ C NMR	86
Compound 28 ¹ H NMR	87
Compound 28 ¹³ C NMR	88
Compound 29 ¹ H NMR	89
Compound 29 ¹³ C NMR	
Compound 30 ¹ H NMR	
Compound 30 ¹³ C NMR	
Compound 31 ¹ H NMR	
Compound 31 ¹³ C NMR	
Compound 32 ¹ H NMR	
Compound 32 ¹³ C NMR	

Compound 33 ¹ H NMR	
Compound 33 ¹³ C NMR	
Compound 34 ¹ H NMR	
Compound 34 ¹³ C NMR	
Compound 35 ¹ H NMR	
Compound 35 ¹³ C NMR	
Compound 36 ¹ H NMR	
Compound 36 ¹³ C NMR	
Compound 37 ¹ H NMR	
Compound 37 ¹³ C NMR	
Compound 38 ¹ H NMR	
Compound 38 ¹³ C NMR	
Compound 39 ¹ H NMR	
Compound 39 ¹³ C NMR	
Compound 40 ¹ H NMR	
Compound 40 ¹³ C NMR	
Compound 41 ¹ H NMR	
Compound 41 ¹³ C NMR	
Compound 42 ¹ H NMR	
Compound 42 ¹³ C NMR	
Compound 43 ¹ H NMR	
Compound 43 ¹³ C NMR	
Compound 45 ¹ H NMR	
Compound 45 ¹³ C NMR	
Compound 46 ¹ H NMR	
Compound 46 ¹³ C NMR	
Compound 46 ¹⁹ F NMR	
Compound 47 ¹ H NMR	
Compound 47 ¹³ C NMR	
Compound 47 ¹⁹ F NMR	
Compound 44 ¹ H NMR	
Compound 44 ¹³ C NMR	
Compound 48 ¹ H NMR	
Compound 48 ¹³ C NMR	
Compound 49 ¹ H NMR	
Compound 49 ¹³ C NMR	

General Experimental

Unless otherwise noted, all experiments were performed under argon atmosphere and stirred magnetically. THF and DMF were obtained by passing the previously degassed solvent through an activated alumina column. Other solvents, starting materials, and reagents are commercially available and used directly as received, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) and NMR of the crude mixture. Evaporations were conducted under reduced pressure at temperatures less than 40 °C. Further dryings of the residues were accomplished using a high vacuum pump. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous material. NMR spectra were recorded on Bruker Avance III 400, Avance III 500, Avance III 600 and Avance III 800 instruments. Chemical shifts are given in ppm and calibrated using the residual undeuterated solvent peaks (Chloroform-d ¹H, δ = 7.26 ppm, ¹³C, δ = 77.2 ppm, Methanol- d_4 ¹H, δ = 3.31 ppm, ¹³C, δ = 49.0 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant *J*, integration. High-resolution mass spectra were recorded on Agilent 1290/6545 UHPLC-QTOF/MS and Thermo DFS mass spectrometer. Melting points were recorded on a SGWX-4A melting point apparatus (Shanghai instrument physical optics instrument Co., LTD.).

Optimization Details

Table S1: ligand screen

+ 1	$MeO \xrightarrow{X} MeO \xrightarrow{Pd_2(dba)_3 \cdot CHCl_3} (3 \text{ mol}\%) \\ Ligand (12 \text{ mol}\%) \\ K_2CO_3 (2.5 \text{ equiv}) \\ DMF \\ 100 \ ^\circ\text{C}, 5 \text{ h} \\ 2a (X = I) \\ 2b (X = Br) \end{cases} MeO$	HO ₂ C
ArX	Ligand (12 mol% if added)	Yield (%) ^[a]
ArBr	TrixiePhos	N.D.
ArI	TrixiePhos	30
ArI	PPh ₃	39
ArI	P(o-tol)3	<10
ArI	JohnPhos	<10
ArI	DavePhos	33
ArI	dppp	<10
ArI	dppb	N.D.
ArI	dpph	N.D.
ArI	-	15
	ArX ArBr ArI ArI ArI ArI ArI ArI ArI ArI ArI Ar	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

Note: 1 (0.1 mmol), **2** (0.15 mmol). 0.5 mL DMF ^[a] Yield determined by ¹H NMR analysis using 1,3,5-Trimethoxybenzene as internal standard.

Table S2: screen of solvent

Entry	Ligand (12 mol% if added)	Solvent ^[b]	Yield (%) ^[a]
1	PPh ₃	DMF	39
2	PPh ₃	DMA	N.D.
3	PPh ₃	DMSO	N.D.
4	PPh ₃	1,4-dioxane	N.D.
5	PPh ₃	$0.5 \text{ mL DMF}, 0.1 \text{ mL H}_2\text{O}$	39
6	TriexiePhos	$0.5 \text{ mL DMF}, 0.1 \text{ mL H}_2\text{O}$	36
7	DavePhos	$0.5 \text{ mL DMF}, 0.1 \text{ mL H}_2\text{O}$	39
8	-	0.5 mL DMF, 0.1 mL H ₂ O	60
9	-	0.5 mL DMA, 0.1 mL H ₂ O	32
10	-	0.5 mL 1,4-dioxane, 0.1 mL H ₂ O	30

11	-	0.5 mL DMSO, 0.1 mL H ₂ O	60
12	-	0.4 mL DMF, 0.2 mL H ₂ O	52
13	-	0.3 mL DMF, 0.3 mL H ₂ O	44
14	-	0.2 mL DMF, 0.4 mL H ₂ O	45
15	-	0.1 mL DMF, 0.5 mL H ₂ O	22
16	-	DMA	<5
17	-	1,4-dioxane	<5
18	-	DMSO	<5

Note: 1 (0.1 mmol), **2a** (0.15 mmol).^[a] Yield determined by ¹H NMR analysis using 1,3,5-Trimethoxybenzene as internal standard. ^[b] 0.5 mL except otherwise noted

Table S3: screen of more conditions

Entry	Palladium source	Base	Temp. (°C)	Yield (%) ^[a]
1	Pd ₂ (dba) ₃ ·CHCl ₃	K ₂ CO ₃	90	47
2	Pd ₂ (dba) ₃ ·CHCl ₃	K ₂ CO ₃	110	51
3	Pd(OAc) ₂	K ₂ CO ₃	100	42
4	PdCl ₂	K ₂ CO ₃	100	45
5	PdCl ₂ (PPh ₃) ₂	K ₂ CO ₃	100	12
6	Pd(PPh ₃) ₄	K ₂ CO ₃	100	23
7	Pd2(dba)3·CHCl3	NaHCO ₃	100	25
8	Pd2(dba)3·CHCl3	Na ₂ CO ₃	100	28
9	Pd2(dba)3·CHCl3	Cs ₂ CO ₃	100	45
10	Pd2(dba)3·CHCl3	t-BuONa	100	15
11	Pd2(dba)3·CHCl3	Et ₃ N	100	23

Note: 1 (0.1 mmol), **2a** (0.15 mmol).^[a] Yield determined by ¹H NMR analysis using 1,3,5-Trimethoxybenzene as internal standard.

Table S4: substrates tested using DMSO/H₂O (5/1) as solvent^a

^aYields determined by ¹H NMR analysis using 1,3,5-Trimethoxybenzene as internal standard

Table S5: methodology limitations

Reactions with some aryl coupling partners were found to be unsatisfying or ineffective and are listed as below.^{*a*}

^aYields determined by ¹H NMR analysis using 1,3,5-Trimethoxybenzene as internal standard

Experimental Procedure and Characterization Data for Compound S1

The olefin substrates except S1 were prepared according to literature procedure.^{[1],[2]}

Compound S1

4-cyclopentylidenebutanoic acid

To a solution of (3-carboxypropyl)triphenylphosphonium bromide (1.0 equiv, 10 mmol, 4.29 g) in THF (140 mL) was added KHMDS (1.0 M in THF, 20 mL, 2.0 equiv) at room temperature under Ar atmosphere. The resulting mixture was stirred at the same temperature for 30 minutes. Cyclopentanone (1.68 g, 2.0 equiv) was added and the reaction was heated to reflux overnight. After cooling to room temperature, most of the THF was removed under reduced pressure. Aqueous NaOH (1.0 M, 200 mL) was added, and the resulting solution was washed with Et₂O for three times. The aqueous layer was then acidified with HCl (con.) until pH < 2 and extracted with Et₂O for three times. The combined organic extracts were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (silica gel, acetone/hexanes, 1/20 to 1/10) to afford 0.37 g (24%) of the title compound **S1**.

Physical State: colorless oil.

¹**H NMR (600 MHz, Chloroform-d)** δ 5.24 – 5.18 (m, 1H), 2.38 (ddd, *J* = 7.9, 7.1, 1.0 Hz, 2H), 2.32 – 2.26 (m, 2H), 2.23 – 2.16 (m, 4H), 1.68 – 1.62 (m, 2H), 1.62 – 1.55 (m, 2H).

