Supporting Information

Metal Free Regio – and Stereoselective Semireduction of CF₃-Substituted *N*-Allenamides

Clément Gommenginger^{a‡}, Maxime Hourtoule^{a‡}, Marco Menghini^a and Laurence Miesch^{a*}

 ^a Équipe de Synthèse Organique et Phytochimie, Institut de Chimie, Université de Strasbourg, CNRS-UdS UMR 7177,
4, rue Blaise Pascal CS 90032, 67081 Strasbourg, France

Corresponding author: Imiesch@unistra.fr

Contents

Contents	1
General remarks	2
Experimental procedure	3
General procedure for preparation of Ynamides	3
General procedure for preparation of <i>N</i> -allenamides	3
Trifluorinated N-allenamides 1	3
Disubstitued N-allenamide 1n	4
General procedure for the 1,2-semireduction of <i>N</i> -allenamides 1	4
General procedure for the isomerization of allylamide 2 to tertiary enamide 3	5
Procedure for the preparation of 4 ³	5
Procedure for the preparation of 5	5
Procedure for the preparation of 6	6
Procedure for the preparation of 7	6
Characterization data	6
<i>N</i> -allenamides 1a-v	6
Allylamides 2a-v	14
Enamides 3a-v	24
Terminal <i>N</i> -allenamide 4	34
Various syntheses 5-7	34
NMR Spectra	35
X-Ray Crystallography data	117
Crystal structure Report for 3b (CCDC 2301994)	118

General remarks

All reactions were carried out under an inert atmosphere of argon in dried glassware, unless otherwise noted. Conventional solvents (THF, Et₂O, CH₂Cl₂) are stored on molecular sieves and sampled under argon. Toluene, CH₃CN, acetic acid, were used as received.

NMR Spectra (¹H, ¹³C, ¹⁹F) were performed at 298 K. ¹H (500 MHz or 300 MHz) and ¹³C (126 MHz) NMR chemical shifts are reported relative to residual protiated solvent. ¹⁹F (281 MHz or 471 MHz) NMR chemical shifts are reported without any calibration. Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet, br = broad), coupling constant *J* (Hz) and integration.

HRMS data were recorded on a microTOF spectrometer equipped with an orthogonal electrospray (ESI) interface.

Thin layer chromatography was performed using Merck TLC silica gel 60 F_{254} aluminum sheets using petroleum ether/EtOAc as eluant and visualized using permanganate stain, ninhydrin stain, vanillin stain and/or UV light. Merck Geduran[®] 40-63 µm silica gel was used for column chromatography.

Biotage[®] Isolera[™] One system was used for *flash* chromatography. The wavelength of the UV-detector was calibrated at 254 and 365 nm.

Infrared spectra were reported in frequency of absorption using Alpha Bruker Optics spectrometer.

Melting points were recorded with a SMP3 Stuart Scientific microscope in open capillary tubes and are uncorrected

Experimental procedure

General procedure for preparation of Ynamides¹

The (2-bromoethynyl)tris(propan-2-yl)silane was synthesized according to the literature.²

In a Schlenk tube was introduced $CuSO_4$ - $5H_2O$ (0.3 mmol, 15 mol%), 1,10-phenanthroline (0.6 mmol, 30 mol%), K_2CO_3 (5 mmol, 2.5 equiv), the sulfonamide **S1** (2 mmol, 1 equiv), anhydrous toluene (0.2 M) and the bromo-acetylenic (2.3 mmol, 1.15 equiv). The reaction mixture was heated to 85 °C with an oil bath for 18 h and then cooled down to room temperature, filtered on a pad of Celite[®] and washed profusely with EtOAc. The filtrate was then concentrated under vacuum. The crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc as eluent to afford the desired product **S2**.

TIPS protected ynamide **S2** (2.8 mmol, 1 equiv) was dissolved in dry THF (30 mL, 0.1 M) and cooled at 0 °C. A TBAF solution (3.1 mmol, 1.1 equiv, 1 M in THF) was added dropwise and the resulting mixture was stirred at 0 °C during 30 min and then hydrolyzed with water. The aqueous layer was extracted with Et_2O (3x). The combined organic layers were washed with a saturated solution of NaCl, dried (Na₂SO₄), filtered and concentrated under vacuum. The crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent or just by washing with *n*-pentane and diethyl ether to afford the desired product **S3**.

General procedure for preparation of *N*-allenamides

¹ (a) Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz and E. L. Vera, *Org. Lett.*, 2004, **6**, 1151–1154. (b) X. Zhang, R. P. Hsung, H. Li, Y. Zhang, W. L. Johnson and R. Figueroa, *Org. Lett.*, 2008, **10**, 3477–3479.

² H. Hofmeister, K. Annen, H. Laurent and R. Wiechert, Angew. Chem. Int. Ed. 1984, 23, 727–729.

³ Y. Zheng, B. Moegle, S. Ghosh, A. Perfetto, D. Luise, I. Ciofini and L. Miesch, *Chem. Eur. J.* 2022, **28**, e202103598.

1,1,1-trifluoro-diazoethane was synthesized according to the previous literature and stored in diethyl ether solution in the presence of Na_2SO_4 at -18 °C for a few weeks.⁴

Ynamide **S3** (0.2 mmol, 1 equiv) was dissolved in dry CH_3CN (0.1 M) in the presence of Cul (0.04 mmol, 20 mol%), and triethylamine (0.4 mmol, 2 equiv). A diethyl ether 1,1,1-trifluorodiazoethane solution was added dropwise (in excess) and the reaction was stirred for 4 h at 0 °C. The mixture was concentrated under vacuum and the crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired products **1**.

Disubstitued N-allenamide 1n

(1-diazo-2,2,2-trifluoroethyl)benzene was synthesized according to the previous literature and directly used. 5

Benzyl-ynamide **S3** (127 mg, 0.45 mmol, 1 equiv) was dissolved in dry CH_3CN (0.1 M) in the presence of Cul (0.09 mmol, 20 mol%), and triethylamine (0.9 mmol, 2 equiv). A diethyl ether (1-diazo-2,2,2-trifluoroethyl)benzene solution was added dropwise (in excess) and the reaction was stirred for 4 h at 0 °C. The mixture was concentrated under vacuum and the crude material was used without any further purification.

General procedure for the 1,2-semireduction of *N*-allenamides 1

N-allenamide **1** (0.25 mmol, 1 equiv) was dissolved in dry CH_2CI_2 (0.1 M) and cooled to 0 °C. Et₃SiH (1.25 mmol, 5 equiv) and $BF_3 \cdot Et_2O$ (0.13 mmol, 50 mol%) were added dropwise. The reaction mixture was allowed to warm up at 23 °C and stirred for 4 h and then hydrolyzed with water. The organic layer was extracted with CH_2CI_2 (3x) and Et_2O (1x). The organic layers were washed separately with a saturated solution of NaCl, combined, dried (Na₂SO₄), filtered and concentrated under vacuum. The crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired products **2**.

⁴ H. Gilman and R. G. Jones, *J. Am. Chem. Soc.*, 1943, **65**, 1458–1460.

⁵X. Huang, M. Garcia-Borràs, K. Miao, S. B. J. Kan, A. Zutshi, K. N. Houk and F. H. Arnold, *ACS Cent. Sci.*, 2019, **5**, 270–276.

General procedure for the isomerization of allylamide 2 to tertiary enamide 3

Allylamide **2** (0.1 mmol, 1 equiv) was dissolved in dry THF (0.1 M) and then DBU (0.13 mmol, 1.3 equiv) was added dropwise. The reaction mixture stirred at 23 °C for 18 h and then hydrolyzed with water. The organic layer was extracted with EtOAc (3x). The combined organic layers were washed with a saturated solution of NaCl, dried (Na₂SO₄), filtered and concentrated under vacuum. The crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired products **3**.

Procedure for the preparation of **4**³

Benzyl-ynamide **S3** (70 mg, 0.25 mmol, 1 equiv) was dissolved in CH₃CN (0.1 M). Cul (9 mg, 0.05 mmol, 20 mol%) and trimethylsilyldiazomethane (0.13 mL, 0.27 mmol, 1.1 equiv, 2 M Et₂O) was added dropwise and the reaction mixture was stirred at 23 °C for 3 hours. A TBAF solution (0.25 mL, 0.25 mmol, 1 equiv, 1 M in THF) was added dropwise at 0 °C and the resulting mixture was stirred during 30 min and then hydrolyzed with water. The organic layer was extracted with CH_2Cl_2 (3x) and Et_2O (1x). The organic layers were washed separately with a saturated solution of NaCl, combined, dried (Na₂SO₄), filtered and concentrated under vacuum. The crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc (from 100:0 to 95:5), as eluent to afford the terminal N-allenamide **4** (49 mg, 0.17 mmol, 66 %) as a colorless oil.

Procedure for the preparation of 5

4 (75 mg, 0.25 mmol, 1 equiv) was dissolved in dry CH_2Cl_2 (0.1 M) and cooled to 0 °C. Et₃SiH (0.20 mL, 1.25 mmol, 5 equiv) and $BF_3 \cdot Et_2O$ (0.02 mL, 0.13 mmol, 50 mol%) were added dropwise. The reaction mixture was allowed to warm up at 23 °C and stirred for 4 h and then hydrolyzed with water. The organic layer was extracted with CH_2Cl_2 (3x) and Et_2O (1x). The organic layers were washed separately with a saturated solution of NaCl, combined, dried

(Na₂SO₄), filtered and concentrated under vacuum. The crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc (from 100:0 to 60:40), as eluent to afford the desired products **5** (31.8 mg, 0.11 mmol, 42 %) as a colorless oil.

Procedure for the preparation of **6**⁶

2f (51 mg, 0.16 mmol, 1 equiv) was dissolved in a mixture of CH_2Cl_2 (2.4 mL) and CH3OH (0.8 mL) and the solution was cooled to -78 °C (dry-ice/acetone). To this solution was purged O₃ gas for 15 minutes followed by argon gas for additional 15 minutes. The resulting intermediate was quenched with NaBH₄ (60 mg, 1.6 mmol, 10 equiv). The reaction mixture was gently warmed to 23 °C for 3.5 hours and then cooled down to 0 °C and hydrolyzed with a saturated aqueous solution of NH₄Cl. The organic layer was extracted with CH₂Cl₂ (3x) and Et₂O (1x). The organic layers were washed separately with a saturated solution of NaCl, combined, dried (Na₂SO₄), filtered and concentrated under vacuum. The crude material was purified by *flash* chromatography on silica gel using a mixture petroleum ether/EtOAc (from 88:12 to 0:100), as eluent to afford **6** (24.9 mg, 0.01 mmol, 61 %) as a white solid .

Procedure for the preparation of 7

2i (83 mg, 0.26 mmol, 1 equiv) was dissolved in degassed CH_2Cl_2 . Hoveyda-Grubbs II (16 mg, 0.02 mmol, 10 mol%) was then added and the reaction mixture was heated to 40 °C for 18 hours. The crude material was purified by *flash* chromatography on silica gel using a mixture petroleum ether/EtOAc (from 95:05 to 60:40), as eluent to afford **7** (55 mg, 0.25 mmol, 95 %) as a white solid .

Characterization data

N-allenamides 1a-v

Compound 1a *N*-benzyl-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide³

C₁₈H₁₆F₃NO₂S MW: 367.39 g.mol⁻¹ White solid mp: 88 - 90 °C

⁶ M. S. Manna, S. Y. Yoo, M. Sharique, H. Choi, B. Pudasaini, M. Baik and U. K. Tambar, *Angew. Chem. Int. Ed.*, 2023, **62**, e202304848.

87 % (1.7 g)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 80:20) as eluent.

¹H NMR (300 MHz, CDCl₃): δ 7.79 – 7.67 (m, 2H), 7.45 – 7.38 (m, 1H), 7.38 – 7.32 (m, 2H), 7.30 – 7.18 (m, 5H), 5.68 (p, *J* = 5.6 Hz, 1H), 4.46 (d, *J* = 15.3 Hz, 1H), 4.12 (d, *J* = 15.3 Hz, 1H), 2.46 (s, 3H) ppm.

This analytical data match with those described in the literature.

Compound 1b *N*-(benzo[d][1,3]dioxol-5-ylmethyl)-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide⁷

C₁₉H₁₆F₃NO₄S MW: 411.39 g.mol⁻¹ White solid mp: 110 - 112 °C 75 % (2.3 g)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 80:20) as eluent.

¹**H NMR (400 MHz, CDCI₃):** δ 7.71 (d, J = 8.1 Hz, 2H), 7.41 – 7.37 (m, 1H), 7.35 (d, J = 8.1 Hz, 2H), 6.77 (d, J = 1.7 Hz, 1H), 6.73 – 6.62 (m, 2H), 5.93 (s, 2H), 5.75 (p, J = 5.6 Hz, 1H), 4.34 (d, J = 15.0 Hz, 1H), 4.06 (d, J = 15.0 Hz, 1H), 2.45 (s, 3H) ppm.

This analytical data match with those described in the literature.

Compound 1c *N*-(4-fluorobenzyl)-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

C₁₈H₁₅F₄NO₂S MW: 385.38 g.mol⁻¹ White solid mp: 99 - 101 °C

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 80:20) as eluent.

¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, J = 8.4 Hz, 2H), 7.43 – 7.38 (m, 1H), 7.36 (d, J = 8.1 Hz, 2H), 7.22 (dd, J = 8.6, 5.4 Hz, 2H), 6.97 (t, J = 8.7 Hz, 2H), 5.71 (p, J = 5.6 Hz, 1H), 4.38 (d, J = 15.3 Hz, 1H), 4.14 (d, J = 15.2 Hz, 1H), 2.46 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -62.77, -114.41.

¹³C NMR (126 MHz, CDCl₃): δ 198.9 (q, J = 5.9 Hz), 162.5 (d, J = 246.8 Hz), 144.8, 135.1, 130.5 (d, J = 3.2 Hz), 130.2 (x2), 129.5 (d, J = 8.3 Hz), 127.3 (x2), 121.2 (q, J = 272.3 Hz), 115.6 (d, J = 21.7 Hz), 106.8, 96.5 (q, J = 39.4 Hz), 50.4, 21.8.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₅F₄NaNO₂S 408.0652; found 408.0648.

