ELECTRONIC SUPPORTING INFORMATION FOR

Imines with rare α -heteroatom substituted amine component generated in situ via Staudinger/aza-Wittig tandem and their application in multicomponent reactions

Polina Paramonova^{*a*}, Ilia Eliseev ^{*b*}, Dmitry Dar'in^{*a,c*} and Olga Bakulina^{*a,**}

^[a] Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034 Russia

^[b] Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia

^[c] Saint Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, 191036 Russia

*Address correspondence to this author at the Institute of Chemistry, Saint Petersburg State University, 26 Universitetskyi prospekt, Peterhof 198504 Russian Federation; phone: +7 904 618 1509, fax: +7 812 428 6939. E-mail: <u>o.bakulina@spbu.ru</u>

Table of contents

Table S1	2
Crystallographic data	3
Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	5
References	56

Table S1

Reaction conditions optimization for *in situ* imine generation from azide **1a** and *p*-anisaldehyde in presence of triphenylphosphine. Dibromomethane was used as internal standard for ¹H NMR spectra.

Entry	Solvent	Temperature, °C	Time, h	Yield, % (NMR)
1	toluene	60	16	70
2	toluene	80	16	81
3	toluene	110	16	67
4	toluene	130	16	68
5	toluene	80	3	69
6	toluene	80	6	68
7	MeCN	80	16	77
8	DMSO	80	16	34
9	DCE	80	16	26
10	DMF	80	16	69

Crystallographic data

Single crystal X-ray data were obtained using an Agilent Technologies SuperNova Atlas diffractometer. Crystals were kept at 100(2) K during data collection. Using Olex2¹, the structure was solved with the SHELXT² structure solution program using Intrinsic Phasing and refined with the SHELXL³ refinement package using Least Squares minimisation. Deposition number 2261122 (**6a**) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service <u>www.ccdc.cam.ac.uk/structures</u>.

Figure S1. ORTEP representation of compound 6a drawn at 50% probability level.

Identification code	1ver0-23431_PPS-376_auto
Empirical formula	$C_{26}H_{20}N_2O_6$
Formula weight	456.458
Temperature/K	100.15
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	8.3756(1)
b/Å	10.9149(2)
c/Å	23.5070(4)
a./°	90
β/°	95.279(2)
γ/°	90
Volume/Å ³	2139.87(6)
Z	4
ρ _{calc} g/cm ³	1.417
μ/mm ⁻¹	0.845
F(000)	955.4
Radiation	Cu Ka ($\lambda = 1.54184$)
20 range for data collection/°	7.56 to 152.48
Index ranges	$-10 \le h \le 9, -9 \le k \le 13, -29 \le l \le 27$
Reflections collected	10915
Independent reflections	4377 [$R_{int} = 0.0413, R_{sigma} = 0.0390$]
	c)

Table S2. Crystal data and structure refinement for 6a.

Data/restraints/parameters	4377/0/309
Goodness-of-fit on F ²	1.058
Final R indexes [I>=2σ (I)]	$R_1 = 0.0434, wR_2 = 0.1147$
Final R indexes [all data]	$R_1 = 0.0534, wR_2 = 0.1225$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.32

¹H, ¹³C and ¹⁹F NMR spectra of compound **4a**

-112.00 -112.05 -112.10 -112.15 -112.20 -112.25 -112.30 -112.35 -112.40 -112.45 -112.55 -112.55 -112.60

¹H, ¹³C and ¹⁹F NMR spectra of compound **4b**

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

$^1\text{H},\,^{13}\text{C}$ and $^{19}\text{F}\,\text{NMR}$ spectra of compound 4c

-111 -112 -113 -115 -103 -104 -105 -106 -108 -110 -114 -116 -117 -118 -119 -120 -121 -107 -109

11.4 -111.6 -111.8 -112.0 -112.2 -112.4 -112.6 -112.8 -113.0 -113.2 -113.4 -113.6 -113.8 -114.0 -114.2 -114.4 -114.6 -114.8 -115.(

 ^1H and ^{13}C NMR spectra of compound 4f

105.5 -106.0 -106.5 -107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -111.0 -111.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0

-106.5 -107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0

¹H, ¹³C and ¹⁹F NMR spectra of compound **4h**

-111.3 -111.5 -111.7 -111.9 -112.1 -112.3 -112.5 -112.7 -112.9 -113.1 -113.3 -113.5 -113.7 -113.9 -114.1 -11

¹H, ¹³C and ¹⁹F NMR spectra of compound **4h**'

-92 -93 -94 -95 -96 -97 -98 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124

-106.0 -106.5 -107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

 $^1\text{H},\,^{13}\text{C}$ and $^{19}\text{F}\,\text{NMR}$ spectra of compound 4k

80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136

 ^1H and ^{13}C NMR spectra of compound $\boldsymbol{5}$

¹H and ¹³C NMR spectra of compound **6g**

¹H and ¹³C NMR spectra of compound **6i**

 ^1H and ^{13}C NMR spectra of compound 7a

 ^1H and ^{13}C NMR spectra of compound 7c

S45

^1H and ^{13}C NMR spectra of compound 7g

¹H and ¹³C NMR spectra of compound 8a

 ^1H and ^{13}C NMR spectra of compound 8b

 ^1H and ^{13}C NMR spectra of compound 8c

S50

-110.4 -110.8 -111.2 -111.6 -112.0 -112.4 -112.8 -113.2 -113.6 -114.0 -114.4 -114.8 -115.2 -115.6 -116.0 -116.4 -116.8

1 H and 13 C NMR spectra of compound **10**

¹H and ¹³C NMR spectra of compound **11**

¹H and ¹³C NMR spectra of compound **13**

References

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *Journal of Applied Crystallography* **2009**, *42* (2), 339-341.

2. Sheldrick, G. M., SHELXT - integrated space-group and crystal-structure determination. *Acta Crystallogr A Found Adv* **2015**, *71* (Pt 1), 3-8.

3. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 2015, 71 (Pt 1), 3-8.