¹³C NMR (151 MHz, Chloroform-d) δ 179.9, 145.3, 117.6, 34.3, 33.7, 28.7, 26.5, 26.4, 25.0.

HRMS (ESI-TOF): calculated for C₉H₁₃O₂⁻ [M-H]⁻: 153.0921; Found 153.0921.

General Procedure for the Carboxylate Directed Heck Reaction

To a reaction tube equipped a stir bar were added olefin substrate (1.0 equiv), potassium carbonate (2.5 equiv), $Pd_2(dba)_3$ ·CHCl₃ (3 mol%), and aryl halide (1.5 equiv). The tube was evacuated and backfilled with argon for three times. Premixed and degassed DMF/H₂O (5/1, 0.6 mL for 0.1 mmol scale) was added and the resulting mixture was heated to 100 °C in an oil bath for 5-12 hours. After cooling to room temperature, saturated aqueous NH₄Cl was added, followed by addition of 1N HCl to ajust the pH to 2-4. The aqueous layer was extracted with Et₂O for three times. The combined organic extracts were dried over anhydrous Na₂SO₄, evaporated, and purified by flash column chromatography (silica gel) to afford the desired product.

Experimental Procedures and Characterization Data

Compound 3

(E)-4-(1-(2-methoxyphenyl)cyclohexyl)but-3-enoic acid

16.0 mg, 58% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-iodo-2-methoxybenzene (35.1 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.52 – 7.48 (m, 1H), 7.39 (t, *J* = 7.3 Hz, 1H), 7.15 – 7.09 (m, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.11 (d, *J* = 15.9 Hz, 1H), 5.35 – 5.24 (m, 1H), 3.94 (s, 3H), 3.25 (d, *J* = 6.7 Hz, 2H), 2.25 – 2.12 (m, 4H), 1.85 – 1.57 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 177.5, 158.3, 143.2, 136.3, 127.5, 127.4, 120.6, 118.8, 112.4, 55.4, 43.6, 38.4, 35.8, 26.6, 22.9.

HRMS (ESI-TOF): calculated for $C_{17}H_{22}NaO_3^+$ [M+Na]⁺: 297.1459; Found 297.1461.

Compound 4

(E)-4-(1-(2-methoxy-5-methylphenyl)cyclohexyl)but-3-enoic acid

17.2 mg, 60% yield. Prepared following the **General Procedure** (except the modification of concentration: 1.2 mL solvent) from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 2-iodo-1-methoxy-4-methylbenzene (37.2 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.11 (d, *J* = 2.2 Hz, 1H), 7.01 – 6.96 (m, 1H), 6.76 (d, *J* = 8.2 Hz, 1H), 5.93 (dt, *J* = 15.8, 1.4 Hz, 1H), 5.31 (dt, *J* = 15.9, 7.1 Hz, 1H), 3.72 (s, 3H), 3.07 (dd, *J* = 7.1, 1.3 Hz, 2H), 2.29 (s, 3H), 2.04 – 1.92 (m, 4H), 1.56 (m, 6H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 177.6, 156.1, 143.3, 136.2, 129.6, 128.3, 127.5, 118.7, 112.5, 55.6, 43.5, 38.4, 35.8, 26.6, 22.9, 21.0.

HRMS (ESI-TOF): calculated for $C_{18}H_{24}NaO_3^+$ [M+Na]⁺: 311.1616; Found 311.1618.

Compound 5

(E)-4-(1-(2,4-dimethoxyphenyl)cyclohexyl)but-3-enoic acid

22.2 mg, 73% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-iodo-2,4-dimethoxybenzene (39.6 mg, 0.15 mmol).

Physical State: colorless oil

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.22 – 7.18 (m, 1H), 6.47 – 6.41 (m, 2H), 5.86 (dt, *J* = 15.8, 1.4 Hz, 1H), 5.29 (dt, *J* = 15.8, 7.1 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.06 (dd, *J* = 7.1, 1.4 Hz, 2H), 2.02 – 1.90 (m, 4H), 1.59 – 1.45 (m, 5H), 1.39 – 1.29 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 177.3, 159.2, 159.2, 143.5, 128.7, 128.0, 118.5, 103.7, 100.2, 55.4, 55.3, 43.1, 38.3, 35.9, 26.6, 22.9.

HRMS (ESI-TOF): calculated for C₁₈H₂₃O₄⁻ [M-H]⁻: 303.1602; Found 303.1601.

Compound 6

(E)-4-(1-(4-methoxy-2-methylphenyl)cyclohexyl)but-3-enoic acid

18.7 mg, 65% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-iodo-4-methoxy-2-methylbenzene (37.2 mg, 0.15 mmol).

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.32 (d, J = 8.5 Hz, 1H), 6.73 - 6.66 (m, 2H), 5.88 (dd, J = 15.8, 1.4 Hz, 1H), 5.22 (dt, J = 15.7, 7.0 Hz, 1H), 3.79 (s, 3H), 3.06 (d, J = 7.0 Hz, 2H), 2.32 (s, 3H), 2.02 - 1.93 (m, 2H), 1.93 - 1.81 (m, 2H), 1.67 - 1.46 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.2, 157.5, 143.4, 138.8, 137.5, 128.4, 119.3, 118.5, 110.1, 55.2, 44.3, 38.1, 37.5, 26.4, 23.4, 22.7.

HRMS (ESI-TOF): calculated for $C_{18}H_{24}NaO_3^+$ [M+Na]⁺: 311.1616; Found 311.1618.

Compound 7

(E)-4-(1-(2,6-dimethoxyphenyl)cyclohexyl)but-3-enoic acid

10.0 mg, 33% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 2-iodo-1,3-dimethoxybenzene (39.6 mg, 0.15 mmol). **Physical State:** colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.12 (t, *J* = 8.2 Hz, 1H), 6.56 (d, *J* = 8.2 Hz, 2H), 6.06 (d, *J* = 15.7 Hz, 1H), 5.29 (dt, *J* = 15.8, 7.1 Hz, 1H), 3.73 (s, 6H), 3.05 (dd, *J* = 7.2, 1.3 Hz, 2H), 2.63 – 2.52 (m, 2H), 1.79 – 1.72 (d, 2H), 1.60 – 1.53 (m, 2H), 1.46 – 1.34 (m, 4H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 176.2, 159.9, 146.0, 127.3, 123.9, 116.3, 106.9, 56.2, 46.2, 38.3, 38.0, 26.6, 23.7.

HRMS (ESI-TOF): calculated for C₁₈H₂₃O₄⁻ [M-H]⁻: 303.1603; Found 303.1602.

Compound 8

(E)-4-(1-(2-fluorophenyl)cyclohexyl)but-3-enoic acid

11.0 mg, 42% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-fluoro-2-iodobenzene (33.3 mg, 0.15 mmol).

65 mg, 50% yield. Prepared following the **General Procedure** (except the modification of concentration: totally 5 mL DMF and 1 mL water were used) from 4-cyclohexylidenebutanoic acid (84 mg, 0.5 mmol) and 1-fluoro-2-iodobenzene (166 mg, 0.75 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.33 (td, *J* = 8.1, 1.8 Hz, 1H), 7.22 – 7.14 (m, 1H), 7.08 (td, *J* = 7.5, 1.5 Hz, 1H), 7.00 – 6.92 (m, 1H), 5.83 – 5.75 (m, 1H), 5.42 – 5.33 (m, 1H), 3.09 (dd, *J* = 7.0, 1.4 Hz, 2H), 2.10 – 1.98 (m, 2H), 1.97 – 1.86 (m, 2H), 1.62 – 1.54 (m, 2H), 1.53 – 1.44 (m, 3H), 1.42 – 1.34 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.4, 161.8 (*J* = 249.2 Hz), 141.8, 134.4 (*J* = 10.5 Hz), 128.4 (*J* = 5.3 Hz), 127.9 (*J* = 3.7 Hz), 123.9 (3.2), 120.0, 116.7 (*J* = 24.4 Hz), 43.4, 43.4, 38.0, 35.8, 35.8, 26.4, 22.7.

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -107.8.

HRMS (ESI-TOF): calculated for C₁₆H₁₈FO₂⁻ [M-H]⁻: 261.1295; Found 261.1296.

Compound 9

(E)-4-(1-(3-oxo-2,3-dihydro-1H-inden-4-yl)cyclohexyl)but-3-enoic acid

11.9 mg, 40% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 7-bromo-2,3-dihydro-1H-inden-1-one (31.7 mg, 0.15 mmol).