IR (neat): v = 3045, 1431, 1342, 1124, 944, 814, 543 cm⁻¹.

⁷ M. Hourtoule and L. Miesch, Org. Lett., 2022, 24, 3896–3900.

N-(2-bromobenzyl)-4-methyl-N-(4,4,4-trifluorobuta-1,2-dien-1-

Compound1dyl)benzenesulfonamide

C₁₈H₁₅BrF₃NO₂S MW: 442.28 g.mol⁻¹ White solid mp: 94 - 96 °C

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 80:20) as eluent.

¹**H NMR (500 MHz, CDCl₃)** δ 7.75 (dt, J = 8.5 Hz, 2.0 Hz, 2H), 7.49 (dd, J = 8.0, 1.5 Hz, 1H), 7.46–7.44 (m, 1H), 7.42–7.41 (m, 1H), 7.39–7.36 (m, 2H), 7.30–7.27 (m, 1H), 7.14–7.10 (m, 1H), 5.69 (p, J = 5.5 Hz, 1H), 4.41 (s, 2H), 2.47 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -62.72.

¹³**C NMR (126 MHz, CDCl₃):** δ 198.4 (q, J = 5.9 Hz), 144.9, 135.0, 133.5, 132.8, 130.3 (x2), 129.2, 128.1, 127.8, 127.3 (x2), 122.4, 121.0 (q, J = 272.5 Hz), 106.7, 96.6 (q, J = 39.6 Hz), 50.8, 21.8.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₅BrF₃NaNO₂S 467.9852; found 467.9846.

IR (neat): v = 3016, 1447, 1352, 1110, 922, 751, 596 cm⁻¹.

Compound 1e N,4-dimethyl-N-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

Ts C₁₂H₁₂F₃NO₂S N CF₃ MW: 291.29 g.mol⁻¹

1e was used without any further purification.

Compound 1f *N*-cyclopropyl-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1yl)benzenesulfonamide⁷

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 95:05 to 85:15) as eluent.

¹**H NMR (300 MHz, CDCI**₃) δ 7.79 – 7.71 (m, 2H), 7.39 – 7.33 (m, 2H), 7.33 – 7.30 (m, 1H), 5.88 (p, *J* = 5.6 Hz, 1H), 2.45 (s, 3H), 1.73 (tt, *J* = 6.9, 3.6 Hz, 1H), 1.12 – 0.88 (m, 2H), 0.83 – 0.64 (m, 2H).

This analytical data match with those described in the literature.

Compound	1g	N-cyclopentyl-4-methyl-N-(4,4,4-trifluorobuta-1,2-dien-1-
yl)benzenesulfonar	nide ⁷	

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (95:05 to 85:15) as eluent.

¹**H NMR (500 MHz, CDCl**₃) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.44 – 7.28 (m, 3H), 5.85 (p, *J* = 5.7 Hz, 1H), 4.41 (p, *J* = 8.7 Hz, 1H), 2.44 (s, 3H), 1.75 – 1.54 (m, 5H), 1.48 – 1.32 (m, 3H).

This analytical data match with those described in the literature.

Compound 1h 4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)-*N*-(2,2,2-trifluoroethyl)benzenesulfonamide⁸

C₁₃H₁₁F₆NO₂S MW: 359.29 g.mol⁻¹ Colorless oil 71 % (78 mg)

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 100:0 to 80:20) as eluent.

¹H NMR (500 MHz, CDCl₃): δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.53 – 7.33 (m, 3H), 6.07 (p, *J* = 5.5 Hz, 1H), 3.90 (dqd, *J* = 15.6, 8.1, 0.8 Hz, 1H), 3.72 (dq, *J* = 16.1, 8.1 Hz, 1H), 2.49 (s, 3H).

This analytical data match with those described in the literature.

Compound 1i N-allyl-4-methyl-N-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide8

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 100:0 to 80:20) as eluent.

¹H NMR (500 MHz, CDCl₃): δ 7.73 (d, J = 8.6 Hz, 2H), 7.48 – 7.40 (m, 1H), 7.36 (dd, J = 8.6, 0.8 Hz, 2H), 5.93 (p, J = 5.6 Hz, 1H), 5.69 – 5.54 (m, 1H), 5.18 (dt, J = 1.4, 0.8 Hz, 1H), 5.16 (dq, J = 7.8, 1.4 Hz, 1H), 3.87 (ddtd, J = 16.0, 5.5, 1.6, 0.8 Hz, 1H), 3.82 – 3.73 (ddtd, J = 16.0, 5.5, 1.6, 0.8 Hz, 1H), 3.82 – 3.73 (ddtd, J = 16.0, 5.5, 1.6, 0.8 Hz, 1H), 3.87 (ddtd, J = 16.0, 5.5, 1.6, 0.8 Hz, 1H), 3.87 (ddtd, J = 16.0, 5.5, 1.6, 0.8 Hz, 1H), 3.82 – 3.73 (ddtd, J = 16.0, 5.5, 1.6, 0.8 Hz, 1H), 3.87 (ddtd, J = 16.0, 5.5, 1.6, 0.8 Hz, 1H), 3.87 (ddtd, J = 16.0, 5.5, 1.6, 0.8 Hz, 1H), 3.82 – 3.73

This analytical data match with those described in the literature.

Compound 1j 4-methyl-*N*-(pent-4-en-1-yl)-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide⁷

 $\begin{array}{l} C_{16}H_{18}F_3NO_2S\\ MW: 345.10\ g.mol^{-1}\\ Colorless\ oil \end{array}$

⁸ M. Hourtoule and L. Miesch, Org. Lett., 2023, 25, 1727–1731.

Yield: 90 % (294 mg)

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 5:1 to 4:1) as eluent.

¹H NMR (500 MHz, C_6D_6): δ = 7.55 (d, J = 8.3 Hz, 2H), 7.33– 7.30 (m, 1H), 6.73 (d, J = 8.0 Hz, 2H), 5.65– 5.57 (m, 1H), 5.36 (p, J = 5.6 Hz, 1H), 4.97– 4.89 (m, 2H), 3.02– 2.87 (m, 2H), 1.96– 1.76 (m, 5H), 1.58– 1.39 (m, 2H) ppm.

This analytical data match with those described in the literature.

Compound 1k *N*-(4-cyanobutyl)-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1yl)benzenesulfonamide⁷

C₁₆H₁₇F₃N₂O₂S MW: 358.38 g.mol⁻¹ Colorless oil 64 % (257 mg)

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 95:05 to 70:30) as eluent.

¹H NMR (500 MHz, CDCl₃) : δ 7.68 (d, J = 8.4 Hz, 2H), 7.47 – 7.38 (m, 1H), 7.35 (d, J = 8.4 Hz, 2H), 5.99 (p, J = 5.5 Hz, 1H), 3.14 (t, J = 6.6 Hz, 2H), 2.45 (s, 3H), 2.39 (tt, J = 6.6, 1.4 Hz, 2H), 1.74 – 1.65 (m, 4H) ppm.

This analytical data match with those described in the literature.

Compound 1I *N*-(2-chloroethyl)-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1yl)benzenesulfonamide⁷

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 95:05 to 85:15) as eluent.

¹H NMR (500 MHz, CDCl₃) : δ 7.71 (d, J = 8.1 Hz, 1H), 7.42 (dq, J = 6.0, 3.0 Hz, 1H), 7.36 (d, J = 8.1 Hz, 2H), 6.03 (p, J = 5.5 Hz, 1H), 3.58 – 3.51 (m, 2H), 3.45 – 3.38 (m, 2H), 2.45 (s, 3H)

This analytical data match with those described in the literature.

Compound 1m *N*,*N*-(butane-1,4-diyl)bis(4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide)

C₁₇H₁₅F₃N₂O₂S MW: 368.37 g.mol⁻¹ Orange oil 52 % (244 mg) (2 steps)

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 90:10 to 0:100) as eluent.

¹H NMR (500 MHz, C₆D₆): δ 8.43 (s, 2H), 7.49 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 7.8 Hz, 1H), 7.19 – 7.17 (m, 1H), 6.72 (d, J = 8.1 Hz, 2H), 6.70 – 6.63 (m, 1H), 5.12 (s, 1H), 3.98 (d, J = 15.5 Hz, 1H), 3.74 (d, J = 15.4 Hz, 1H), 1.84 (s, 3H).

¹⁹F NMR (282 MHz, C₆D₆): δ -62.66.

¹³**C NMR (126 MHz, C₆D₆):** δ 199.0 (q, *J* = 6.0 Hz), 149.8, 149.8, 144.4, 135.7, 134.9, 130.1 (x2), 128.4, 128.2, 127.4 (x2), 121.7 (q, *J* = 271.7 Hz), 106.9, 96.4 (q, *J* = 41.0 Hz), 48.4, 21.1.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₆F₃N₂O₂S 369.0885; found 369.0879.

IR (neat) : v = 3043, 2962, 1597, 1451, 1429, 1359, 1267, 1168, 1131, 930, 908, 814, 666, 600, 547 cm⁻¹.

Compound 1n *N*-benzyl-4-methyl-*N*-(4,4,4-trifluoro-3-phenylbuta-1,2-dien-1-yl)benzenesulfonamide

C₂₄H₂₀F₃NO₂S MW: 443.48 g.mol⁻¹

1n was used without any further purification.

Compound 10 N-phenethyl-N-(4,4,4-trifluorobuta-1,2-dien-1-yl)methanesulfonamide⁹

C₁₃H₁₄F₃NO₂S MW: 305.32 g.mol⁻¹ White solid mp: 115 – 118 °C 59 % (477 mg)

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 100:0 to 80:20) as eluent.

¹H NMR (300 MHz, C_6D_6): $\delta = 7.14 - 7.02$ (m, 2H), 7.06 - 6.96 (m, 3H), 6.94 (dt, J = 6.3, 3.2 Hz, 1H), 5.46 (p, J = 5.6 Hz, 1H), 3.26 - 3.03 (m, 2H), 2.64 (dd, J = 8.6, 7.1 Hz, 2H), 1.86 (s, 3H).

This analytical data match with those described in the literature.

Compound 1p *N*-benzyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)cyclopropanesulfonamide

 $C_{14}H_{14}F_{3}NO_{2}S$ MW: 317.33 g.mol⁻¹ White solid mp: 73 – 75 °C

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 80:20) as eluent.

⁹ C. Gommenginger, Y. Zheng, D. Maccarone, I. Ciofini and L. Miesch, *Org. Chem. Front.*, 2023, **10**, 4055–4060.

¹H NMR (500 MHz, CDCl₃) δ 7.30–7.25 (m, 4H), 7.24–7.20 (m, 2H), 5.73 (p, *J* = 5.5 Hz, 1H), 4.64 (d, *J* = 15.5 Hz, 1H), 4.38 (d, *J* = 15.5 Hz, 1H), 2.35–2.30 (m, 1H), 1.22–1.18 (m, 2H), 1.00–0.96 (m, 2H).

¹⁹**F NMR (282 MHz, CDCI₃):** δ 62.61.

¹³**C NMR (126 MHz, CDCl₃):** δ 198.7 (q, *J* = 5.9 Hz), 135.2, 128.7 (x2), 128.1, 127.7 (x2), 121.3 (q, *J* = 272.2 Hz), 107.2, 96.7 (q, *J* = 39.4 Hz), 51.2, 30.2, 5.7, 5.6.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₄F₃NaNO₂S 340.0590; found 340.0574.

IR (neat) : v = 3033, 1453, 1347, 1118, 937, 885, 607 cm⁻¹.

Compound 1q N-benzyl-4-nitro-N-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide⁷

C₁₇H₁₃F₃N₂O₄S MW: 398.36 g.mol⁻¹ White solidmp: 92 - 95°C 81 % (163 mg)

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 100:0 to 70:30) as eluent.

¹**H NMR (500 MHz, CDCl₃):** δ 8.37 (d, J = 8.9 Hz, 1H), 7.97 (d, J = 8.9 Hz, 1H), 7.39 (dq, J = 6.1, 3.1 Hz, 1H), 7.28 (dt, J = 4.6, 2.2 Hz, 3H), 7.24 – 7.18 (m, 2H), 5.79 (p, J = 5.5 Hz, 1H), 4.54 (dd, J = 15.3, 1.0 Hz, 1H), 4.24 (d, J = 15.2 Hz, 1H) ppm.

This analytical data match with those described in the literature.

Compound 1r N-benzyl-N-(4,4,4-trifluorobuta-1,2-dien-1-yl)thiophene-2-sulfonamide

C₁₅H₁₂F₃NO₂S₂ MW: 359.38 g.mol⁻¹ White solid mp: 68 – 70 °C

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 100:0 to 80:20) as eluent.

¹H NMR (500 MHz, CDCl₃): δ 7.67 (dd, J = 5.0, 1.5 Hz, 1H), 7.62 (dd, J = 4.0, 1.5 Hz, 1H), 7.35–7.32 (m, 1H), 7.31–7.24 (m, 5H), 7.14 (dd, J = 5.0, 3.5 Hz, 1H), 5.72 (p, J = 6.0 Hz, 1H), 4.53 (d, J = 15.0 Hz, 1H), 4.21 (d, J = 15.0 Hz, 1H).

¹⁹F NMR (282 MHz, CDCl₃): δ -62.63.

¹³**C NMR (126 MHz, CDCl₃):** δ 199.2 (q, *J* = 6.0 Hz), 138.0, 134.6, 133.3, 133.1, 128.7 (x2), 128.1, 127.9, 127.7 (x2), 121.2 (q, *J* = 272.2 Hz), 106.4, 96.6 (q, *J* = 39.4 Hz), 51.3.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₂F₃NaNO₂S₂ 382.0154; found 382.0150.

IR (neat) : v = 3106, 3036, 1447, 1357, 1118, 1024, 739, 571 cm⁻¹

Compound 1s 2-(4,4,4-trifluorobuta-1,2-dien-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide⁷

C₁₁H₈F₃NO₂S MW: 275.24 g.mol⁻¹ White solid mp: 140 – 145 °C 58 % (248 mg)

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 95:05 to 80:20) as eluent.