Physical State: pale yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.51 – 7.47 (m, *J* = 7.6 Hz, 1H), 7.42 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.29 (dd, *J* = 7.5, 1.1 Hz, 1H), 6.46 – 6.37 (m, 1H), 5.00 (dt, *J* = 16.0, 7.1 Hz, 1H), 3.08 – 3.04 (m, 2H),

3.02 (dd, *J* = 7.0, 1.3 Hz, 2H), 2.62 – 2.56 (m, 2H), 2.13 (d, *J* = 13.0 Hz, 2H), 1.87 – 1.79 (m, 2H), 1.71 – 1.46 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 206.3, 177.6, 158.7, 150.4, 143.5, 134.4, 134.2, 125.07, 125.0, 118.8, 44.0, 38.2, 37.3, 37.0, 26.1, 25.8, 22.9.

HRMS (ESI-TOF): calculated for C₁₉H₂₁O₃⁻ [M-H]⁻: 297.1496; Found 297.1496.

Compound 10

(E)-4-(1-phenylcyclohexyl)but-3-enoic acid

13.2 mg, 54% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and iodobenzene (30.6 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.37 – 7.28 (m, 4H), 7.20 – 7.15 (m, 1H), 5.58 (dt, *J* = 15.8, 1.4 Hz, 1H), 5.40 (dt, *J* = 15.8, 6.9 Hz, 1H), 3.09 (dd, *J* = 6.9, 1.3 Hz, 2H), 2.06 – 1.95 (m, 2H), 1.88 – 1.79 (m, 2H), 1.60 – 1.36 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 177.7, 147.1, 144.0, 128.4, 126.9, 125.8, 119.3, 44.3, 38.0, 36.3, 26.4, 22.6.

HRMS (ESI-TOF): calculated for $C_{16}H_{19}O_2^{-1}$ [M-H]⁻: 243.1391; Found 243.1391.

Compound 11

(E)-4-(1-(p-tolyl)cyclohexyl)but-3-enoic acid

15.2 mg, 59% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-iodo-4-methylbenzene (32.7 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (500 MHz, Chloroform-***d***):** δ 7.25 – 7.21 (m, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 5.57 (dt, *J* = 15.7, 1.4 Hz, 1H), 5.40 (dt, *J* = 15.9, 6.9 Hz, 1H), 3.08 (dd, *J* = 6.9, 1.4 Hz, 2H), 2.32 (s, 3H), 2.00 – 1.95 (m, 2H), 1.86 – 1.79 (m, 2H), 1.60 – 1.37 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.1, 144.2, 144.1, 135.3, 129.1, 126.8, 119.0, 43.9, 38.1, 36.3, 26.5, 22.7, 21.0.

HRMS (ESI-TOF): calculated for $C_{17}H_{21}O_2^-$ [M-H]⁻: 257.1546; Found 257.1547.

Compound 12

(E)-4-(1-(3-methoxyphenyl)cyclohexyl)but-3-enoic acid

12.1 mg, 44% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-iodo-3-methoxybenzene (35.1 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.24 (t, *J* = 8.0 Hz, 1H), 6.96 – 6.92 (m, 1H), 6.91 (t, *J* = 2.2 Hz, 1H), 6.74 – 6.70 (m, 1H), 5.56 (dt, *J* = 15.8, 1.3 Hz, 1H), 5.42 (dt, *J* = 15.8, 6.8 Hz, 1H), 3.80 (s, 3H), 3.09 (dd, *J* = 6.8, 1.2 Hz, 2H), 2.02 – 1.94 (m, 2H), 1.87 – 1.78 (m, 2H), 1.59 – 1.37 (m, 6H). ¹³**C NMR (126 MHz, Chloroform-***d***):** δ 177.1, 159.7, 149.1, 143.8, 129.3, 119.4, 119.3, 113.6, 110.5, 55.3, 44.4, 37.9, 36.3, 26.4, 22.7.

HRMS (ESI-TOF): calculated for C₁₇H₂₁O₃⁻ [M-H]⁻: 273.1493; Found 273.1496.

Compound 13

(E)-4-(1-(3,4,5-trimethoxyphenyl)cyclohexyl)but-3-enoic acid

14.7 mg, 44% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 5-iodo-1,2,3-trimethoxybenzene (44.1 mg, 0.15 mmol).

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 6.58 (s, 2H), 5.55 (d, *J* = 16.0 Hz, 1H), 5.48 (dt, *J* = 15.8, 6.3 Hz, 1H), 3.84 (s, 6H), 3.83 (s, 3H), 3.13 (d, *J* = 6.2 Hz, 2H), 1.96 – 1.79 (m, 4H), 1.63 – 1.48 (m, 6H).
¹³C NMR (126 MHz, Chloroform-*d*): δ 177.7, 152.9, 143.4, 143.4, 136.2, 119.8, 104.3, 61.0, 56.3, 44.6, 38.0, 36.6, 26.3, 22.7.

HRMS (ESI-TOF): calculated for C₁₉H₂₆NaO₅⁺ [M+Na]⁺: 357.1672; Found 357.1672.

Compound 14

(E)-4-(1-(3-(1-adamantyl)-4-methoxyphenyl)cyclohexyl)but-3-enoic acid

20.0 mg, 49% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-(5-bromo-2-methoxyphenyl)adamantane (48.2 mg, 0.15 mmol). **Physical State:** colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.20 (d, *J* = 2.4 Hz, 1H), 7.13 (dd, *J* = 8.5, 2.4 Hz, 1H), 6.80 (d, *J* = 8.5 Hz, 1H), 5.55 (d, *J* = 15.9 Hz, 1H), 5.45 (dt, *J* = 15.8, 6.7 Hz, 1H), 3.81 (s, 3H), 3.10 (d, *J* = 6.6 Hz, 2H), 2.10 – 2.04 (m, 9H), 1.92 – 1.82 (m, 4H), 1.76 (s, 6H), 1.64 – 1.40 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.2, 156.8, 144.1, 138.9, 138.0, 125.4, 124.7, 119.0, 111.2, 55.0, 43.9, 40.7, 38.2, 37.3, 36.5, 29.3, 26.5, 22.8.

HRMS (ESI-TOF): calculated for $C_{27}H_{36}NaO_3^+$ [M+Na]⁺: 431.2557; Found 431.2560.

Compound 15

(E)-4-(1-(4-ethoxyphenyl)cyclohexyl)but-3-enoic acid

18.5 mg, 64% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-ethoxy-4-iodobenzene (37.2 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.26 – 7.20 (m, 2H), 6.87 – 6.82 (m, 2H), 5.56 (dt, *J* = 15.9, 1.4 Hz, 1H), 5.37 (dt, *J* = 15.8, 6.9 Hz, 1H), 4.02 (q, *J* = 7.0 Hz, 2H), 3.08 (dd, *J* = 6.9, 1.3 Hz, 2H), 2.00 – 1.90 (m, *J* = 11.7, 8.2, 3.1 Hz, 2H), 1.85 – 1.75 (m, 2H), 1.60 – 1.37 (m, 9H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.3, 156.9, 144.4, 139.0, 127.9, 118.9, 114.2, 63.4, 43.7, 38.1, 36.4, 26.5, 22.6, 15.1.

HRMS (ESI-TOF): calculated for C₁₈H₂₃O₃⁻ [M-H]⁻: 287.1652; Found 287.1653.

Compound 16

(E)-4-(1-(4-(diphenylamino)phenyl)cyclohexyl)but-3-enoic acid Ph₂N

26.3 mg, 64% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 4-iodo-N,N-diphenylaniline (55.7 mg, 0.15 mmol).

24.6 mg, 60% yield. Following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 4-bromo-N,N-diphenylaniline (48.6 mg, 0.15 mmol).

Physical State: pale yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.25 – 7.15 (m, 6H), 7.10 – 7.05 (m, 4H), 7.02 – 6.95 (m, 4H), 5.57 (dt, *J* = 15.8, 1.3 Hz, 1H), 5.44 (dt, *J* = 15.9, 6.8 Hz, 1H), 3.11 (dd, *J* = 6.7, 1.2 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.87 – 1.78 (m, 2H), 1.61 – 1.44 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 175.9, 148.0, 145.4, 143.9, 129.3, 127.6, 124.2, 123.8, 122.6, 119.3, 43.9, 37.8, 36.4, 26.5, 22.7.

HRMS (ESI-TOF): calculated for $C_{28}H_{26}NO_2^{-1}$ [M-H]⁻: 410.2124; Found 410.2126.

Compound 17

(E)-4-(1-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenyl)cyclohexyl)but-3-enoic acid

31.3 mg, 73% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and tert-butyl 4-(4-iodophenyl)piperazine-1-carboxylate (58.2 mg, 0.15 mmol). **Physical State:** orange oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.25 – 7.21 (m, 2H), 6.91 – 6.86 (m, 2H), 5.54 (dt, *J* = 15.8, 1.3 Hz, 1H), 5.38 (dt, *J* = 15.8, 6.9 Hz, 1H), 3.57 (t, *J* = 5.2 Hz, 4H), 3.11 (t, *J* = 5.1 Hz, 4H), 3.07 (dd, *J* = 6.9, 1.2 Hz, 2H), 2.00 – 1.91 (m, 2H), 1.84 – 1.72 (m, 2H), 1.55 – 1.35 (m, 15H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.6, 154.9, 148.9, 144.1, 138.9, 127.7, 119.0, 116.5, 80.1, 49.6, 44.1, 43.6, 38.1, 36.3, 28.6, 26.5, 22.6.

HRMS (ESI-TOF): calculated for C₂₅H₃₅N₂O₄⁻ [M-H]⁻: 427.2601; Found 427.2602.

Compound 18

(E)-4-(1-(naphthalen-2-yl)cyclohexyl)but-3-enoic acid

16.2 mg, 55% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 2-iodonaphthalene (38.11 mg, 0.15 mmol).

19.7 mg, 67% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 2-bromonaphthalene (31.1 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.83 – 7.76 (m, 4H), 7.50 – 7.41 (m, 3H), 5.66 (d, *J* = 15.8 Hz, 1H), 5.45 (dt, *J* = 15.8, 6.9 Hz, 1H), 3.10 (dd, *J* = 7.0, 1.3 Hz, 2H), 2.18 – 2.07 (m, 2H), 1.99 – 1.88 (m, 2H), 1.66 – 1.40 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.1, 144.5, 143.9, 133.6, 131.9, 128.1, 127.9, 127.5, 126.0, 125.9, 125.6, 125.1, 119.7, 44.4, 38.1, 36.3, 26.5, 22.7.

HRMS (ESI-TOF): calculated for C₂₀H₂₁O₂⁻ [M-H]⁻: 293.1549; Found 293.1547.

Compound 19

Benzyl (2-formyl-4,5-dimethoxyphenyl)carbamateyl)cyclohexyl)but-3-enoic acid

14.2 mg, 37% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and tert-butyl 6-bromoindoline-1-carboxylate (44.7 mg, 0.15 mmol). **Physical State:** pale yellow oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 9.05 (br s, 1H), 7.91 – 7.50 (br s, 0.5H), 7.48 – 7.27 (br s, 0.5H), 7.16 – 7.05 (m, 2H), 5.53 (d, *J* = 15.8 Hz, 1H), 5.38 (dt, *J* = 15.1, 6.8 Hz, 1H), 3.96 (br s, 2H), 3.15 – 2.97 (m, 4H), 2.00 – 1.89 (m, 2H), 1.86 – 1.72 (m, 2H), 1.62 – 1.42 (m, 15H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.2, 152.9 (152.7), 144.1, 141.1, 140.8 (139.9), 131.9 (131.0), 125.9, 123.6 (123.3), 119.1, 114.4, 81.5 (80.3), 47.8 (47.7), 43.8, 38.4, 36.4, 28.6, 27.7 (27.2), 26.4, 22.6.

Extra splitting due to the existence of rotamerism.

HRMS (ESI-TOF): calculated for C₂₃H₃₀NO₄⁻ [M-H]⁻: 384.2181; Found 384.2180.

Compound 20

(E)-4-(1-(4-morpholinophenyl)cyclohexyl)but-3-enoic acid

21.4 mg, 65% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 4-(4-iodophenyl)morpholine (43.4 mg, 0.15 mmol).

Physical State: pale yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.26 – 7.19 (m, 2H), 6.90 – 6.83 (m, 2H), 5.55 (dt, *J* = 15.7, 1.4 Hz, 1H), 5.38 (dt, *J* = 15.8, 6.9 Hz, 1H), 3.88 – 3.83 (m, 4H), 3.18 – 3.12 (m, 4H), 3.07 (dd, *J* = 6.9, 1.4 Hz, 2H), 2.03 – 1.91 (m, 2H), 1.86 – 1.74 (m, 2H), 1.57 – 1.36 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 177.5, 149.0, 144.3, 138.5, 127.7, 118.9, 115.6, 67.1, 49.5, 43.6, 38.1, 36.3, 26.5, 22.7.

HRMS (ESI-TOF): calculated for $C_{20}H_{28}NO_3^+[M+H]^+$: 330.2064; Found 330.2065.

Compound 21

(E)-4-(1-(4-(methoxycarbonyl)phenyl)cyclohexyl)but-3-enoic acid

17.8 mg, 59% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and methyl 4-bromobenzoate (32.3 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.99 – 7.95 (m, 2H), 7.43 – 7.39 (m, 2H), 5.57 (dt, *J* = 15.7, 1.4 Hz, 1H), 5.39 (dt, *J* = 15.8, 6.9 Hz, 1H), 3.90 (s, 3H), 3.08 (dd, *J* = 6.9, 1.4 Hz, 2H), 2.06 – 1.96 (m, 2H), 1.89 – 1.78 (m, 2H), 1.63 – 1.54 (m, 2H), 1.51 – 1.36 (m, 4H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 177.3, 167.3, 152.7, 143.3, 129.7, 127.7, 127.0, 120.1, 52.1, 44.7, 37.9, 36.3, 26.3, 22.6.

HRMS (ESI-TOF): calculated for C₁₈H₂₁O₄⁻ [M-H]⁻: 301.1445; Found 301.1445.

Compound 22

(E)-4-(1-(1-oxo-2,3-dihydro-1H-inden-5-yl)cyclohexyl)but-3-enoic acid

19.9 mg, 67% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 5-bromo-2,3-dihydro-1H-inden-1-one (31.7 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.69 (d, *J* = 8.2 Hz, 1H), 7.46 (d, *J* = 1.6 Hz, 1H), 7.38 (dd, *J* = 8.2, 1.6 Hz, 1H), 5.62 – 5.51 (m, 1H), 5.44 (dt, *J* = 15.8, 6.8 Hz, 1H), 3.15 – 3.04 (m, 4H), 2.72 – 2.60 (m, 2H), 2.08 – 1.95 (m, 2H), 1.93 – 1.81 (m, 2H), 1.67 – 1.34 (m, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 207.1, 177.1, 155.8, 155.1, 143.0, 135.0, 126.6, 125.0, 123.6, 120.4, 45.0, 37.9, 36.7, 36.4, 26.3, 26.1, 22.6.

HRMS (ESI-TOF): calculated for C₁₉H₂₁O₃⁻ [M-H]⁻: 297.1495; Found 297.1496.

Compound 23

(E)-4-(1-(3-acetylphenyl)cyclohexyl)but-3-enoic acid

16.0 mg, 56% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-(3-bromophenyl)ethan-1-one (29.9 mg, 0.15 mmol).

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.97 (d, J = 2.1 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 5.58 (d, J = 15.9 Hz, 1H), 5.42 (dt, J = 15.1, 6.9 Hz, 1H), 3.09 (d, J = 6.9 Hz, 2H), 2.60 (s, 3H), 2.02 – 1.97 (m, 2H), 1.92 – 1.84 (m, 2H), 1.62 – 1.36 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 198.8, 177.8, 148.0, 143.4, 137.3, 132.0, 128.6, 126.8, 126.2, 120.2, 44.4, 38.0, 36.4, 26.8, 26.3, 22.6.

HRMS (ESI-TOF): calculated for C₁₈H₂₁O₃⁻ [M-H]⁻: 285.1498; Found 285.1496.

Compound 24

(E)-4-(1-(4-fluorophenyl)cyclohexyl)but-3-enoic acid

14.2 mg, 54% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-fluoro-4-iodobenzene (33.3 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (500 MHz, Chloroform-***d***):** δ 7.32 – 7.26 (m, 2H), 7.03 – 6.95 (m, 2H), 5.56 (dt, *J* = 15.8, 1.3 Hz, 1H), 5.37 (dt, *J* = 15.8, 6.9 Hz, 1H), 3.09 (dd, *J* = 7.0, 1.3 Hz, 2H), 2.01 – 1.92 (m, 2H), 1.86 – 1.78 (m, 2H), 1.59 – 1.37 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 176.9, 161.1 (*J* = 244.8 Hz), 143.9, 142.8, 128.5 (*J* = 7.7 Hz), 119.5, 115.0 (*J* = 20.9 Hz), 43.9, 37.8, 36.5, 26.4, 22.6.

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -118.0.

HRMS (ESI-TOF): calculated for $C_{16}H_{18}FO_2^{-1}$ [M-H]⁻: 261.1295; Found 261.1296.

Compound 25

(E)-4-(1-(3-chlorophenyl)cyclohexyl)but-3-enoic acid

19.8 mg, 71% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 1-bromo-3-chlorobenzene (28.7 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.33 – 7.30 (m, 1H), 7.24 – 7.21 (m, 2H), 7.16 (dt, *J* = 6.6, 2.3 Hz, 1H), 5.60 – 5.49 (m, 1H), 5.41 (dt, *J* = 15.9, 6.8 Hz, 1H), 3.10 (dd, *J* = 6.8, 1.3 Hz, 2H), 2.00 – 1.91 (m, 2H), 1.87 – 1.78 (m, 2H), 1.61 – 1.36 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.2, 149.5, 143.3, 134.3, 129.6, 127.3, 126.0, 125.2, 120.0, 44.4, 38.0, 36.3, 26.3, 22.6.