¹**H NMR (300 MHz, CDCl₃)** : δ 7.85 (ddd, J = 7.7, 1.3, 0.6 Hz, 1H), 7.69 (td, J = 7.7, 1.3 Hz, 1H), 7.63 – 7.55 (m, 1H), 7.47 (dt, J = 7.8, 0.9 Hz, 1H), 7.32 (dq, J = 5.9, 2.9 Hz, 1H), 6.17 (p, J = 5.9 Hz, 1H), 4.46 (d, J = 4.8 Hz, 2H) ppm.

This analytical data match with those described in the literature.

Compound 1t 8,8-dimethyl-1-(-4,4,4-trifluorobuta-1,2-dien-1-yl)hexahydro-3H-3a,6methanobenzo[c]isothiazole 2,2-dioxide⁸

C₁₄H₁₈F₃NO₂S MW: 321.26 g.mol⁻¹ Colorless oil 61 % (96.3 mg)

C The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 95:05 to 80:20) as eluent.

¹H NMR (500 MHz, CDCl₃): δ 6.86 – 6.77 (m, 2H), 6.04 – 5.95 (m, 2H), 3.36 – 3.18 (m, 6H), 2.06 – 1.98 (m, 2H), 1.96 – 1.86 (m, 6H), 1.62 (dt, *J* = 13.0, 8.1 Hz, 2H), 1.53 – 1.42 (m, 2H), 1.38 – 1.26 (m, 2H), 1.11 (s, 6H), 0.95 (s, 6H).

This analytical data match with those described in the literature.

Compound 1u *N*,*N*-(butane-1,4-diyl)bis(4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide)

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 100:0 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCl₃):** δ 7.68 (d, *J* = 8.4 Hz, 4H), 7.43 – 7.30 (m, 6H), 5.94 (p, *J* = 5.5 Hz, 2H), 3.19 – 3.01 (m, 4H), 2.45 (s, 6H), 1.53 – 1.48 (m, 4H).

¹⁹F NMR (282 MHz, CDCl₃): δ -62.18, -62.19.

¹³**C NMR (126 MHz, CDCI₃):** δ 198.5 (q, J = 5.7 Hz) (x2), 144.7 (x2), 135.1, 135.0, 130.2 (x4), 127.3 (x4), 121.4 (q, J = 271.8 Hz) (x2), 107.0, 107.0, 96.4 (q, J = 39.2 Hz) (x2), 46.5, 46.4, 23.9, 23.8, 21.8 (x2).

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₆H₂₆F₆NaN₂O₄S 631.1000; found 631.1004.

IR (neat): v = 3048, 2925, 1598, 1434, 1359, 1265, 1168, 1131, 684, 601, 547 cm⁻¹.

Compound 1v 4-methyl-*N*-(2-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)ethyl)-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

1v was used without any further purification.

Allylamides 2a-v

Compound 2a N-benzyl-4-methyl-N-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

C₁₈H₁₈F₃NO₂S MW: 369.40 g.mol⁻¹ Colorless oil 80 % (73.6 mg) *E/Z* ratio = *80*:20

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.73 (d, J = 8.3 Hz, 4H, E + Z), 7.35 (d, J = 8.2 Hz, 4H, E + Z), 7.33 – 7.21 (m, 10H, E + Z), 6.05 – 5.95 (m, 1H, Z), 5.79 (dt, J = 12.1, 6.2 Hz, 1H, E), 5.51 – 5.40 (m, 2H, E + Z), 4.38 – 4.24 (m, 4H, E + Z), 3.96 (dt, J = 6.3, 2.3 Hz, 2H, E), 3.81 (dt, J = 5.9, 1.9 Hz, 2H, Z), 2.46 (s, 6H, E + Z).

¹³**C NMR (126 MHz, CDCI₃):** δ 144.0, 138.8 (q, *J* = 5.0 Hz), 136.3, 135.5, 130.1 (x2), 128.8 (x2), 128.7 (x2), 128.3, 127.5 (x2), 122.8 (q, *J* = 271.9 Hz), 119.4 (q, *J* = 34.4 Hz), 52.7, 45.4 (q, *J* = 1.8 Hz), 21.7.

IR (neat): v = 3068, 2928, 1341, 1223, 1159, 1125, 1094, 721, 656, 549 cm⁻¹.

Compound 2b *N*-(benzo[*d*][1,3]dioxol-5-ylmethyl)-4-methyl-*N*-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

C₁₉H₁₈F₃NO₄S MW: 413.41 g.mol⁻¹ White solid mp: 65 – 68 °C 98 % (62 mg) *E/Z* ratio = *80*:20

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹**H NMR (400 MHz, CDCl₃):** δ 7.72 (d, *J* = 8.3 Hz, 4H, *E* + *Z*), 7.35 (d, J = 7.8 Hz, 4H, *E* + *Z*), 6.87 - 6.59 (m, 6H, *E* + *Z*), 5.95 (s, 5H, *E* + *Z*), 5.81 (dt, J = 12.2, 6.2 Hz, 1H, *E*), 5.56 - 5.42 (m, 2H, *E* + *Z*), 4.24 - 4.15 (m, 4H, *E* + *Z*), 3.95 (dp, J = 6.7, 2.3 Hz, 2H, *E*), 3.80 (dt, J = 6.1, 2.1 Hz, 2H, *Z*), 2.46 (s, 6H, *E* + *Z*).

¹³C NMR (126 MHz, CDCl₃): δ 148.2, 147.7, 144.0, 138.9 (q, *J* = 5.0 Hz), 136.3, 130.1 (x2), 129.2, 127.4 (x2), 122.9 (q, *J* = 271.9 Hz), 122.3, 119.3 (q, *J* = 34.4 Hz), 109.1, 108.3, 101.3, 52.5, 45.2 (q, *J* = 1.7 Hz), 21.7.

IR (neat): v = 2924, 1504, 1145, 1383, 1241, 1116, 1018, 927, 707, 697, 633, 511 cm⁻¹.

Compound 2c *N*-(4-fluorobenzyl)-4-methyl-*N*-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.65 (d, J = 8.4 Hz, 2H, E), 7.59 (d, J = 8.3 Hz, 2H, Z), 7.28 (d, J = 8.1 Hz, 2H, E), 7.25 (d, J = 8.1 Hz, 2H, Z), 7.21 – 7.12 (m, 4H, E + Z), 6.97 – 6.86 (m, 4H, E + Z), 5.97 – 5.87 (m, 1H, Z), 5.70 (dd, J = 11.9, 6.3 Hz, 1H, E), 5.49 – 5.31 (m, 2H, E + Z), 4.39 (s, 2H, Z), 4.19 (s, 2H, E), 3.88 (dt, J = 6.3, 2.2 Hz, 2H, E), 3.73 (dt, J = 3.9, 2.0 Hz, 2H, Z), 2.38 (s, 3H, E), 2.36 (s, 3H, Z).

¹³**C NMR (126 MHz, CDCI₃):** δ 162.5 (d, J = 246.7 Hz), 143.8, 138.4 (q, J = 5.0 Hz), 136.0, 131.1 (d, J = 3.2 Hz), 130.2 (d, J = 8.3 Hz), 129.9 (x2), 128.5 (d, J = 8.1 Hz), 127.1 (x2), 122.5 (q, J = 271.9 Hz), 119.4 (q, J = 34.4 Hz), 115.5 (d, J = 21.6 Hz), 99.0 (q, J = 3.7 Hz), 51.7, 45.2 (q, J = 1.6 Hz), 21.4.

IR (neat): v = 2941, 1604, 1510, 1340, 1224, 1159, 1126, 1092, 549 cm⁻¹.

Br Ts N CF₃

C₁₈H₁₇BrF₃NO₂S MW: 448.30 g.mol⁻¹ Colorless oil 93 % (61.4 mg) *E*/*Z* ratio = 75:25

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.74 (d, J = 8.4 Hz, 4H, *E* + *Z*), 7.56 – 7.47 (m, 4H, *E* + *Z*), 7.36 (d, J = 7.8 Hz, 4H, *E* + *Z*), 7.31 (td, J = 7.5, 1.4 Hz, 2H, *E* + *Z*), 7.19 – 7.12 (m, 2H, *E* + *Z*), 6.10

- 5.95 (m, 1H, Z), 5.83 (dt, J = 12.2, 6.2 Hz, 1H, E), 5.56 - 5.43 (m, 2H, E + Z), 4.45 (s, 4H, E + Z), 4.02 (dt, J = 6.3, 2.3 Hz, 2H, E), 3.86 (dd, J = 4.1, 2.0 Hz, 2H, Z), 2.46 (s, 6H, E + Z).

¹³C NMR (126 MHz, CDCI₃): δ 144.0, 138.0 (q, *J* = 5.0 Hz), 136.0, 134.7, 132.9, 130.2, 130.0 (x2), 129.5, 127.8, 127.3 (x2), 123.4, 122.6 (d, *J* = 271.9 Hz), 119.6 (q, *J* = 34.4 Hz), 52.0, 45.8 (d, *J* = 2.1 Hz), 21.6.

IR (neat): v = 2945, 1598, 1441, 1344, 1161, 1126, 1093, 753, 633, 515 cm⁻¹.

Compound 2e N,4-dimethyl-N-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.70 (d, J = 8.3 Hz, 4H, E + Z), 7.37 (d, J = 8.5 Hz, 4H, E + Z), 6.36 – 6.25 (m, 1H, Z), 6.04 (dt, J = 11.8, 6.8 Hz, 1H, E), 5.91 – 5.73 (m, 2H, E + Z), 3.92 (dt, J = 6.6, 2.0 Hz, 2H, E), 3.79 (tt, J = 4.3, 2.1 Hz, 2H, Z), 2.73 (s, 6H, E + Z), 2.47 (s, 6H, E + Z).

¹³C NMR (126 MHz, CDCl₃): δ 144.0, 138.0 (q, *J* = 5.0 Hz), 134.3, 130.0 (x2), 127.6 (x2), 122.8 (d, *J* = 268.9 Hz), 121.4 (q, *J* = 34.4 Hz), 47.7 (q, *J* = 1.5 Hz), 35.2, 21.7.

IR (neat): v = 2930, 1674, 1598, 1457, 1413, 1341, 1203, 1162, 1090, 694, 550 cm⁻¹.

Compound 2f N-cyclopropyl-4-methyl-N-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.74 (d, J = 8.3 Hz, 4H, E + Z), 7.34 (d, J = 8.0 Hz, 4H, E + Z), 6.36 – 6.25 (m, 1H, Z), 6.06 (dt, J = 11.8, 6.5 Hz, 1H, E), 5.86 – 5.73 (m, 1H, Z), 5.72 – 5.59 (m, 1H, E), 4.06 (dp, J = 6.5, 2.1 Hz, 2H, E), 3.92 (dp, J = 6.1, 2.1 Hz, 2H, Z), 2.45 (s, 6H, E + Z), 2.04 (tt, J = 6.9, 3.6 Hz, 2H, E + Z), 0.87 – 0.81 (m, 4H, E + Z), 0.74 – 0.67 (m, 4H, E + Z).

¹³**C NMR (126 MHz, CDCl₃):** δ 144.1, 139.1 (q, *J* = 5.1 Hz), 135.0, 129.9 (x2), 127.9 (x2), 123.0 (q, *J* = 271.8 Hz), 119.6 (q, *J* = 34.4 Hz), 48.6 (q, *J* = 1.5 Hz), 31.1, 21.7, 7.7 (x2).

IR (neat): v = 2966, 2936, 1672, 1566, 1457, 1342, 1174, 1123, 817, 710, 687, 521 cm⁻¹.

Compound 2g *N*-cyclopentyl-4-methyl-*N*-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

C₁₆H₂₀F₃NO₂S MW: 347.40 g.mol⁻¹ Colorless oil 74 % (37.8 mg) *E/Z* ratio = *85*:15

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.69 (d, J = 8.3 Hz, 4H, E + Z), 7.35 – 7.28 (m, 4H; E + Z), 6.42 – 6.33 (m, 1H, Z), 6.19 (dt, J = 11.7, 5.7 Hz, 1H, E), 5.92 – 5.81 (m, 1H, Z), 5.61 (dqt, J = 11.3, 8.9, 2.3 Hz, 1H, E), 4.30 (p, J = 8.8 Hz, 2H, E + Z), 3.95 (dt, J = 5.8, 2.5 Hz, 2H, E), 3.83 (dp, J = 4.8, 2.4 Hz, 2H, Z), 2.43 (s, 6H, E + Z), 1.78 – 1.65 (m, 4H, E + Z), 1.63 – 1.55 (m, 4H, E + Z), 1.53 – 1.42 (m, 4H, E + Z), 1.36 – 1.22 (m, 4H, E + Z).

¹³C NMR (126 MHz, CDCl₃): δ 143.6, 142.7 (q, *J* = 4.9 Hz), 137.2, 129.9 (x2), 127.3 (x2), 123.1 (q, *J* = 271.8 Hz), 117.7 (q, *J* = 34.4 Hz), 59.3, 41.2 (q, *J* = 1.6 Hz), 29.2 (x2), 23.6 (x2), 21.8.

IR (neat): v = 2959, 2874, 1341, 1156, 1092, 659, 547 cm⁻¹.

Compound 2h trifluoroethyl)benzenesulfonamide

 $C_{13}H_{13}F_6NO_2S$ MW: 361.30 g.mol⁻¹ White solid 88 % (75.3 mg) *E/Z* ratio = 80:20

4-methyl-*N*-(4,4,4-trifluorobut-2-en-1-yl)-*N*-(2,2,2-

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, J = 8.4 Hz, 4H, E + Z), 7.37 – 7.31 (m, 4H, E + Z), 6.25 – 6.14 (m, 1H, Z), 6.02 (dt, J = 11.9, 6.5 Hz, 1H, E), 5.77 (dqt, J = 12.6, 8.6, 2.0 Hz, 2H, E + Z), 4.10 (dt, J = 6.4, 2.0 Hz, 2H, E), 3.99 (dt, J = 6.3, 2.3 Hz, 2H, Z), 3.85 (q, J = 8.7 Hz, 4H, E + Z), 2.45 (s, 6H, E + Z).