HRMS (ESI-TOF): calculated for C₁₆H₁₈ClO₂⁻ [M-H]⁻: 277.1001; Found 277.1001.

Compound 26 (E)-4-(1-(benzo[b]thiophen-2-yl)cyclohexyl)but-3-enoic acid

9.9 mg, 33% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 2-bromobenzo[b]thiophene (31.9 mg, 0.15 mmol).

Physical State: yellow solid.

m.p.: 125 − 126 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.76 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.32 – 7.22 (m, 2H), 7.07 (d, *J* = 0.8 Hz, 1H), 5.69 (dt, *J* = 15.8, 1.3 Hz, 1H), 5.52 (dt, *J* = 15.7, 6.9 Hz, 1H), 3.10 (dd, *J* = 7.0, 1.3 Hz, 2H), 2.15 – 2.00 (m, 2H), 1.95 – 1.84 (m, 2H), 1.64 – 1.56 (m, 4H), 1.51 – 1.40 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.4, 154.2, 143.1, 140.2, 139.3, 124.1, 123.7, 123.2, 122.3, 120.06, 120.0, 44.0, 37.8, 37.8, 26.0, 22.6.

HRMS (ESI-TOF): calculated for C₁₈H₁₉O₂S⁻ [M-H]⁻: 299.1111; Found 299.1111.

Compound 27

(E)-4-(1-(benzofuran-2-yl)cyclohexyl)but-3-enoic acid

10.2 mg, 36% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 2-iodobenzofuran (36.6 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.52 – 7.44 (m, 1H), 7.44 – 7.38 (m, 1H), 7.23 – 7.14 (m, 2H), 6.45 (d, *J* = 0.9 Hz, 1H), 5.68 (dt, *J* = 15.8, 1.4 Hz, 1H), 5.47 (dt, *J* = 15.8, 6.9 Hz, 1H), 3.08 (dd, *J* = 6.9, 1.4 Hz, 2H), 2.20 – 2.11 (m, 2H), 1.80 – 1.71 (m, 2H), 1.65 – 1.55 (m, 2H), 1.54 – 1.38 (m, 4H). ¹³**C NMR (126 MHz, Chloroform-***d***):** δ 177.0, 163.1, 154.7, 141.1, 128.9, 123.3, 122.5, 120.6, 120.4, 111.1, 102.4, 42.7, 37.8, 34.9, 26.1, 22.5.

HRMS (ESI-TOF): calculated for C₁₈H₁₉O₃⁻ [M-H]⁻: 283.1339; Found 283.1340.

Compound 28

(E)-4-(1-(thiophen-2-yl)cyclohexyl)but-3-enoic acid

9.5 mg, 38% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 2-iodothiophene (31.5 mg, 0.15 mmol).

Physical State: pale yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.16 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.94 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.83 (dd, *J* = 3.6, 1.2 Hz, 1H), 5.65 (dt, *J* = 15.7, 1.4 Hz, 1H), 5.45 (dt, *J* = 15.8, 6.9 Hz, 1H), 3.09 (dd, *J* = 7.0, 1.4 Hz, 2H), 2.00 – 1.93 (m, 2H), 1.92 – 1.83 (m, 2H), 1.61 – 1.40 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.6, 153.7, 143.6, 123.4, 123.2, 119.6, 43.4, 38.2, 37.9, 26.1, 22.6.

HRMS (ESI-TOF): calculated for C₁₄H₁₇O₂S⁻ [M-H]⁻: 249.0954; Found 249.0955.

Compound 29

(E)-4-(1-(thiophen-3-yl)cyclohexyl)but-3-enoic acid

12.3 mg, 49% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 3-iodothiophene (31.5 mg, 0.15 mmol).

Physical State: pale yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.26 – 7.24 (m, 1H), 7.01 – 6.97 (m, 2H), 5.61 (dt, *J* = 15.8, 1.4 Hz, 1H), 5.38 (dt, *J* = 15.8, 7.0 Hz, 1H), 3.08 (dd, *J* = 6.9, 1.4 Hz, 2H), 1.97 – 1.88 (m, 2H), 1.85 – 1.77 (m, 2H), 1.58 – 1.37 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.7, 149.0, 143.5, 127.2, 125.2, 119.9, 119.2, 42.9, 38.0, 37.0, 26.3, 22.6.

HRMS (ESI-TOF): calculated for C₁₄H₁₇O₂S⁻ [M-H]⁻: 249.0954; Found 249.0955.

Compound 30

(E)-4-(1-(3-methylthiophen-2-yl)cyclohexyl)but-3-enoic acid

7.9 mg, 30% yield. Prepared following the General Procedure from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 2-iodo-3-methylthiophene (33.6 mg, 0.15 mmol).Physical State: pale yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.02 (d, *J* = 5.1 Hz, 1H), 6.76 (d, *J* = 5.1 Hz, 1H), 5.67 (dt, *J* = 15.7, 1.4 Hz, 1H), 5.44 (dt, *J* = 15.7, 7.0 Hz, 1H), 3.11 (dd, *J* = 7.0, 1.4 Hz, 2H), 2.19 (s, 3H), 2.06 – 1.98 (m, 2H), 1.98 – 1.89 (m, 2H), 1.66 – 1.45 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.9, 144.7, 141.0, 132.8, 132.5, 120.6, 119.8, 43.7, 38.00, 37.1, 26.2, 22.7, 16.4.

HRMS (ESI-TOF): calculated for $C_{15}H_{19}O_2S^{-1}[M-H]^{-1}$: 263.1108; Found 263.1111.

Compound 31

(E)-4-(1-(quinolin-5-yl)cyclohexyl)but-3-enoic acid

8.0 mg, 27% yield. Prepared following the **General Procedure** (except modification of extraction: extract the first time after aqueous NH₄Cl added, second time when pH = 5 after adding 1 N HCl, third time when pH = 3) from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 5-bromoquinoline (31.2 mg, 0.15 mmol).

Physical State: colorless oil.

¹H NMR (600 MHz, Methanol- d_4) δ 8.75 (dd, J = 10.0, 6.5 Hz, 2H), 7.91 (d, J = 8.2 Hz, 1H), 7.78 – 7.75 (m, 1H), 7.73 (t, J = 7.8 Hz, 1H), 7.42 (dd, J = 8.8, 4.2 Hz, 1H), 6.38 (d, J = 15.9 Hz, 1H), 5.21 (dt, J = 16.0, 7.1 Hz, 1H), 2.99 (d, J = 7.1 Hz, 2H), 2.22 – 2.17 (m, 2H), 2.08 – 2.02 (m, 2H), 1.82 – 1.74 (m, 2H), 1.69 – 1.64 (m, 1H), 1.64 – 1.58 (m, 2H), 1.46 – 1.40 (m, 1H).

¹³C NMR (126 MHz, Methanol-*d*₄) δ 175.6, 150.4, 149.7, 147.0, 143.4, 139.1, 130.2, 128.3, 127.7, 126.5, 124.3, 120.4, 45.8, 40.3, 39.0, 27.4, 23.6.

HRMS (ESI-TOF): calculated for $C_{19}H_{22}NO_2^+$ [M+H]⁺: 296.1645; Found 296.1647.

Compound 32

(E)-4-(1-(4-oxo-4H-chromen-6-yl)cyclohexyl)but-3-enoic acid

14.0 mg, 45% yield. Prepared following the **General Procedure** from 4-cyclohexylidenebutanoic acid (16.8 mg, 0.1 mmol) and 6-bromo-4H-chromen-4-one (33.8 mg, 0.15 mmol).

Physical State: pale yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.18 (d, J = 2.5 Hz, 1H), 7.84 (d, J = 6.0 Hz, 1H), 7.67 (dd, J = 8.9, 2.5 Hz, 1H), 7.41 (d, J = 8.9 Hz, 1H), 6.35 (d, J = 6.0 Hz, 1H), 5.60 (dt, J = 15.9, 1.4 Hz, 1H), 5.42 (dt, J = 15.9, 7.0 Hz, 1H), 3.09 (dd, J = 6.9, 1.3 Hz, 2H), 2.11 – 2.01 (m, 2H), 2.01 – 1.85 (m, 2H), 1.62 – 1.37 (m, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.2, 175.8, 155.4, 155.0, 144.9, 143.2, 133.5, 124.5, 123.4, 120.5, 118.2, 113.0, 44.4, 37.8, 36.4, 26.3, 22.6.
HRMS (ESI-TOF): calculated for C₁₉H₁₉O₄⁻ [M-H]⁻: 311.1288; Found 311.1289.

Compound 33

(E)-4-(1-(4-methoxy-2-methylphenyl)cyclobutyl)but-3-enoic acid MeO

11.0 mg, 42% yield. Prepared following the **General Procedure** from 4-cyclobutylidenebutanoic acid (14.0 mg, 0.1 mmol) and 1-iodo-4-methoxy-2-methylbenzene (37.2 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 6.95 (d, *J* = 8.4 Hz, 1H), 6.70 (dd, *J* = 8.5, 2.9 Hz, 1H), 6.64 (d, *J* = 2.9 Hz, 1H), 5.96 (dt, *J* = 15.4, 1.5 Hz, 1H), 5.30 (dt, *J* = 15.6, 7.0 Hz, 1H), 3.78 (d, *J* = 2.1 Hz, 3H), 3.08 (dd, *J* = 7.0, 1.4 Hz, 2H), 2.52 – 2.42 (m, 2H), 2.31 (dt, *J* = 8.5, 2.7 Hz, 2H), 2.15 – 2.07 (m, 4H), 1.82 – 1.73 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.2, 157.9, 140.7, 138.4, 137.5, 127.4, 117.7, 116.6, 110.7, 55.3, 49.2, 37.7, 34.0, 20.4, 16.5.

HRMS (ESI-TOF): calculated for C₁₆H₁₉O₃⁻ [M-H]⁻: 259.1338; Found 259.1340.

Compound 34

(E)-4-(1-(2,6-dimethoxyphenyl)cyclobutyl)but-3-enoic acid

13.3 mg, 48% yield. Prepared following the **General Procedure** from 4-cyclobutylidenebutanoic acid (14.0 mg, 0.1 mmol) and 2-iodo-1,3-dimethoxybenzene (39.6 mg, 0.15 mmol).

Physical State: white solid.

m.p.: 118 − 119 °C.

¹H NMR (600 MHz, Chloroform-*d*): δ 7.11 (t, *J* = 8.1 Hz, 1H), 6.52 (d, *J* = 8.1 Hz, 2H), 6.02 (d, *J* = 15.3 Hz, 1H), 5.52 (dt, *J* = 14.7, 6.8 Hz, 1H), 3.74 (s, 6H), 3.09 (d, *J* = 6.9 Hz, 2H), 2.50 – 2.42 (m, 2H), 2.42 – 2.36 (m, 2H), 2.00 – 1.92 (m, 1H), 1.70 – 1.63 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.4, 158.3, 139.5, 127.1, 124.2, 116.7, 104.8, 55.7, 46.9, 38.0, 35.5, 17.9.

HRMS (ESI-TOF): calculated for C₁₆H₁₉O₄⁻ [M-H]⁻: 275.1291; Found 275.1289.

Compound 35

(E)-4-(3-(4-methoxy-2-methylphenyl)oxetan-3-yl)but-3-enoic acid

13.1 mg, 50% yield. Prepared following the **General Procedure** from 4-(oxetan-3-ylidene)butanoic acid (14.2 mg, 0.1 mmol) and 1-iodo-4-methoxy-2-methylbenzene (37.2 mg, 0.15 mmol). **Physical State:** colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 6.78 – 6.69 (m, 3H), 6.40 (dt, *J* = 15.3, 1.4 Hz, 1H), 5.19 (dt, *J* = 15.4, 7.0 Hz, 1H), 5.14 (d, *J* = 5.9 Hz, 2H), 4.69 (d, *J* = 5.8 Hz, 2H), 3.80 (s, 3H), 3.11 (dd, *J* = 7.0, 1.4 Hz, 2H), 1.96 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 176.6, 158.6, 139.0, 137.2, 133.0, 127.8, 121.4, 116.8, 111.2, 81.9, 55.3, 49.8, 37.4, 19.7.

HRMS (ESI-TOF): calculated for C₁₅H₁₇O₄⁻ [M-H]⁻: 261.1135; Found 261.1132.

Compound 36

(E)-4-(3-(2,6-dimethoxyphenyl)oxetan-3-yl)but-3-enoic acid

13.1 mg, 47% yield. Prepared following the **General Procedure** from 4-(oxetan-3-ylidene)butanoic acid (14.2 mg, 0.1 mmol) and 2-iodo-1,3-dimethoxybenzene (39.6 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.19 (t, *J* = 8.4 Hz, 1H), 6.54 (d, *J* = 8.4 Hz, 2H), 6.27 (dt, *J* = 15.3, 1.4 Hz, 1H), 5.46 (dt, *J* = 15.4, 7.0 Hz, 1H), 5.03 (d, *J* = 6.8 Hz, 2H), 4.63 (d, *J* = 6.9 Hz, 2H), 3.73 (s, 6H), 3.11 (dd, *J* = 6.9, 1.5 Hz, 2H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 176.8, 157.6, 137.3, 128.4, 119.6, 118.6, 104.4, 81.7, 55.8, 47.3, 37.7.

HRMS (ESI-TOF): calculated for C₁₅H₁₇O₅⁻ [M-H]⁻: 277.1083; Found 277.1081.

Compound 37

(E)-4-(1-(4-methoxy-2-methylphenyl)cyclopentyl)but-3-enoic acid

13.9 mg, 51% yield. Prepared following the General Procedure from 4-cyclopentylidenebutanoic acid (15.4 mg, 0.1 mmol) and 1-iodo-4-methoxy-2-methylbenzene (37.2 mg, 0.15 mmol).
Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.25 – 7.21 (m, 1H), 6.70 – 6.65 (m, 2H), 5.64 (dt, *J* = 15.6, 1.4 Hz, 1H), 5.29 (dt, *J* = 15.5, 7.0 Hz, 1H), 3.78 (s, 3H), 3.05 (dd, *J* = 7.0, 1.4 Hz, 2H), 2.30 (s, 3H), 2.16 – 2.09 (m, 2H), 1.95 – 1.86 (m, 2H), 1.75 – 1.66 (m, 4H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.0, 157.8, 142.0, 139.1, 137.9, 127.7, 118.2, 117.7, 110.2, 55.2, 53.1, 38.0, 37.8, 23.4, 22.4.

HRMS (ESI-TOF): calculated for C₁₇H₂₁O₃⁻ [M-H]⁻: 273.1496; Found 273.1496.

Compound 38

(E)-4-(1-(2,6-dimethoxyphenyl)cyclopentyl)but-3-enoic acid

13.8 mg, 48% yield. Prepared following the **General Procedure** from 4-cyclopentylidenebutanoic acid (15.4 mg, 0.1 mmol) and 2-iodo-1,3-dimethoxybenzene (39.6 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.12 (t, *J* = 8.2 Hz, 1H), 6.55 (d, *J* = 8.3 Hz, 2H), 5.79 (dt, *J* = 15.5, 1.4 Hz, 1H), 5.39 (dt, *J* = 15.5, 7.0 Hz, 1H), 3.75 (s, 6H), 3.03 (dd, *J* = 7.1, 1.3 Hz, 2H), 2.65 – 2.57 (m, 2H), 1.93 – 1.82 (m, 2H), 1.62 – 1.56 (m, 4H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.9, 159.5, 141.3, 127.3, 124.7, 116.8, 106.1, 56.0, 52.0, 38.6, 38.1, 23.0.

HRMS (ESI-TOF): calculated for C₁₇H₂₁O₄⁻ [M-H]⁻: 289.1443; Found 289.1445.

Compound 39

(E)-4-(4-(4-methoxy-2-methylphenyl)tetrahydro-2H-pyran-4-yl)but-3-enoic acid MeO

14.5 mg, 50% yield. Prepared following the **General Procedure** from 4-(tetrahydro-4H-pyran-4-ylidene)butanoic acid (17.0 mg, 0.1 mmol) and 1-iodo-4-methoxy-2-methylbenzene (37.2 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 7.25 – 7.22 (m, 1H), 6.74 – 6.68 (m, 2H), 5.89 (d, *J* = 15.7 Hz, 1H), 5.38 – 5.27 (m, 1H), 3.82 – 3.74 (m, 7H), 3.09 (dd, *J* = 7.0, 2.1 Hz, 2H), 2.32 (d, *J* = 2.4 Hz, 3H), 2.18 – 2.12 (m, 2H), 2.06 – 2.00 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 175.9, 157.9, 141.5, 138.7, 136.2, 127.9, 121.1, 118.9, 110.3, 64.5, 55.2, 42.1, 37.7, 37.2, 23.1.

HRMS (ESI-TOF): calculated for C₁₇H₂₁O₄⁻ [M-H]⁻: 289.1446; Found 289.1445.