¹³**C NMR (126 MHz, CDCl₃):** δ 144.5, 137.3 (d, *J* = 5.3 Hz), 135.6, 129.9 (x2), 127.3 (x2), 123.8 (d, *J* = 280.2 Hz), 122.4 (d, *J* = 272.1 Hz), 121.4 (q, *J* = 34.4 Hz), 48.3 (q, *J* = 35.1 Hz), 46.4, 21.5.

IR (neat): v = 2952, 1440, 1352, 1273, 1228, 1162, 1129, 1091, 1053 cm⁻¹.

Compound 2i *N*-allyl-4-methyl-*N*-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

C₁₄H₁₆F₃NO₂S MW: 319.34 g.mol⁻¹ Colorless oil 71 % (121.6 mg) *E/Z* ratio = 85:15 The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was described.

¹H NMR (500 MHz, CDCl₃): δ 7.70 (d, J = 8.3 Hz, 2H, E), 7.32 (d, J = 8.1 Hz, 2H, E), 5.99 (dt, J = 12.4, 6.3 Hz, 1H, E), 5.72 – 5.57 (m, 2H, E), 5.28 – 4.97 (m, 2H, E), 4.01 (dt, J = 6.4, 2.2 Hz, 2H, E), 3.79 (dt, J = 6.3, 1.4 Hz, 2H, E), 2.44 (s, 3H, E).

¹³**C NMR (126 MHz, CDCl₃):** δ 143.9, 139.1 (q, *J* = 5.0 Hz), 136.6, 132.2, 130.03 (x2), 127.4 (x2), 122.9 (q, *J* = 271.9 Hz), 119.9 (q, *J* = 34.5 Hz), 119.9, 51.3, 44.7 (q, *J* = 1.7 Hz), 21.7.

IR (neat): v = 2927, 1645, 1598, 1419, 1348, 1224, 1157, 1122, 1093, 663, 548 cm⁻¹.

Compound2j4-methyl-*N*-(pent-4-en-1-yl)-*N*-(4,4,4-trifluorobut-2-en-1-yl)yl)benzenesulfonamide

 $C_{16}H_{20}F_3NO_2S$ MW: 347.40 g.mol⁻¹ Colorless oil 82 % (74.5 mg) *E/Z* ratio = 95:05

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was described.

¹H NMR (500 MHz, CDCl₃): δ 7.68 (d, J = 8.3 Hz, 2H, E), 7.32 (d, J = 8.0 Hz, 2H, E), 6.00 (dt, J = 11.8, 6.4 Hz, 1H, E), 5.90 – 5.62 (m, 2H, E), 5.14 – 4.90 (m, 2H, E), 4.01 (dp, J = 6.5, 2.2 Hz, 2H, E), 3.16 – 3.09 (m, 2H, E), 2.44 (s, 3H, E), 2.04 (q, J = 7.1 Hz, 2H, E), 1.67 – 1.58 (m, 2H, E).

¹³**C NMR (126 MHz, CDCl₃):** δ 143.8, 139.5 (q, *J* = 5.0 Hz), 137.4, 136.5, 130.0 (x2), 127.3 (x2), 122.9 (d, *J* = 271.0 Hz), 120.1 (q, *J* = 34.3 Hz), 115.6, 48.5, 45.7 (q, *J* = 1.8 Hz), 30.8, 27.6, 21.7.

IR (neat): v = 2966, 2924, 2860, 1671, 1642, 1599, 1446, 1415, 1341, 1276, 1221, 1160, 1124, 549 cm⁻¹.

Compound 2k N-(4-cyanobutyl)-4-methyl-N-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.68 (d, J = 8.3 Hz, 2H, *E*), 7.62 (d, J = 8.4 Hz, 2H, *Z*), 7.34 (d, J = 7.9 Hz, 4H, *E* + *Z*), 6.24 – 6.14 (m, 1H, *Z*), 5.97 (dt, J = 11.8, 6.6 Hz, 1H, *E*), 5.77 – 5.65

(m, 2H, *E* + *Z*), 4.00 (dp, J = 6.3, 2.1 Hz, 2H, *E*), 3.88 (dt, J = 6.0, 2.1 Hz, 2H, *Z*), 3.17 (t, J = 6.5 Hz, 4H, *E* + *Z*), 2.44 (s, 6H, *E* + *Z*), 2.45 – 2.37 (m, 4H, *E* + *Z*), 1.77 – 1.65 (m, 8H, *E* + *Z*).

¹³C NMR (126 MHz, CDCl₃): δ 144.1, 138.8 (d, *J* = 4.8 Hz), 136.0, 130.2 (x2), 127.3 (x2), 122.8 (d, *J* = 273.4 Hz), 120.6 (q, *J* = 34.4 Hz), 119.3, 47.8, 45.8 (q, *J* = 1.3 Hz), 27.1, 22.4, 21.7, 16.7.

IR (neat): v = 2936, 2874, 1671, 1598, 1339, 1159, 1124, 847, 817, 549 cm⁻¹.

Compound 2I *N*-(2-chloroethyl)-4-methyl-*N*-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

C₁₃H₁₅CIF₃NO₂S MW: 341.77 g.mol⁻¹ Colorless oil 88 % (75.3 mg) *E/Z* ratio = 76:24

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, J = 8.3 Hz, 4H, E + Z), 7.34 (d, J = 7.9 Hz, 4H, E + Z), 6.32 - 6.14 (m, 1H, Z), 6.03 (dt, J = 11.8, 6.6 Hz, 1H, E), 5.87 - 5.61 (m, 2H, E + Z), 4.07 (dt, J = 6.5, 2.1 Hz, 2H, E), 3.99 (dt, J = 5.8, 2.1 Hz, 2H, Z), 3.76 - 3.56 (m, 4H, E + Z), 3.50 - 3.39 (m, 4H, E + Z), 2.45 (s, 6H, E + Z).

¹³C NMR (126 MHz, CDCl₃): δ 144.3, 138.6 (q, *J* = 5.2 Hz), 135.9, 130.2 (x2), 127.4 (x2), 124.3 (q, *J* = 283.9 Hz), 120.9 (q, *J* = 34.1 Hz), 50.4, 47.0 (q, *J* = 1.7 Hz), 41.9, 21.7.

IR (neat): v = 2999, 2943, 1343, 1160, 1126, 1093, 816, 693, 550 cm⁻¹.

Compound 2m 4-methyl-*N*-(pyridin-3-ylmethyl)-*N*-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 8.53 (d, J = 51.4 Hz, 4H, E + Z), 7.73 (d, J = 8.3 Hz, 4H, E + Z), 7.73 – 7.64 (m, 2H, E + Z), 7.36 (d, J = 7.9 Hz, 4H, E + Z), 7.31 (dd, J = 20.4, 7.0 Hz, 2H, E + Z), 6.10 – 5.93 (m, 1H, Z), 5.79 (dt, J = 11.9, 6.4 Hz, 1H, E), 5.61 – 5.47 (m, 2H, E + Z), 4.52 (s, 2H, Z), 4.32 (s, 2H, E), 3.98 (dt, J = 6.5, 2.2 Hz, 2H, E), 3.83 (dt, J = 6.2, 2.0 Hz, 2H, Z), 2.46 (s, 6H, E + Z).

¹³C NMR (126 MHz, CDCI₃): δ 149.8, 144.7, 144.3, 138.2 (q, *J* = 5.0 Hz), 136.4, 136.0, 131.8, 130.3 (x2), 127.4 (x2), 127.1, 122.7 (d, *J* = 272.0 Hz), 120.3 (q, *J* = 34.5 Hz), 50.2, 45.7 (d, *J* = 1.8 Hz), 21.7.

IR (neat): v = 3035, 2843, 1619, 1428, 1342, 1274, 1223, 1161, 1126, 1092, 815, 771, 697, 516 cm⁻¹.

Compound2nyl)benzenesulfonamide

N-benzyl-4-methyl-N-(4,4,4-trifluoro-3-phenylbut-2-en-1-

(E)

 CF_3

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Ts

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.3 Hz, 2H, E), 7.67 (d, J = 8.3 Hz, 2H, *Z*), 7.38 – 7.11 (m, 21H, *E* +*Z*), 6.97 (dd, J = 5.7, 3.5 Hz, 3H, *E* + *Z*), 6.13 (tt, J = 6.5, 1.7 Hz, 1H, *Z*), 5.75 (t, J = 6.1 Hz, 1H, *E*), 4.36 (s, 2H, *E*), 4.25 (s, 2H, *Z*), 4.11 (dd, J = 6.0, 2.6 Hz, 2H, *E*), 3.76 – 3.58 (m, 2H, *Z*), 2.45 (s, 3H, *E*), 2.44 (s, 3H, *Z*).

¹³C NMR (126 MHz, CDCl₃): δ 143.9, 137.5 (q, *J* = 2.8 Hz), 136.5, 135.7, 135.4, 130.1 (x2), 129.4 (x2), 128.9 (x2), 128.8 (x2), 128.6, 128.3 (x2), 128.2, 128.0, 127.4 (x2), 123.6 (q, *J* = 275.8 Hz), 52.9, 46.2 (q, *J* = 3.6 Hz), 21.7.

IR (neat): v = 3064, 3033, 2923, 2863, 1598, 1495, 1455, 1446, 1344, 1289, 1202, 1161, 1099, 734, 699, 549 cm⁻¹.

Compound 20 N-phenethyl-N-(4,4,4-trifluorobut-2-en-1-yl)methanesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.34 – 7.29 (m, 6H, *E* + *Z*), 7.26 – 7.18 (m, 4H, *E* + *Z*), 6.40 – 6.23 (m, 1H, *Z*), 6.03 (dt, J = 11.8, 6.7 Hz, 1H, *E*), 5.91 – 5.69 (m, 2H, *E* + *Z*), 4.10 (dt, J = 6.7, 2.0 Hz, 2H, *E*), 3.90 (dt, J = 6.0, 2.1 Hz, 2H, *Z*), 3.47 (dt, J = 7.8, 6.4 Hz, 4H, *E* + *Z*), 2.96 – 2.85 (m, 4H, *E* + *Z*), 2.69 (s, 3H, *Z*), 2.65 (s, 3H, *E*).

¹³C NMR (126 MHz, CDCl₃): δ 138.9 (q, *J* = 5.0 Hz), 138.1, 129.1 (x2), 128.9 (x2), 127.0, 122.9 (q, *J* = 270.6 Hz), 121.0 (q, *J* = 34.3 Hz), 49.8, 45.1 (q, *J* = 1.6 Hz), 39.0, 35.2.

IR (neat): v = 3065, 3012, 2864, 1330, 1145, 1124, 963, 701, 519 cm⁻¹.

C₁₄H₁₆F₃NO₂S MW: 319.34 g.mol⁻¹ Colorless oil 89 % (71.4 mg) *E/Z* ratio = 78:22

column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.42 – 7.28 (m, 10H, *E* + *Z*), 6.37 – 6.21 (m, 1H, *Z*), 6.00 (dt, J = 11.9, 6.3 Hz, 1H, *E*), 5.72 (dddd, J = 15.8, 7.9, 6.2, 4.6 Hz, 1H, *Z*), 5.66 – 5.54 (m, 1H, *E*), 4.43 (s, 4H, *E* + *Z*), 4.11 (dp, J = 6.6, 2.2 Hz, 2H, *E*), 3.90 (dp, J = 6.2, 2.1 Hz, 2H, *Z*), 2.48 – 2.21 (m, 2H, *E* + *Z*), 1.35 – 1.18 (m, 4H, *E* + *Z*), 1.09 – 0.98 (m, 4H, *E* + *Z*).

¹³C NMR (126 MHz, CDCl₃): δ 139.0 (q, *J* = 5.0 Hz), 135.8, 128.9 (x2), 128.7 (x2), 128.3, 122.8 (q, *J* = 271.8 Hz), 120.0 (q, *J* = 34.5 Hz), 52.2, 45.2 (q, *J* = 1.7 Hz), 29.8, 5.5 (x2).

IR (neat): v = 3065, 2925, 2876, 1335, 1126, 889, 703 cm⁻¹.

Compound 2q N-benzyl-4-nitro-N-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

 $C_{17}H_{15}F_3N_2O_4S$ MW: 400.37 g.mol⁻¹ Colorless oil 74 % (89.7 mg) *E/Z* ratio = 80:20

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 8.38 (d, *J* = 8.8 Hz, 4H, *E* + *Z*), 7.99 (d, *J* = 8.8 Hz, 4H, *E* + *Z*), 7.37 - 7.18 (m, 10H, *E* + *Z*), 6.11 - 5.99 (m, 1H, *Z*), 5.78 (dt, J = 11.9, 6.3 Hz, 1H, *E*), 5.64 - 5.48 (m, 2H, *E* + *Z*), 4.39 (s, 4H, *E* + *Z*), 4.04 (dp, J = 6.4, 2.2 Hz, 2H, *E*), 3.89 (dp, J = 6.1, 2.1 Hz, 2H, *Z*).

¹³C NMR (126 MHz, CDCl₃): δ 150.3, 145.4, 137.7 (q, J = 5.0 Hz), 134.6, 129.0 (x2), 128.7 (x2), 128.7, 128.5 (x2), 124.7 (x2), 122.7 (q, J = 272.0 Hz), 120.3 (q, J = 34.5 Hz), 52.7, 45.5 (q, J = 1.7 Hz).

IR (neat): v = 2363, 2340, 1531, 1350, 1162, 1124, 856, 738, 693, 609, 536, 463 cm⁻¹.

Compound 2r N-benzyl-N-(4,4,4-trifluorobut-2-en-1-yl)thiophene-2-sulfonamide

 $C_{15}H_{14}F_3NO_4S_2$ MW: 361.40 g.mol⁻¹ Colorless oil 81 % (64.8 mg) *E/Z* ratio = 77:23

column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ 7.75 – 7.60 (m, 4H, *E* + *Z*), 7.39 – 7.29 (m, 10H, *E* + *Z*), 7.18 (dd, J = 5.1, 3.7 Hz, 2H, *E* + *Z*), 6.25 – 6.00 (m, 1H, *Z*), 5.84 (dt, J = 12.3, 6.3 Hz, 1H, *E*), 5.64 – 5.45 (m, 2H, *E* + *Z*), 4.36 (s, 4H, *E* + *Z*), 4.04 (dq, J = 6.4, 2.2 Hz, 2H, *E*), 3.88 (dt, J = 6.1, 2.0 Hz, 2H, *Z*).