Compound 40 (E)-4-(4-(2,4-dimethoxyphenyl)tetrahydro-2H-pyran-4-yl)but-3-enoic acid MeO

16.5 mg, 54% yield. Prepared following the **General Procedure** from 4-(tetrahydro-4H-pyran-4-ylidene)butanoic acid (17.0 mg, 0.1 mmol) and 1-iodo-2,4-dimethoxybenzene (39.6 mg, 0.15 mmol). **Physical State:** colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.16 – 7.09 (m, 1H), 6.49 – 6.39 (m, 2H), 5.85 (dt, *J* = 15.8, 1.4 Hz, 1H), 5.37 (dt, *J* = 15.9, 7.1 Hz, 1H), 3.80 (s, 3H), 3.77 – 3.74 (m, 4H), 3.73 (s, 3H), 3.08 (dd, *J* = 7.0, 1.4 Hz, 2H), 2.23 – 2.15 (m, 2H), 2.14 – 2.04 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.2, 159.5, 159.2, 140.9, 127.5, 127.2, 120.2, 103.7, 100.2, 64.7, 55.4, 55.2, 40.8, 38.1, 35.8.

HRMS (ESI-TOF): calculated for C₁₇H₂₁O₅⁻ [M-H]⁻: 305.1394; Found 305.1394.

Compound 41

(E)-5-(4-methoxy-2-methylphenyl)-5-methylhex-3-enoic acid

12.4 mg, 50% yield. Prepared following the **General Procedure** from 5-methylhex-4-enoic acid (12.8 mg, 0.1 mmol) and 1-iodo-4-methoxy-2-methylbenzene (37.2 mg, 0.15 mmol).

Physical State: colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 7.29 – 7.26 (m, 1H), 6.71 – 6.65 (m, 2H), 5.79 (dt, *J* = 15.6, 1.4 Hz, 1H), 5.43 (dt, *J* = 15.6, 7.0 Hz, 1H), 3.78 (s, 3H), 3.10 (dd, *J* = 7.1, 1.4 Hz, 2H), 2.35 (s, 3H), 1.43 (s, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.1, 157.8, 145.1, 138.8, 138.0, 127.2, 118.1, 117.5, 110.3, 55.2, 40.8, 37.9, 29.3, 22.6.

HRMS (ESI-TOF): calculated for C₁₅H₁₉O₃⁻ [M-H]⁻: 247.1339; Found 247.1340.

Compound 42

(E)-5-(2,4-dimethoxyphenyl)-5-methylhex-3-enoic acid

CO₂H MeO OM Mé Ме

12.1 mg, 46% yield. Prepared following the **General Procedure** from 5-methylhex-4-enoic acid (12.8 mg, 0.1 mmol) and 1-iodo-2,4-dimethoxybenzene (39.6 mg, 0.15 mmol). **Physical State:** colorless oil.

¹**H NMR (500 MHz, Chloroform-***d***):** δ 7.16 (d, *J* = 8.5 Hz, 1H), 6.46 (d, *J* = 2.6 Hz, 1H), 6.42 (dd, *J* = 8.5, 2.6 Hz, 1H), 5.92 (dt, *J* = 15.7, 1.4 Hz, 1H), 5.42 (dt, *J* = 15.6, 7.1 Hz, 1H), 3.79 (s, 3H), 3.76 (s, 3H), 3.09 (dd, *J* = 7.1, 1.4 Hz, 2H), 1.42 (s, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 176.4, 159.5, 159.1, 145.3, 128.8, 127.4, 116.7, 103.7, 100.0, 55.4, 55.3, 39.6, 38.0, 27.8.

HRMS (ESI-TOF): calculated for C₁₅H₁₉O₄⁻ [M-H]⁻: 263.1290; Found 263.1289.

Compound 43

(E)-5-(2-methoxy-5-methylphenyl)-5-methylhex-3-enoic acid

136 mg, 55% yield. Prepared following the **General Procedure** from 5-methylhex-4-enoic acid (128 mg, 1.0 mmol) and 2-iodo-1-methoxy-4-methylbenzene (372 mg, 1.5 mmol).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.06 (d, *J* = 2.2 Hz, 1H), 7.00 (dd, *J* = 8.2, 1.6 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 5.95 (dt, *J* = 15.7, 1.4 Hz, 1H), 5.43 (dt, *J* = 15.7, 7.1 Hz, 1H), 3.75 (s, 3H), 3.09 (dd, *J* = 7.1, 1.4 Hz, 2H), 2.28 (s, 3H), 1.45 (s, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.1, 156.1, 145.2, 136.0, 129.6, 127.9, 127.8, 116.7, 112.2, 55.5, 40.0, 38.1, 27.7, 20.9.

HRMS (ESI-TOF): calculated for C₁₅H₁₉O₃⁻ [M-H]⁻: 247.1339; Found 247.1340.

Compound 45

(E)-5-(2-methoxy-5-methylphenyl)-4,5-dimethylhex-3-enoic acid

9.7 mg, 37% yield. Prepared following the **General Procedure** with 4,5-dimethylhex-4-enoic acid (14.2 mg, 0.1 mmol, 1.0 equiv), 2-iodo-1-methoxy-4-methylbenzene (74.4 mg, 0.3 mmol, 3.0 equiv), $Pd_2(dba)_3$ ·CHCl₃ (10.4 mg, 10 mol%).

Physical State: colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.08 (d, *J* = 2.2 Hz, 1H), 7.01 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 5.44 (t, *J* = 7.6 Hz, 1H), 3.71 (s, 3H), 3.14 (d, *J* = 7.5 Hz, 2H), 2.30 (s, 3H), 1.48 (s, 3H), 1.43 (s, 6H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 174.5, 155.7, 150.2, 136.4, 130.0, 128.0, 127.8, 112.4, 112.1, 55.9, 43.9, 34.2, 27.5, 21.0, 14.4.

HRMS (ESI-TOF): calculated for $C_{16}H_{21}O_3^-$ [M-H]⁻: 261.1496; Found 261.1496.

Compound 46

4-(1-(2-fluorophenyl)cyclohexyl)butanoic acid

Pd/C (5% Pd, 7.9 mg, 30 wt%) was added to a 25 mL flask containing a solution of compound 8 (26.2 mg, 0.1 mmol) in EtOH (2.0 mL). The flask was evacuated and backfilled with hydrogen for three times, before heated to 75 °C and stirred vigorously for 1 hour with a hydrogen balloon equipped. After cooling to room temperature, the reaction mixture was filtered through a pad of celite. The filtrate was concentrated under vaccum and purified by flash column chromatography (silica gel, acetone/hexanes, 1/20) to afford the title compound **46** (22.1 mg, 84%).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.25 (td, *J* = 8.2, 1.8 Hz, 1H), 7.20 – 7.14 (m, 1H), 7.07 (td, *J* = 7.5, 1.5 Hz, 1H), 7.00 – 6.92 (m, 1H), 2.25 – 2.10 (m, 4H), 1.75 – 1.67 (m, 2H), 1.67 – 1.54 (m, 4H), 1.49 – 1.34 (m, 4H), 1.30 – 1.24 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 179.4, 162.2 (*J* = 248.1 Hz), 133.1 (*J* = 10.7 Hz), 130.0 (*J* = 6.1 Hz), 127.7 (*J* = 9.1 Hz), 123.8 (*J* = 2.9 Hz), 116.7 (*J* = 12.7 Hz), 41.6 (*J* = 3.4 Hz), 39.3, 35.9 (*J* = 3.8 Hz), 34.5, 26.7, 22.6, 19.6.

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -108.6.

HRMS (ESI-TOF): calculated for $C_{16}H_{20}FO_2^{-1}$ [M-H]⁻: 263.1453; Found 263.1455.

Compound 47

4-(1-(2-fluorophenyl)cyclohexyl)butan-1-ol

Compound **46** (50 mg, 0.19 mmol, 1.0 equiv) was dissolved in THF (5.0 mL) and LiAlH₄ (2.5 N in THF, 0.38 mL, 5.0 equiv) was added dropwise at 0 °C under Ar atmosphere. The resulting mixture was allowed to stir at room temperature for 4 hours, before cooled again to 0 °C and added NaOH (1.0 M, 0.5 mL). After stirring, the reaction mixture was filtered, concentrated and purified by flash column chromatography (silica gel, acetone/hexanes, 1/30 to 1/20) to afford the title compound **47** (36 mg, 76%). **Physical State:** colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.25 (td, *J* = 8.1, 1.8 Hz, 1H), 7.20 – 7.13 (m, 1H), 7.07 (td, *J* = 7.5, 1.5 Hz, 1H), 7.00 – 6.92 (m, 1H), 3.52 (t, *J* = 6.6 Hz, 2H), 2.21 – 2.11 (m, 2H), 1.74 – 1.67 (m, 2H), 1.65 – 1.54 (m, 4H), 1.47 – 1.36 (m, 6H), 1.06 – 0.93 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 162.2 (*J* = 248.1 Hz), 133.5 (*J* = 10.7 Hz), 130.1 (*J* = 6.2 Hz), 127.5 (*J* = 9.1 Hz), 123.7 (*J* = 2.9 Hz), 116.6 (*J* = 25.3 Hz), 63.0, 41.8 (*J* = 3.5 Hz), 39.9, 36.1 (*J* = 3.9 Hz), 33.5, 26.8, 22.7, 20.3.