¹³C NMR (126 MHz, CDCl₃): δ 139.7, 138.4 (q, *J* = 5.1 Hz), 135.2, 132.5, 132.3, 128.9 (x2), 128.8 (x2), 128.4, 127.8, 122.8 (q, *J* = 271.8 Hz), 119.6 (q, *J* = 34.5 Hz), 53.0, 45.8 (q, *J* = 1.7 Hz).

IR (neat): v = 3106, 2963, 2874, 1673, 1406, 1349, 1257, 1155, 722, 703, 581 cm⁻¹.

Compound 2s 2-(4,4,4-trifluorobut-2-en-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

Only E-stereoisomer was descried for ¹³C-NMR.

¹**H NMR (500 MHz, CDCl₃):** δ 7.80 (dd, J = 18.4, 8.0 Hz, 2H, E + Z), 7.63 (td, J = 7.6, 1.2 Hz, 2H, E + Z), 7.55 (td, J = 7.6, 1.0 Hz, 2H, E + Z), 7.41 (t, J = 0.9 Hz, 2H, E + Z), 6.56 – 6.48 (m, 1H, Z), 6.26 (dt, J = 11.8, 7.2 Hz, 1H, E), 5.91 (dqt, J = 12.0, 8.5, 1.8 Hz, 2H, E + Z), 4.37 (s, 4H, E + Z), 4.21 (dp, J = 7.4, 2.0 Hz, 2H, E), 4.04 (dt, J = 5.9, 2.1 Hz, 2H, Z).

¹³**C NMR (126 MHz, CDCI₃):** δ 136.8 (q, *J* = 5.1 Hz), 134.8, 133.5, 133.1, 129.5, 124.7, 122.8 (d, *J* = 266.2 Hz), 122.6 (q, *J* = 34.4 Hz), 121.7, 50.3, 41.3 (q, *J* = 1.5 Hz).

IR (neat): v = 2943, 2865, 1675, 1299, 1225, 1175, 1127, 783, 570 cm⁻¹.

Compound 2t (6S,7aS)-8,8-dimethyl-1-(-4,4,4-trifluorobut-2-en-1-yl)hexahydro-3H-3a,6-methanobenzo[*c*]isothiazole 2,2-dioxide

 $C_{14}H_{20}F_3NO_2S$ MW: 323.37 g.mol⁻¹ Colorless oil 67 % (168.9 mg) *E/Z* ratio = 75:25 The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent. Both diastereomers are separable by column chromatography.

• **Compound 2t-***E* (6S,7aS)-8,8-dimethyl-1-((*E*)-4,4,4-trifluorobut-2-en-1-yl)hexahydro-3H-3a,6-methanobenzo[*c*]isothiazole 2,2-dioxide

¹H NMR (500 MHz, CDCl₃): δ 6.47 (dddt, J = 15.6, 6.5, 4.3, 2.1 Hz, 1H), 6.00 – 5.79 (m, 1H), 3.83 (dtd, J = 15.9, 4.1, 2.0 Hz, 1H), 3.53 (ddt, J = 15.9, 6.4, 2.0 Hz, 1H), 3.16 (s, 2H), 3.10 (dd, J = 8.0, 4.4 Hz, 1H), 2.00 – 1.79 (m, 4H), 1.66 – 1.61 (m, 1H), 1.48 – 1.42 (m, 1H), 1.34 – 1.23 (m, 1H), 1.13 (s, 3H), 0.93 (s, 3H).

¹⁹F NMR (282 MHz, CDCI₃): δ -66.42.

¹³**C NMR (126 MHz, CDCI₃):** δ 135.2 (q, *J* = 6.4 Hz), 122.5 (q, *J* = 269.7 Hz), 122.3 (q, *J* = 34.2 Hz), 67.3, 50.1, 49.5, 47.8, 44.8, 43.7, 35.6, 32.4, 27.0, 20.5, 20.1.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₂₀F₃NaNO₂S 346.1059; found 346.1053.

IR (neat): v = 2958, 2883, 1673, 1456, 1308, 1222, 1117, 1063, 542 cm⁻¹.

• **Compound 2t-Z** (6S,7aS)-8,8-dimethyl-1-((*Z*)-4,4,4-trifluorobut-2-en-1-yl)hexahydro-3H-3a,6-methanobenzo[*c*]isothiazole 2,2-dioxide

¹H NMR (500 MHz, CDCl₃): δ 6.26 (dt, J = 11.9, 7.0 Hz, 1H), 5.88 – 5.68 (m, 1H), 3.97 (ddt, J = 16.6, 6.9, 2.0 Hz, 1H), 3.77 (ddt, J = 16.6, 6.9, 2.0 Hz, 1H), 3.15 (s, 2H), 3.15 – 3.10 (m, 1H), 1.99 – 1.93 (m, 1H), 1.93 – 1.81 (m, 3H), 1.65 (dd, J = 12.8, 7.9 Hz, 1H), 1.52 – 1.40 (m, 1H), 1.37 – 1.21 (m, 1H), 1.11 (s, 3H), 0.92 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -60.07.

¹³**C NMR (126 MHz, CDCI₃):** δ 137.5 (q, J = 5.1 Hz), 122.9 (q, J = 272.0 Hz), 121.1 (q, J = 34.3 Hz), 66.9, 50.1, 49.5, 47.8, 44.7, 40.1 (q, J = 1.7 Hz), 35.1, 32.3, 22.0, 20.5, 20.1.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₂₀F₃NaNO₂S 346.1059; found 346.1056.

IR (neat): v = 2958, 2883, 1719, 1306, 1226, 1130, 1062, 544 cm⁻¹.

Compound 2u *N*,*N*-(butane-1,4-diyl)bis(4-methyl-*N*-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide)

 $C_{26}H_{30}F_6N_2O_4S_2$

MW: 612.65 g.mol⁻¹

2u was obtained after short work-up and used

without further purification.

Compound 2v 4-methyl-*N*-(2-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)ethyl)-*N*-(4,4,4-trifluorobut-2-en-1-yl)benzenesulfonamide

2v was obtained after short work-up and used without further purification.

Enamides **3a-v**

Compound 3a (E)-N-benzyl-4-methyl-N-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

C₁₈H₁₈F₃NO₂S MW: 369.40 g.mol⁻¹ Colorless oil 87 % (60.7 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 60:40) as eluent.

¹H NMR (500 MHz, CDCl₃): δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.38 – 7.21 (m, 7H), 6.92 (d, *J* = 14.2 Hz, 1H), 4.54 (dt, *J* = 14.2, 7.5 Hz, 1H), 4.50 (s, 2H), 2.67 (qdd, *J* = 10.4, 7.4, 1.2 Hz, 2H), 2.44 (s, 3H).

¹⁹F NMR (471 MHz, CDCl₃): δ -67.40.

¹³**C NMR (126 MHz, CDCI₃):** δ 144.3, 135.8, 135.0, 132.1, 130.1 (x2), 128.8 (x2), 127.7, 127.1 (2), 127.0 (x2), 126.2 (d, *J* = 276.9 Hz), 99.1 (q, *J* = 3.9 Hz), 49.5, 35.3 (q, *J* = 30.5 Hz), 21.7.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₈F₃NNaO₂S 392.0903; found 392.0895.

IR (neat): v = 2925, 1852, 1662, 1342, 1255, 1166, 1137, 1068, 697, 550 cm⁻¹.

Compound 3b (*E*)-*N*-(benzo[*d*][1,3]dioxol-5-ylmethyl)-4-methyl-*N*-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

C₁₉H₁₈F₃NO₄S MW: 413.41 g.mol⁻¹ White solid mp: 65 – 68 °C 89 % (32.8 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (500 MHz, CDCI₃):** δ 7.66 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 14.2 Hz, 1H), 6.81 – 6.64 (m, 3H), 5.94 (s, 2H), 4.58 (dt, J = 14.1, 7.5 Hz, 1H), 4.39 (s, 2H), 2.69 (qdd, J = 10.5, 7.5, 1.2 Hz, 2H), 2.44 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.35.

¹³**C NMR (126 MHz, CDCI₃):** δ 148.1, 147.1, 144.2, 135.7, 132.0, 130.0 (x2), 128.7, 127.0 (x2), 125.7 (q, *J* = 275.4 Hz), 120.3, 108.2, 107.5, 101.1, 99.1 (q, *J* = 3.8 Hz), 49.2, 35.2 (q, *J* = 30.5 Hz), 21.6.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₉H₁₈F₃NNaO₄S 436.0801; found 436.0794.

IR (neat): v = 2920, 1662, 1491, 1448, 1356, 1245, 1165, 810, 665, 549 cm⁻¹.

C₁₈H₁₇F₄NO₂S MW: 387.39 g.mol⁻¹ White solid mp: 93 – 95 °C 89 % (73 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:00 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCl₃):** δ 7.67 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.28 – 7.17 (m, 2H), 7.04 – 6.93 (m, 2H), 6.91 (d, J = 14.2 Hz, 1H), 4.53 (dd, J = 14.6, 7.1 Hz, 1H), 4.46 (s, 2H), 2.69 (qdd, J = 10.4, 7.5, 1.2 Hz, 2H), 2.44 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.40, -114.80.

¹³C NMR (126 MHz, CDCl₃): δ 162.3 (d, J = 246.0 Hz), 144.5, 135.7, 132.0, 130.7 (d, J = 3.1 Hz), 130.1 (x2), 128.7 (d, J = 8.2 Hz) (x2), 127.1 (x2), 125.8 (q, J = 276.6 Hz), 115.7 (d, J = 21.7 Hz) (x2), 99.2 (q, J = 3.7 Hz), 48.8, 35.2 (q, J = 30.5 Hz), 21.7.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₈H₁₇F₄KNO₂S 426.0548; found 426.0541.

IR (neat): v = 3071, 2929, 1661, 1600, 1509, 1359, 1253, 1129, 1067, 811, 635, 509 cm⁻¹.

Compound	3d	(E)-N-(2-bromobenzyl)-4-methyl-N-(4,4,4-trifluorobut-1-en-1-
yl)benzenesulfon	amide	

C₁₈H₁₇BrF₃NO₂S MW: 448.30 g.mol⁻¹ Colorless oil 80 % (44.2 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:5 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCl₃):** δ 7.71 (d, J = 8.3 Hz, 2H), 7.52 (dd, J = 7.9, 1.1 Hz, 1H), 7.35 (d, J = 7.9 Hz, 2H), 7.32 – 7.22 (m, 2H), 7.18 – 7.08 (m, 1H), 6.97 (d, J = 14.2 Hz, 1H), 4.56 (s, 2H), 4.48 – 4.30 (m, 1H), 2.69 (qdd, J = 10.4, 7.5, 1.0 Hz, 2H), 2.45 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.36.

¹³C NMR (126 MHz, CDCl₃): δ 144.6, 135.7, 133.6, 132.8, 131.8, 130.3 (x2), 129.2, 128.3, 127.9, 127.1 (x2), 125.8 (d, *J* = 278.6 Hz), 122.3, 98.9 (q, *J* = 3.7 Hz), 49.5, 35.2 (q, *J* = 30.5 Hz), 21.8.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₁₈BrF₃NO₂S 448.0188; found 448.0187.

IR (neat): v = 3036, 2960, 1662, 1597, 1442, 1362, 1276, 1255, 1167, 1138, 1046, 665 cm⁻¹.

Compound 3e (E)-N,4-dimethyl-N-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (500 MHz, CDCl₃):** δ 7.62 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 14.1 Hz, 1H), 4.58 (dt, J = 14.0, 7.5 Hz, 1H), 2.86 (s, 3H), 2.85 – 2.73 (m, 2H), 2.42 (s, 3H).

¹⁹F NMR (282 MHz, CDCI₃): δ -67.34.

¹³C NMR (126 MHz, CDCl₃): δ 144.3, 134.5, 133.8, 130.0 (x2), 127.1 (x2), 126.0 (q, *J* = 276.5 Hz), 97.6 (q, *J* = 3.8 Hz), 35.2 (q, *J* = 30.5 Hz), 32.1, 21.7.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₄F₃NNaO₂S 316.0590; found 316.0581.

IR (neat): v = 3064, 2931, 1662, 1598, 1356, 1335, 1276, 1248, 1162, 1137, 769, 665, 548 cm⁻¹.

Compound 3f (*E*)-*N*-cyclopropyl-4-methyl-*N*-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

C₁₄H₁₆F₃NO₂S MW: 319.34 g.mol⁻¹ White solid mp: 66 – 68 °C 92 % (59.7 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCl₃):** δ 7.68 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 6.87 (d, J = 14.1 Hz, 1H), 5.00 (dt, J = 14.1, 7.6 Hz, 1H), 2.80 (qdd, J = 10.5, 7.6, 1.2 Hz, 2H), 2.43 (d, J = 0.8 Hz, 3H), 1.76 (tt, J = 6.7, 3.7 Hz, 1H), 1.01 – 0.79 (m, 4H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.27.

¹³**C NMR (126 MHz, CDCI₃):** δ 144.3, 134.7, 134.2, 129.8 (x2), 127.6 (x2), 126.0 (q, *J* = 276.5 Hz), 100.8 (q, *J* = 3.7 Hz), 35.3 (q, *J* = 30.5 Hz), 27.0, 21.7, 8.2 (x2).

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₆F₃NNaO₂S 342.0746; found 342.0746.

IR (neat): v = 3087, 2931, 1658, 1598, 1365, 1257, 1186, 1125, 664, 601, 551 cm⁻¹.

Compound 3g (*E*)-*N*-cyclopentyl-4-methyl-*N*-(4,4,4-trifluorobut-1-en-1yl)benzenesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCl₃):** δ 7.66 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 6.37 (d, *J* = 14.4 Hz, 1H), 5.16 (dt, *J* = 14.5, 7.5 Hz, 1H), 4.46 (p, *J* = 8.7 Hz, 1H), 2.80 (qdd, *J* = 10.5, 7.5, 1.2 Hz, 2H), 2.42 (s, 3H), 1.70 – 1.59 (m, 6H), 1.54 – 1.40 (m, 2H).

¹⁹F NMR (282 MHz, CDCl₃): δ -66.99.

¹³C NMR (126 MHz, CDCl₃): δ 143.8, 136.8, 129.7 (x2), 129.1, 127.1 (x2), 123.6 (q, *J* = 279.2 Hz), 105.4 (q, J = 3.5 Hz), 58.6, 35.9 (q, J = 30.4 Hz), 27.5 (x2), 24.4 (x2), 21.6.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₆H₂₀F₃KNO₂S 386.0798; found 386.0801.

IR (neat): v = 2960, 1875, 1660, 1340, 1273, 1252, 1160, 1137, 1091, 1064, 666, 548 cm⁻¹.

Compound	3h	(E)-4-methyl-N-(4,4,4-trifluorobut-1-en-1-yl)-N-(2,2,2-
trifluoroethyl)benzenes	ulfonamide	

$$\begin{array}{c} T_{3} \\ F_{3}C \\ N \\ \end{array} \\ \begin{array}{c} T_{3} \\ N \\ \end{array} \\ CF_{3} \\ CF_{3} \\ \end{array} \\ \begin{array}{c} C_{13}H_{13}F_{6}NO_{2}S \\ MW: 361.30 \text{ g.} \\ White solid \\ mp: 60 - 62 \ ^{\circ}C \\ 00 \ ^{\circ}C \\ 00 \ ^{\circ}C \\ \end{array} \\ \begin{array}{c} CF_{3} \\ T_{3} \\ T_{3} \\ T_{3} \\ T_{3} \\ T_{3} \\ T_{4} \\ T_{3} \\ T_{5} \\$$

361.30 g.mol⁻¹ solid 0 − 62 °C 90 % (67.4 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹H NMR (300 MHz, CDCl₃): δ 7.67 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.75 (d, J = 14.2 Hz, 1H), 4.94 (dt, J = 14.6, 7.4 Hz, 1H), 4.01 (q, J = 8.3 Hz, 2H), 2.80 (qdd, J = 10.3, 7.5, 1.1 Hz, 2H), 2.44 (s, 3H).

¹⁹F NMR (282 MHz, CDCI₃): δ -67.15, -68.53.

¹³C NMR (126 MHz, CDCl₃): δ 145.1, 135.2, 132.0, 130.2 (x2), 127.3 (x2), 125.7 (q, J = 278.1) Hz), 123.7 (q, J = 281.1 Hz), 101.1 (m), 47.1 (q, J = 36.2 Hz), 35.2 (q, J = 30.7 Hz), 21.7.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₃F₆NNaO₂S 384.0463; found 384.0462.

IR (neat): v = 2937, 1667, 1599, 1364, 1332, 1271, 1257, 1164, 1069, 1010, 666, 547 cm⁻¹.

Compound 3i (*E*)-*N*-allyl-4-methyl-*N*-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 6.88 (d, J = 14.2 Hz, 1H), 5.60 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H), 5.20 – 5.14 (m, 1H), 5.14 (t, J = 1.3 Hz, 1H), 4.67 (dt, J = 14.5, 7.4 Hz, 1H), 3.99 (dt, J = 5.3, 1.7 Hz, 2H), 2.77 (qdd, J = 10.5, 7.5, 1.2) Hz, 2H), 2.43 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.37.

¹³C NMR (126 MHz, CDCl₃): δ 144.3, 136.1, 131.9, 131.2, 130.0 (x2), 127.1 (x2), 126.0 (q, J = 276.5 Hz), 118.2, 98.2 (q, J = 3.8 Hz), 48.2, 35.3 (q, J = 30.5 Hz), 21.7.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₄H₁₆F₃KNO₂S 359.0485; found 358.0476.

IR (neat): v = 3070, 2929, 2874, 1662, 1598, 1357, 1274, 1254, 1164, 1133, 1089, 1067, 889, 814, 665, 593, 547 cm⁻¹.

Compound 3j (*E*)-4-methyl-*N*-(pent-4-en-1-yl)-*N*-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

C₁₆H₂₀F₃NO₂S MW: 347.40 g.mol⁻¹ Colorless oil 88 % (61.8 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCI₃):** δ 7.63 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 6.85 (d, J = 14.3 Hz, 1H), 5.76 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.09 – 4.92 (m, 2H), 3.35 – 3.22 (m, 2H), 2.80 (qdd, J = 10.4, 7.5, 1.2 Hz, 2H), 2.42 (s, 3H), 2.15 – 1.93 (m, 2H), 1.74 – 1.58 (m, 2H), 1.29 – 1.22 (m, 1H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.33.

¹³C NMR (126 MHz, CDCl₃): δ 144.1, 137.3, 136.0, 132.1, 130.0 (x2), 127.0 (x2), 126.0 (q, J = 276.6 Hz), 115.8, 97.4 (q, J = 3.8 Hz), 45.0, 35.4 (q, J = 30.5 Hz), 30.9, 25.9, 21.7.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₆H₂₀F₃KNO₂S 386.0790; found 386.0790.

IR (neat): v = 3081, 2828, 2857, 1661, 1358, 1341, 1307, 1276, 1186, 1138, 1091, 7071, 951, 911, 814, 665, 596, 560 cm⁻¹.

Compound 3k (*E*)-*N*-(4-cyanobutyl)-4-methyl-*N*-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

C₁₆H₁₉F₃N₂O₂S MW: 360.40 g.mol⁻¹ Colorless oil 82 % (57.4 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹H NMR (300 MHz, CDCl₃): δ 7.62 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 14.3 Hz, 1H), 4.67 (dt, J = 14.6, 7.5 Hz, 1H), 3.38 – 3.28 (m, 2H), 2.81 (qdd, J = 10.4, 7.5, 1.2 Hz, 2H), 2.43 (s, 5H), 1.77 – 1.69 (m, 4H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.25.

¹³**C NMR (126 MHz, CDCI₃):** δ 144.3, 135.4, 131.8, 130.0 (x2), 126.9 (x2), 125.4 (q, *J* = 274.4 Hz), 119.2, 98.4 (q, *J* = 3.7 Hz), 44.2, 35.2 (q, *J* = 30.5 Hz), 25.3, 22.3, 21.6, 16.7.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₉F₃N₂NaO₂S 383.1012; found 383.1008.

IR (neat): v = 3060, 2944, 2876, 1661, 1598, 1340, 1255, 1162, 1099, 1063, 665, 597, 549 cm⁻¹.

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCl₃):** δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 14.3 Hz, 1H), 4.74 (dt, *J* = 14.2, 7.4 Hz, 1H), 3.59 (s, 4H), 2.81 (qdd, *J* = 10.4, 7.5, 1.2 Hz, 2H), 2.44 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.21.

¹³**C NMR (126 MHz, CDCI₃):** δ 144.7, 135.4, 131.9, 130.2 (x2), 127.1 (x2), 125.8 (q, *J* = 276.5 Hz), 97.7 (q, *J* = 3.8 Hz), 46.7, 39.2, 35.2 (q, *J* = 30.6 Hz), 21.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₆CIF₃NO₂S 342.0537; found 342.0529.

IR (neat): v = 3057, 2971n 1662, 1598, 1365, 1339, 1276n 1255, 1187, 1139, 1074, 905, 664, 549 cm⁻¹.

Compound 3m (*E*)-4-methyl-*N*-(pyridin-3-ylmethyl)-*N*-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

C₁₇H₁₇F₃N₂O₂S MW: 370.39 g.mol⁻¹ Colorless oil 87 % (61.2 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (500 MHz, CDCl₃):** δ 8.50 (d, J = 20.9 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.28 – 7.22 (m, 1H), 6.92 (d, J = 14.3 Hz, 1H), 4.58 – 4.43 (m, 3H), 2.69 (qdd, J = 10.4, 7.5, 1.1 Hz, 2H), 2.44 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.36.

¹³C NMR (126 MHz, CDCl₃): δ 149.3, 148.6, 144.7, 135.5, 135.5, 134.8, 131.8, 130.2 (x2), 123.8, 127.1 (x2), 125.7 (q, J = 276.6 Hz), 99.4 (q, J = 3.7 Hz), 47.0, 35.2 (q, J = 30.6 Hz), 21.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₈F₃N₂O₂S 371.1036; found 371.1031.

IR (neat): v = 3079, 2930, 1661, 1429, 1363, 1275, 1255, 1166, 1138, 1071, 666 cm⁻¹.

Compound 3n (*E*)-*N*-benzyl-4-methyl-*N*-(4,4,4-trifluoro-3-phenylbut-1-en-1-yl)benzenesulfonamide

C₂₄H₂₂F₃NO₂S MW: 445.50 g.mol⁻¹ Colorless oil 86 % (10.4 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:00 to 60:40) as eluent.

¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 8.3 Hz, 2H), 7.29 – 7.20 (m, 10H), 7.03 – 6.96 (m, 2H), 6.90 (d, J = 14.2 Hz, 1H), 4.92 (dd, J = 14.2, 8.8 Hz, 1H), 4.64 (d, J = 15.9 Hz, 1H), 4.46 (d, J = 15.9 Hz, 1H), 3.86 (p, J = 9.1 Hz, 1H), 2.44 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃): δ -69.97.

¹³**C NMR (126 MHz, CDCI₃):** δ 144.3, 135.8, 135.0, 134.9, 131.1, 130.1 (x2), 129.4, 128.8 (x2), 128.8 (x2), 128.7 (x2), 128.2 (d, *J* = 65.5 Hz), 127.1 (x2), 127.1 (x2), 123.7 (q, *J* = 270.7 Hz), 105.4 (d, *J* = 2.9 Hz), 51.1 (q, *J* = 28.1 Hz), 49.6, 21.7.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₂₄H₂₂F₃KNO₂S 484.0955; found 484.0941.

IR (neat): v = 3090, 2957, 2872, 2357, 1659, 1520, 1455, 1363, 1250, 1165, 1107, 948, 738, 701, 666, 572 cm⁻¹.

Compound 3o (E)-N-phenethyl-N-(4,4,4-trifluorobut-1-en-1-yl)methanesulfonamide

C₁₃H₁₆F₃NO₂S MW: 307.33 g.mol⁻¹ White solid mp: 88 – 90 °C 69 % (32.2 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹H NMR (300 MHz, CDCl₃): δ 7.37 – 7.20 (m, 5H), 6.69 (d, *J* = 14.0 Hz, 1H), 4.84 (dt, *J* = 14.3, 7.4 Hz, 1H), 3.83 – 3.67 (m, 2H), 2.99 – 2.93 (m, 2H), 2.84 (qdd, *J* = 10.4, 7.5, 1.2 Hz, 2H), 2.72 (s, 3H).

¹⁹F NMR (282 MHz, CDCI₃): δ -67.25.

¹³**C NMR (126 MHz, CDCI₃):** δ 138.0, 131.3, 129.0 (x2), 129.0 (x2), 127.1, 126.0 (d, *J* = 274.4 Hz), 97.3 (q, *J* = 3.8 Hz), 47.3, 39.6, 35.4 (q, *J* = 30.6 Hz), 33.6.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₆F₃NNaO₂S 330.0746; found 330.0744.

IR (neat): v = 3089, 3062, 3005, 2936, 1664, 1331, 1254, 1132, 1087, 967, 738, 700, 519 cm⁻¹.

Compound 3p (E)-N-benzyl-N-(4,4,4-trifluorobut-1-en-1-yl)cyclopropanesulfonamide

C₁₄H₁₆F₃NO₂S MW: 319.34 g.mol⁻¹ Colorless oil 79 % (55.5 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹H NMR (300 MHz, CDCI₃): δ 7.42 – 7.19 (m, 5H), 6.80 (d, J = 14.2 Hz, 1H), 4.76 (s, 2H), 4.64 (dt, J = 14.3, 7.5 Hz, 1H), 2.70 (qdd, J = 10.5, 7.5, 1.1 Hz, 2H), 2.37 (tt, J = 8.0, 4.9 Hz, 1H), 1.31 – 1.14 (m, 2H), 1.11 – 0.91 (m, 2H).

¹⁹**F NMR (282 MHz, CDCl₃):** δ -67.39.

¹³**C NMR (126 MHz, CDCI₃):** δ 135.4, 132.3, 128.8 (x2), 127.8, 126.9 (x2), 125.9 (q, *J* = 276.5 Hz), 97.8 (q, *J* = 3.8 Hz), 49.7, 35.2 (q, *J* = 30.5 Hz), 30.6, 5.7 (x2).

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₆F₃NaNO₂S 342.0746; found 342.0744.

IR (neat): v = 3065, 2931, 1662, 1340, 1275, 1253, 1127, 1066, 946, 882, 696, 602, 541 cm⁻¹.

Compound 3q (E)-N-benzyl-4-nitro-N-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

C₁₇H₁₅F₃N₂O₄S MW: 400.37 g.mol⁻¹ Colorless oil 75 % (59.6 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCI₃):** δ 8.35 (d, *J* = 9.1 Hz, 2H), 7.94 (d, *J* = 9.1 Hz, 2H), 7.50 – 7.17 (m, 5H), 6.90 (d, *J* = 14.3 Hz, 1H), 4.73 (dt, *J* = 14.2, 7.5 Hz, 1H), 4.60 (s, 2H), 2.72 (qdd, *J* = 10.4, 7.5, 1.2 Hz, 2H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.26.

¹³**C NMR (126 MHz, CDCl₃):** δ 150.5, 144.3, 134.1, 131.3, 128.9 (x2), 128.3 (x2), 128.1, 127.1 (x2), 125.6 (q, *J* = 280.2 Hz), 124.7 (x2), 101.4 (q, *J* = 3.8 Hz), 49.8, 35.2 (q, *J* = 30.6 Hz).

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₆F₃N₂O₄S 401.0777; found 401.0777.

IR (neat): v = 3107, 1663, 1532, 1350, 1254, 1170, 1137, 1090, 1068, 950, 855, 737, 684, 618, 545, 463 cm⁻¹.