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -108.7.

HRMS (EI-DFS): calculated for C₁₆H₂₃O₁F₁ [M]⁺: 250.1727; Found 250.1719.

Compound 44

(E)-5-(2-(benzyloxy)-5-methylphenyl)-5-methylhex-3-enoic acid

152 mg, 47% yield. Prepared following the **General Procedure** with 1-(benzyloxy)-2-iodo-4methylbenzene^[3] (324 mg, 1.0 mmol, 1.0 equiv) and 5-methylhex-4-enoic acid (192 mg, 1.5 equiv). **Physical State:** colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.43 – 7.35 (m, 4H), 7.32 – 7.28 (m, 1H), 7.11 (d, *J* = 2.0 Hz, 1H), 7.00 – 6.96 (m, 1H), 6.82 (d, *J* = 8.2 Hz, 1H), 5.96 (dt, *J* = 15.7, 1.5 Hz, 1H), 5.40 (dt, *J* = 15.7, 7.0 Hz, 1H), 5.04 (s, 2H), 3.00 (dd, *J* = 7.0, 1.4 Hz, 2H), 2.29 (s, 3H), 1.48 (s, 6H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 178.1, 155.2, 144.7, 137.7, 136.3, 129.7, 128.6, 128.1, 127.8, 127.7, 127.3, 116.8, 112.8, 70.4, 40.0, 38.0, 27.9, 20.9.

HRMS (ESI-TOF): calculated for C₂₁H₂₃O₃⁻ [M-H]⁻: 323.1654; Found 323.1653.

Compound 48

5-(2-hydroxy-5-methylphenyl)-5-methylhexanoic acid

To a 50 mL round-bottom flask containing a solution of compound **44** (32.4 mg, 0.1 mmol, 1.0 equiv) in EtOH (4.0 mL) was added Pd(OH)₂/C (20% Pd, 9.7 mg, 30 wt%) and Et₃SiH (80 μ L, 5.0 equiv). The flask was evacuated and backfilled with hydrogen for three times, before heated to 75 °C and stirred vigorously for 3 hours with a hydrogen balloon equipped. After cooling to room temperature, the reaction mixture was filtered through a pad of celite. The filtrate was concentrated under vaccum and purified by flash column chromatography (silica gel, acetone/hexanes, 1/20 to 1/5) to afford the title compound **48** (20.0 mg, 85%).

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 6.99 (d, J = 2.2 Hz, 1H), 6.86 (dd, J = 8.2, 2.2 Hz, 1H), 6.55 (d, J = 7.9 Hz, 1H), 2.28 – 2.20 (m, J = 7.0 Hz, 5H), 1.93 – 1.84 (m, 2H), 1.39 – 1.30 (m, 8H). ¹³C NMR (126 MHz, Chloroform-*d*): δ 108.1, 152.0, 134.0, 129.7, 129.0, 127.5, 116.6, 40.2, 37.9, 34.7, 28.3, 21.0, 20.9.

HRMS (ESI-TOF): calculated for C₁₄H₁₉O₃⁻ [M-H]⁻: 235.1340; Found 235.1340.

Compound 49

6-(2-hydroxy-5-methylphenyl)-6-methylheptan-2-one

To a solution of compound **51** (29.5 mg, 0.125 mmol, 1.0 equiv) in THF (1.0 mL) was added MeLi (1.3 M in Et₂O, 0.58 mL, 6.0 equiv) quickly in one portion (no more than 3 seconds) at 0 °C under Ar atmosphere. The reaction mixture was stirred at the same temperature for 2 hours before TMSCl (475 μ L, 30 equiv) was added quickly in one portion (no more than 3 seconds).^[4] The mixture was warmed to room temperature, and 1 N HCl (2.0 mL) was added. After stirring for another 30 minutes, the reaction was diluted with water, extracted with Et₂O for three times. The combined organic extracts were dried over anhydrous Na₂SO₄, concentrated and purified by flash column chromatography (silica gel, acetone/hexanes, 1/20 to 1/5) to afford the title compound **52** (15.0 mg, 51%).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 6.99 (d, *J* = 2.2 Hz, 1H), 6.86 (dd, *J* = 8.0, 2.2 Hz, 1H), 6.57 (d, *J* = 7.9 Hz, 1H), 4.90 (br s, 1H), 2.34 (t, *J* = 7.2 Hz, 2H), 2.26 (s, 3H), 2.07 (s, 3H), 1.84 – 1.79 (m, 2H), 1.36 (s, 6H), 1.33 – 1.29 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 210.2, 152.0, 134.3, 129.8, 129.0, 127.5, 116.9, 44.5, 40.3, 37.9, 29.9, 28.4, 21.0, 20.0.

HRMS (ESI-TOF): calculated for $C_{15}H_{21}O_2^{-1}$ [M-H]⁻: 233.1548; Found 233.1547.

Reference

- J. Lei, X. Liu, S. Zhang, S. Jiang, M. Huang, X. Wu, Q. Zhu, Chemistry A European Journal 2015, 21, 6700-6703.
- [2] T. R. Huffman, Y. Wu, A. Emmerich, R. A. Shenvi, Angewandte Chemie International Edition 2019, 58, 2371-2376.
- [3] X. Zhou, Y. He, M. Wang, Y. Ding, *Phosphorus, Sulfur, and Silicon and the Related Elements* **2009**, *184*, 651-659.
- [4] G. M. Rubottom, C. Kim, The Journal of Organic Chemistry 1983, 48, 1550-1552.

NMR Spectra

Compound S1¹H NMR

Compound S1 ¹³C NMR

Compound 3¹³C NMR

Compound 4¹³C NMR

Compound 5¹H NMR

Compound 5¹³C NMR

Compound 6¹H NMR

Compound 6¹³C NMR

Compound 7¹H NMR

Compound 7¹³C NMR

Compound 8¹H NMR

Compound 8¹³C NMR

Compound 8¹⁹F NMR

40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)

Compound 10¹H NMR

8.0 7.5 7.0

6.5

6.0 5.5 5.0

8.5

4.5

3.0

2.5

2.0 1.5

1.0 0.5

0.0 -0.5 -1.0 -1.5

Compound 10¹³C NMR

Compound 11 ¹H NMR

Compound 11 ¹³C NMR

Compound 12 ¹H NMR

Compound 13 ¹H NMR

Compound 13 ¹³C NMR

Compound 14 ¹H NMR

Compound 14 ¹³C NMR

Compound 15 ¹H NMR

Compound 15¹³C NMR

Compound 16¹³C NMR

Compound 17¹H NMR

Compound 18 ¹H NMR

Compound 18¹³C NMR

Compound 19¹H NMR

Compound 19¹³C NMR

Compound 20¹H NMR

70

Compound 20¹³C NMR

Compound 21 ¹H NMR

Compound 21 ¹³C NMR

Compound 22 ¹H NMR

Compound 22 ¹³C NMR

Compound 23 ¹H NMR

Compound 23 ¹³C NMR

Compound 24 ¹H NMR

Compound 24 ¹³C NMR

40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -28 f1 (ppm)

Compound 26 ¹H NMR

Compound 26¹³C NMR

Compound 27 ¹H NMR

Compound 28 ¹H NMR

Compound 28¹³C NMR

Compound 29 ¹H NMR

Compound 29¹³C NMR

Compound 30 ¹H NMR

Compound 30¹³C NMR

Compound 31¹H NMR

Compound 31 ¹³C NMR

Compound 32 ¹H NMR

Compound 32 ¹³C NMR

Compound 33 ¹H NMR

Compound 33 ¹³C NMR

Compound 34 ¹H NMR

Compound 34¹³C NMR

Compound 35 ¹H NMR

Compound 35¹³C NMR

Compound 36 ¹H NMR

Compound 37 ¹H NMR

Compound 37 ¹³C NMR

Compound 38 ¹H NMR

Compound 38¹³C NMR

Compound 39 ¹H NMR

Compound 39¹³C NMR

Compound 40¹H NMR

Compound 40¹³C NMR

Compound 41¹³C NMR

Compound 42 ¹H NMR

Compound 42¹³C NMR

Compound 43 ¹H NMR

Compound 43 ¹³C NMR

Compound 45 ¹H NMR

Compound 45¹³C NMR

Compound 46 ¹H NMR

Compound 46¹³C NMR

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -29 f1 (ppm)

Compound 47 ¹H NMR

Compound 47¹⁹F NMR

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm) Compound 44 ¹H NMR

Compound 48 ¹H NMR

Compound 48¹³C NMR

Compound 49 ¹H NMR

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)