Compound 3r (*E*)-*N*-benzyl-*N*-(4,4,4-trifluorobut-1-en-1-yl)thiophene-2-sulfonamide

C₁₅H₁₄F₃NO₂S₂ MW: 361.40 g.mol⁻¹ Colorless oil 85 % (51.2 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹H NMR (500 MHz, CDCI₃): δ 7.64 (dd, J = 5.0, 1.4 Hz, 1H), 7.58 (dd, J = 3.8, 1.3 Hz, 1H), 7.35 – 7.23 (m, 5H), 7.11 (dd, J = 5.0, 3.8 Hz, 1H), 6.88 (d, J = 14.2 Hz, 1H), 4.65 (dt, J = 14.4, 7.5 Hz, 1H), 4.58 (s, 2H), 2.70 (qdd, J = 10.4, 7.5, 1.0 Hz, 2H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.31.

¹³**C NMR (126 MHz, CDCl₃):** δ 139.0, 134.8, 132.8, 132.6, 131.6, 128.9 (x2), 127.9, 127.7, 127.0 (x2), 125.6 (q, *J* = 277.0 Hz), 100.6 (q, *J* = 3.8 Hz), 49.8, 35.3 (q, *J* = 30.6 Hz).

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₅H₁₄F₃KNO₂S₂ 400.0050; found 400.0039.

IR (neat): v = 3165, 3068, 1663, 1367, 1344, 1276, 1255, 1164, 1138, 1070, 697, 607, 576 cm⁻¹.

Compound 3s (*E*)-2-(4,4,4-trifluorobut-1-en-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide

C₁₁H₁₀F₃NO₂S MW: 277.26 g.mol⁻¹ White solid mp: 120 – 123 °C 92 % (41.5 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCl₃):** δ 7.89 – 7.80 (m, 1H), 7.73 – 7.62 (m, 1H), 7.64 – 7.53 (m, 1H), 7.52 – 7.43 (m, 1H), 6.80 (d, *J* = 14.0 Hz, 1H), 4.90 (dt, *J* = 13.9, 7.4 Hz, 1H), 4.61 (s, 2H), 2.90 (qdd, *J* = 10.5, 7.4, 1.2 Hz, 2H).

¹⁹F NMR (282 MHz, CDCI₃): δ -67.14.

¹³C NMR (126 MHz, CDCl₃): δ 134.3, 133.6, 132.0, 129.7, 127.2, 125.9 (d, *J* = 296.4 Hz), 124.8, 121.8, 98.2 (q, *J* = 3.9 Hz), 47.6, 35.4 (q, *J* = 30.7 Hz).

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₀F₃NNaO₂S 300.0277; found 300.0275.

IR (neat): v = 2928, 2868, 1668, 1307, 1282, 1214, 1172, 1162, 1128, 1065 cm⁻¹.

Compound 3t (6S,7aS)-8,8-dimethyl-1-((E)-4,4,4-trifluorobut-1-en-1-yl)hexahydro-3H-3a,6-methanobenzo[*c*]isothiazole 2,2-dioxide

C₁₄H₂₀F₃NO₂S MW: 323.37 g.mol⁻¹ White solid mp: 103 – 106 °C 83 % (45.6 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (300 MHz, CDCl₃):** δ 6.32 (d, J = 14.1 Hz, 1H), 4.81 (ddd, J = 14.5, 8.0, 6.9 Hz, 1H), 3.41 (dd, J = 7.8, 4.8 Hz, 1H), 3.25 (d, J = 3.3 Hz, 2H), 2.95 – 2.69 (m, 2H), 2.15 – 2.01 (m, 1H), 1.96 – 1.89 (m, 3H), 1.87 – 1.76 (m, 1H), 1.54 – 1.44 (m, 1H), 1.39 – 1.31 (m, 1H), 1.08 (s, 3H), 0.95 (s, 3H).

¹⁹**F NMR (282 MHz, CDCI₃):** δ -67.14.

¹³**C NMR (126 MHz, CDCI₃):** δ 126.7, 125.9 (q, J = 276.5 Hz), 102.2 (q, J = 3.7 Hz), 63.9, 50.4, 49.8, 48.1, 44.6, 36.0, 35.6 (q, J = 30.6 Hz), 32.2, 27.0, 20.3, 20.1.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₂₀F₃NNaO₂S 346.1059; found 346.1054.

IR (neat): v = 2959, 2884, 1664, 1321, 1253, 1136, 1068 cm⁻¹.

This compound was obtained through a sequential two steps procedure from 1u.

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹H NMR (300 MHz, CDCl₃): δ 7.63 (d, J = 8.3 Hz, 4H), 7.31 (d, J = 8.5 Hz, 4H), 6.80 (d, J = 14.3 Hz, 2H), 4.66 (dt, J = 14.6, 7.5 Hz, 2H), 3.35 – 3.24 (m, 4H), 2.80 (qdd, J = 10.4, 7.4, 1.1 Hz, 4H), 2.43 (s, 6H), 1.66 – 1.57 (m, 4H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.27.

¹³**C NMR (126 MHz, CDCI₃):** δ 144.3 (x2), 135.7 (x2), 132.0 (x2), 130.1 (x4), 127.0 (x4), 126.0 (q, *J* = 276.5 Hz) (x2), 98.4 (q, *J* = 3.7 Hz) (x2), 44.7 (x2), 35.3 (q, *J* = 30.5 Hz) (x2), 23.5 (x2), 21.7 (x2).

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₃₁F₆N₂O₄S₂ 613.1624; found 613.1626.

IR (neat): v = 3089, 2931, 2882, 1661, 1339, 1253, 1163, 1063, 890, 846, 814, 664, 595, 548 cm⁻¹.

Compound 3v (*E*)-4-methyl-*N*-(2-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)ethyl)-*N*-(4,4,4-trifluorobut-1-en-1-yl)benzenesulfonamide

C₂₃H₂₄F₃NO₃S MW: 451.50 g.mol⁻¹ Colorless oil 68 % (30 mg) (*two steps*)

This compound was obtained through a sequential two steps procedure from 1v.

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (500 MHz, CDCI₃):** δ 7.99 (dd, J = 7.8, 1.5 Hz, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.46 (td, J = 7.5, 1.5 Hz, 1H), 7.36 – 7.26 (m, 3H), 7.23 (d, J = 7.6 Hz, 1H), 6.86 (d, J = 14.3 Hz, 1H), 4.96 (dt, J = 14.7, 7.5 Hz, 1H), 3.59 – 3.50 (m, 1H), 3.51 – 3.41 (m, 1H), 3.14 – 2.94 (m, 2H), 2.89 – 2.76 (m, 2H), 2.62 – 2.51 (m, 1H), 2.41 (s, 3H), 2.32 – 2.16 (m, 2H), 1.97 – 1.85 (m, 1H), 1.77 – 1.65 (m, 1H).

¹⁹F NMR (282 MHz, CDCl₃): δ -67.20.

¹³**C NMR (126 MHz, CDCl₃):** δ 120.0, 144.2, 144.0, 135.9, 133.5, 132.6, 132.0, 130.0 (x2), 128.9, 128.9 (d, *J* = 265.6 Hz), 127.5, 127.0 (x2), 126.8, 98.2 (q, *J* = 4.0 Hz), 45.4, 43.9, 35.4 (d, *J* = 30.3 Hz), 29.7, 29.3, 27.8, 21.7.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₂₃H₂₄F₃KNO₃S 490.1061; found 490.1050.

IR (neat): v = 3072, 2930, 1681, 2661, 1600, 1342, 1276, 1255, 1186, 1136 cm⁻¹.

Terminal N-allenamide 4

Compound 4 *N*-benzyl-4-methyl-*N*-(propa-1,2-dien-1-yl)benzenesulfonamide^{Erreur ! Signet non défini.}

C₁₇H₁₇NO₂S MW: 299.39 g.mol⁻¹ Colorless oil 66 %

The product was obtained by column chromatography on silica gel using Petroleum ether / EtOAc (from 100:0 to 95:05) as eluent.

¹H NMR (300 MHz, CDCl₃): δ = 7.68 (d, J = 8.3 Hz, 2H), 7.30 – 7.20 (m, 7H), 6.79 (t, J = 6.2 Hz, 1H), 5.10 (d, J = 6.2 Hz, 2H), 4.26 (s, 2H), 2.41 (s, 3H).

This analytical data match with those described in the literature.

Various syntheses 5-7

Compound 5 N-benzyl-4-methyl-N-propylbenzenesulfonamide

C₁₇H₂₁NO₂S MW: 303.42 g.mol⁻¹ Colorless oil 42 % (31.8 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 100:0 to 80:20) as eluent.

¹**H NMR (500 MHz, CDCl₃):** δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.34 – 7.25 (m, 7H), 4.32 (s, 2H), 3.08 – 3.01 (m, 2H), 2.44 (s, 3H), 1.34 (dq, *J* = 14.9, 7.4 Hz, 2H), 0.70 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 143.3, 137.3, 136.8, 129.8 (x2), 128.6 (x2), 128.4 (x2), 127.8, 127.3 (x2), 52.0, 50.0, 21.7, 21.5, 11.3.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₇H₂₁KNO₂S 342.0925; found 342.0921.

IR (neat): v = 3063, 3030, 2967, 2934, 2875, 1598, 1495, 1455, 1338, 1157, 1091, 1034, 940, 815, 736, 655, 549 cm⁻¹.

Compound 6 N-cyclopropyl-N-(2-hydroxyethyl)-4-methylbenzenesulfonamide

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 88:12 to 0:100) as eluent.

¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.80 (q, J = 5.6 Hz, 2H), 3.31 (t, J = 5.5 Hz, 2H), 2.44 (s, 3H), 2.18 – 2.05 (m, 2H), 0.95 – 0.85 (m, 2H), 0.76 – 0.64 (m, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 143.9, 134.8, 129.8 (x2), 127.9 (x2), 61.3, 53.7, 32.0, 21.7, 7.7 (x2).

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₇NNaO₃S 278.0821; found 278.0814.

IR (neat): v = 3537, 3022, 2927, 1891, 1597, 1454, 1334, 1304, 1155, 1108, 1034, 866, 816, 691, 579, 548 cm⁻¹.

Compound 7 1-tosyl-2,5-dihydro-1H-pyrrole¹⁰

N-Ts

C₁₁H₁₃NO₂S MW: 223.29 g.mol⁻¹ White solid 95 % (55 mg)

The product was obtained by column chromatography on silica gel using petroleum ether/EtOAc (from 95:05 to 60:40) as eluent.

¹**H NMR (400 MHz, CDCl₃):** δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.65 (s, 2H), 4.12 (s, 4H), 2.42 (s, 3H).

This analytical data match with those described in the literature.

NMR Spectra

¹⁰ C. A. Urbina-Blanco, X. Bantreil, J. Wappel, T. E. Schmid, A. M. Z. Slawin, C. Slugovc and C. S. J. Cazin, *Organometallics*, 2013, **32**, 6240–6247.

S36

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 1c

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (CDCl_3, 282 MHz) of 1d

S40

 $^{19}\text{F}\{^1\text{H}\}$ NMR (C₆D₆, 282 MHz) of 1m

 $^{19}\mathsf{F}\{^1\mathsf{H}\}$ NMR (CDCl_3, 282 MHz) of $\mathbf{1p}$

S44

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl₃, 471 MHz) of 1r

 $^{13}\text{C}\{^1\text{H}\}$ NMR (CDCl₃, 126 MHz) of 1u

 $^{19}\mathsf{F}\{^1\mathsf{H}\}$ NMR (CDCl_3, 282 MHz) of 1u

S53

S54

S55

S60

S67

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl₃, 282 MHz) of $\textbf{2t-}\textbf{\textit{E}}$

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl₃, 282 MHz) of 2t-Z

¹³C{¹H} NMR (CDCl₃, 126 MHz) of **3a**

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 471 MHz) of 3a

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3b

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3c

S77

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3d

S79

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3e

¹³C{¹H} NMR (CDCI₃, 126 MHz) of **3f**

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3f

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3g

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3h

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3i

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3j

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3k

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3I

 $^{13}\text{C}\{^1\text{H}\}$ NMR (CDCl_3, 126 MHz) of 3m

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3m

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (CDCl_3, 126 MHz) of 3n

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3n

¹³C{¹H} NMR (CDCl₃, 126 MHz) of **30** S99

 $^{19}\mathsf{F}\{^1\mathsf{H}\}$ NMR (CDCl_3, 282 MHz) of 3o

 $^{19}\mathsf{F}\{^1\mathsf{H}\}$ NMR (CDCl_3, 282 MHz) of 3p

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3q

S105

 $^{19}\mathsf{F}\{^1\mathsf{H}\}$ NMR (CDCl₃, 282 MHz) of 3r

S107

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3s

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3t

 $^{19}\mathsf{F}\{^1\mathsf{H}\}$ NMR (CDCl_3, 282 MHz) of 3u

 $^{19}\text{F}\{^1\text{H}\}$ NMR (CDCl_3, 282 MHz) of 3v

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (CDCl_3, 126 MHz) of 6

X-Ray Crystallography data

CCDC 2301994 (**3b**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge crystallographic Data Centre.

Compound 4a was dissolved in a 0.5 mL dichloromethane, and *n*-hexane 2 mL were added. The sample was maintained at 4 °C for several days. Crystals were obtained through diffusion.

The X-ray diffraction data were collected at and 173 K on a Bruker SMART CCD diffractometer with MoK α radiation (λ = 0.71073 Å). The diffraction data were corrected for absorption using the SADABS program. The structures were solved using SHELXS977 and refined by full matrix leastsquares on F2 using SHELXL-2014 in the anisotropic approximation for all non-hydrogen atoms. The hydrogen atoms were introduced at calculated positions and not refined (riding model).¹¹

Crystallography date of 3b:

Structure of 3b (CCDC 2301994): ellipsoid contour probability 50 %

¹¹ (a) Bruker. SADABS. Bruker AXS Inc.: Madison, Wisconsin, USA 2001. (b) M. Sheldrick, *Acta Crystallogr. Sect. A Found. Crystallogr.* 2008, **64**, 112–122. (c) G. M. Sheldrick, *Acta Crystallogr. Sect. C. Struct. Chem.* 2015, **71**, 3-8.

Crystal structure Report for **3b** (CCDC 2301994)

Table 1. Crystal data and structure refinement for elmcg_b.

Identification code	elmcg230419
Empirical formula	C19 H18 F3 N O4 S
Formula weight	413.40
Temperature	120(2) K
Wavelength	0.71073 A
Crystal system, space gro	up Monoclinic, P 21/c
Unit cell dimensions b = 1 c = 1	a = 9.9278(3) A alpha = 90 deg. 6.1864(4) A beta = 110.3770(10) deg. 2.2047(3) A gamma = 90 deg.
Volume 1	838.51(9) A^3
Z, Calculated density	4, 1.494 Mg/m^3
Absorption coefficient	0.232 mm^-1
F(000) 85	56
Crystal size ().200 x 0.160 x 0.150 mm
Theta range for data colled	ction 2.180 to 27.913 deg.
Limiting indices	-13<=h<=13, -21<=k<=19, -16<=l<=14 S118

Reflections collected / unique 29538 / 4381 [R(int) = 0.0245]

Completeness to theta = 25.242 99.9 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7456 and 0.6812

Refinement method Full-matrix least-squares on F^2

Data / restraints / parameters 4381 / 0 / 254

Goodness-of-fit on F² 1.012

Final R indices [I>2sigma(I)] R1 = 0.0379, wR2 = 0.1034

R indices (all data) R1 = 0.0414, wR2 = 0.1070

Extinction coefficient n/a

Largest diff. peak and hole 0.728 and -0.668 e.A^-3

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² $x \ 10^3$) for elmcg_b. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x y	Z	U(eq)	
N(1)	4519(1)	8077(1)	5912(1)	20(1)
S(1)	3965(1)	8971(1)	6252(1)	19(1)
O(1)	3821(1)	8855(1)	7371(1)	25(1)
O(2)	4926(1)	9586(1)	6105(1)	26(1)
C(1)	2252(1)	9145(1)	5209(1)	19(1)
C(2)	1060(2)	8865(1)	5450(1)	23(1)
C(3)	-294(2)	8938(1)	4601(1)	25(1)
C(4)	-477(2)	9291(1)	3521(1)	25(1)
C(5)	735(2)	9589(1)	3309(1)	26(1)
C(6)	2099(2)	9519(1)	4140(1)	23(1)
C(7)	-1958(2)	9357(1)	2612(2)	37(1)
C(8)	5254(1)	8039(1)	5055(1)	21(1)
C(9)	6821(1)	7789(1)	5614(1)	19(1)
C(10)	7424(2)	7214(1)	5075(1)	22(1)
C(11)	8884(2)	6992(1)	5553(1)	24(1)
C(12)	9670(1)	7362(1)	6590(1)	21(1)
O(3)	11122(1)	7280(1)	7225(1)	26(1)
C(13)	11349(2)	7740(1)	8281(1)	29(1)
O(4)	10111(1)	8247(1)	8109(1)	30(1)
C(14)	9074(2)	7935(1)	7127(1)	21(1)
C(15)	7660(2)	8168(1)	6669(1)	21(1)
C(16)	4050(2)	7350(1)	6300(1)	21(1)
			S120	

C(17)	4329(2)	6580(1)	6069(1)	25(1)	
C(18)	3804(2)	5871(1)	6607(2)	32(1)	
C(19)	2879(2)	5282(1)	5755(2)	32(1)	
F(1)	1707(1)	5636(1)	4997(1)	64(1)	
F(2)	2413(1)	4661(1)	6263(1)	41(1)	
F(3)	3589(2)	4913(1)	5127(1)	59(1)	

Table 3. Selected bond lengths [A] and angles [deg] for elmcg_b.

Table 4	Bond lengths	[A] and angle	es [dea] for	elmca b
10010 11	Bona longino	l'i ana angi	20 [009] 101	onnog_o.

N(1)-C(16)	1.4064(18)
N(1)-C(8)	1.4701(18)
N(1)-S(1)	1.6529(12)
S(1)-O(2)	1.4323(11)
S(1)-O(1)	1.4339(11)
S(1)-C(1)	1.7559(14)
C(1)-C(2)	1.3910(19)
C(1)-C(6)	1.398(2)
C(2)-C(3)	1.387(2)
C(3)-C(4)	1.388(2)
C(4)-C(5)	1.401(2)
C(4)-C(7)	1.506(2)
C(5)-C(6)	1.386(2)
C(8)-C(9)	1.5197(18)
C(9)-C(10)	1.3888(19)
C(9)-C(15)	1.4078(19)
C(10)-C(11)	1.408(2)
C(11)-C(12)	1.372(2)
C(12)-C(14)	1.383(2)
C(12)-O(3)	1.3850(17)
O(3)-C(13)	1.436(2)
C(13)-O(4)	1.4310(19)
O(4)-C(14)	1.3752(17)
C(14)-C(15)	1.3710(19)
C(16)-C(17)	1.328(2)
C(17)-C(18)	1.503(2)
C(18)-C(19)	1.473(2)
C(19)-F(1)	1.337(2)
C(19)-F(2)	1.3445(19)

C(16)-N(1)-C(8)	120.67(12)
C(16)-N(1)-S(1)	118.00(10)
C(8)-N(1)-S(1)	120.39(10)
O(2)-S(1)-O(1)	120.11(7)
O(2)-S(1)-N(1)	106.40(6)
O(1)-S(1)-N(1)	106.05(6)
O(2)-S(1)-C(1)	108.52(7)
O(1)-S(1)-C(1)	108.61(7)
N(1)-S(1)-C(1)	106.34(6)
C(2)-C(1)-C(6)	121.00(13)
C(2)-C(1)-S(1)	118.35(11)
C(6)-C(1)-S(1)	120.58(11)
C(3)-C(2)-C(1)	119.21(14)
C(2)-C(3)-C(4)	121.13(14)
C(3)-C(4)-C(5)	118.67(13)
C(3)-C(4)-C(7)	119.99(15)
C(5)-C(4)-C(7)	121.33(15)
C(6)-C(5)-C(4)	121.33(14)
C(5)-C(6)-C(1)	118.62(13)
N(1)-C(8)-C(9)	112.06(11)
C(10)-C(9)-C(15)	120.66(13)
C(10)-C(9)-C(8)	120.55(13)
C(15)-C(9)-C(8)	118.76(12)
C(9)-C(10)-C(11)	121.76(13)
C(12)-C(11)-C(10)	116.32(13)
C(11)-C(12)-C(14)	122.04(13)
C(11)-C(12)-O(3)	128.44(14)
C(14)-C(12)-O(3)	109.43(13)
C(12)-O(3)-C(13)	105.06(11)

C(14)-O(4)-C(13)	105.13(12)
C(15)-C(14)-O(4)	127.14(14)
C(15)-C(14)-C(12)	122.55(13)
O(4)-C(14)-C(12)	110.22(12)
C(14)-C(15)-C(9)	116.65(13)
C(17)-C(16)-N(1)	126.48(13)
C(16)-C(17)-C(18)	119.58(14)
C(19)-C(18)-C(17)	114.34(14)
F(1)-C(19)-F(2)	106.47(14)
F(1)-C(19)-F(3)	107.37(16)
F(2)-C(19)-F(3)	105.21(14)
F(1)-C(19)-C(18)	112.89(15)
F(2)-C(19)-C(18)	112.87(14)
F(3)-C(19)-C(18)	111.53(15)

Table 5. Anisotropic displacement parameters (A^2 x 10^3) for elmcg_b.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
N(1)	15(1)	19(1)	27(1)	1(1)	9(1)	1(1)
S(1)	14(1)	18(1)	23(1)	-2(1)	5(1)	-2(1)
O(1)	23(1)	28(1)	23(1)	-2(1)	7(1)	1(1)
O(2)	19(1)	23(1)	36(1)	-2(1)	7(1)	-7(1)
C(1)	16(1)	16(1)	23(1)	-1(1)	6(1)	-1(1)
C(2)	19(1)	21(1)	28(1)	2(1)	9(1)	0(1)
C(3)	16(1)	21(1)	36(1)	-2(1)	7(1)	-1(1)
C(4)	20(1)	22(1)	28(1)	-7(1)	2(1)	5(1)
C(5)	28(1)	28(1)	23(1)	1(1)	8(1)	6(1)
C(6)	22(1)	22(1)	25(1)	1(1)	11(1)	1(1)
C(7)	24(1)	40(1)	35(1)	-9(1)	-3(1)	9(1)
C(8)	16(1)	26(1)	21(1)	1(1)	6(1)	0(1)
C(9)	15(1)	20(1)	22(1)	1(1)	7(1)	-1(1)
C(10)) 20(1)	22(1)	25(1)	-4(1)	9(1)	-3(1)
C(11)) 22(1)	21(1)	34(1)	-2(1)	14(1)	1(1)
C(12)) 14(1)	21(1)	30(1)	6(1)	9(1)	1(1)
O(3)	15(1)	29(1)	34(1)	6(1)	7(1)	2(1)
C(13)) 18(1)	37(1)	28(1)	9(1)	4(1)	1(1)
O(4)	17(1)	40(1)	27(1)	-5(1)	0(1)	1(1)
C(14)) 17(1)	25(1)	21(1)	1(1)	6(1)	-3(1)
C(15)) 17(1)	24(1)	23(1)	-3(1)	8(1)	0(1)
C(16)) 18(1)	22(1)	23(1)	1(1)	7(1)	-2(1)
C(17)) 23(1)	23(1)	28(1)	2(1)	8(1)	0(1)
					S126	

C(18)	39(1)	23(1)	33(1)	3(1)	11(1)	-4(1)
C(19)	36(1)	28(1)	32(1)	2(1)	10(1)	-6(1)
F(1)	38(1)	54(1)	73(1)	24(1)	-14(1)	-10(1)
F(2)	49(1)	29(1)	44(1)	3(1)	14(1)	-14(1)
F(3)	86(1)	44(1)	61(1)	-22(1)	44(1)	-17(1)

	x	V 7	الاوم	1
	^	y Z	0(64)	
H(2)	1172	8627	6188	27
H(3)	-1109	8744	4760	30
H(5)	618	9845	2581	32
H(6)	2914	9721	3986	27
H(7A)	-2058	8954	1989	55
H(7B)	-2102	9915	2282	55
H(7C)	-2678	9244	2974	55
H(8A)	5200	8587	4682	25
H(8B)	4755	7636	4436	25
H(10)	6835	6965	4366	27
H(11)	9302	6607	5178	29
H(13A)	11485	7358	8944	34
H(13B)	12218	8089	8458	34
H(15)	7265	8566	7045	26
H(16)	3476	7417	6775	25
H(17)	4858	6479	5566	30
H(18A)	4646	5570	7138	39
H(18B)	3262	6096	7085	39

Table 6.	Hydrogen coordinates (x 10^4) and isotropic
displace	ment parameters (A^2 x 10^3) for elmcg_b.

Table 7. Selected torsion angles [deg] for elmcg_b.

Table 8. Torsion angles [deg] for elmcg_b.

C(16)-N(1)-S(1)-O(2)	161.56(10)
C(8)-N(1)-S(1)-O(2)	-29.42(12)
C(16)-N(1)-S(1)-O(1)	32.60(12)
C(8)-N(1)-S(1)-O(1)	-158.38(10)
C(16)-N(1)-S(1)-C(1)	-82.89(11)
C(8)-N(1)-S(1)-C(1)	86.13(11)
O(2)-S(1)-C(1)-C(2)	-154.78(11)
O(1)-S(1)-C(1)-C(2)	-22.63(13)
N(1)-S(1)-C(1)-C(2)	91.12(12)
O(2)-S(1)-C(1)-C(6)	28.30(14)
O(1)-S(1)-C(1)-C(6)	160.45(11)
N(1)-S(1)-C(1)-C(6)	-85.80(12)
C(6)-C(1)-C(2)-C(3)	1.9(2)
S(1)-C(1)-C(2)-C(3)	-175.00(11)
C(1)-C(2)-C(3)-C(4)	-0.5(2)
C(2)-C(3)-C(4)-C(5)	-1.2(2)
C(2)-C(3)-C(4)-C(7)	179.57(14)
C(3)-C(4)-C(5)-C(6)	1.6(2)
C(7)-C(4)-C(5)-C(6)	-179.18(14)
C(4)-C(5)-C(6)-C(1)	-0.3(2)
C(2)-C(1)-C(6)-C(5)	-1.5(2)
S(1)-C(1)-C(6)-C(5)	175.33(11)
C(16)-N(1)-C(8)-C(9)	-78.52(16)
S(1)-N(1)-C(8)-C(9)	112.76(12)
N(1)-C(8)-C(9)-C(10)	136.17(14)
N(1)-C(8)-C(9)-C(15)	-45.73(17)
C(15)-C(9)-C(10)-C(11)	-0.3(2)
C(8)-C(9)-C(10)-C(11)	177.79(13)
C(9)-C(10)-C(11)-C(12)	1.2(2)
	S130

C(10)-C(11)-C(12)-C(14)	-1.4(2)
C(10)-C(11)-C(12)-O(3)	-177.51(13)
C(11)-C(12)-O(3)-C(13)	-174.94(15)
C(14)-C(12)-O(3)-C(13)	8.54(15)
C(12)-O(3)-C(13)-O(4)	-14.37(15)
O(3)-C(13)-O(4)-C(14)	14.73(15)
C(13)-O(4)-C(14)-C(15)	173.86(15)
C(13)-O(4)-C(14)-C(12)	-9.54(16)
C(11)-C(12)-C(14)-C(15)	0.6(2)
O(3)-C(12)-C(14)-C(15)	177.40(13)
C(11)-C(12)-C(14)-O(4)	-176.16(13)
O(3)-C(12)-C(14)-O(4)	0.62(16)
O(4)-C(14)-C(15)-C(9)	176.59(13)
C(12)-C(14)-C(15)-C(9)	0.4(2)
C(10)-C(9)-C(15)-C(14)	-0.5(2)
C(8)-C(9)-C(15)-C(14)	-178.63(13)
C(8)-N(1)-C(16)-C(17)	7.8(2)
S(1)-N(1)-C(16)-C(17)	176.77(12)
N(1)-C(16)-C(17)-C(18)	176.88(14)
C(16)-C(17)-C(18)-C(19)	122.82(17)
C(17)-C(18)-C(19)-F(1)	-58.5(2)
C(17)-C(18)-C(19)-F(2)	-179.27(14)
C(17)-C(18)-C(19)-F(3)	62.5(2)

Table 9. Hydrogen bonds for elmcg_b [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)