5-exo-Selective Asymmetric Bromolactonization of Stilbenecarboxylic Acids Catalyzed by Phenol-bearing Chiral Thiourea

Masayuki Sugano, ${ }^{\dagger}$ Tsubasa Inokuma, ${ }^{\dagger}{ }^{\ddagger}$ Yousuke Yamaoka, ${ }^{\S}$ and Ken-ichi Yamada ${ }^{*},{ }^{\dagger}, 7$

${ }^{\dagger}$ Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan. ${ }^{\text {"Research Cluster on "Key Material Development", Tokushima University, Shomachi, Tokushima }}$ 770-8505, Japan. ${ }^{\S}$ Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
yamak@tokushima-u.ac.jp

Contents

\qquad
2. Solvent Effect..S3
3. Catalyst Synthesis ..S4
4. Preparation of Stilbenecarboxylic Acids ...S17
5. Enantioselective Bromolactonization of 1..S23
6. X-ray diffraction ...S34
7. DFT calculation .. 336

Supporting Information I

1. General procedure

All non-aqueous reactions were carried out under a positive atmosphere of argon in dried glassware. Reactions were monitored by thin-layer chromatography (TLC) using Merck TLC silica gel $60 \mathrm{~F}_{254}$. Column chromatography was performed using Silica Gel 60 N (particle size $0.040-0.050 \mathrm{~mm}$) purchased from Kanto Chemical Co., Inc. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AV-400N instrument. The chemical shifts (δ) are reported in parts per million relative to tetramethylsilane (0 ppm) for ${ }^{1} \mathrm{H}$ and $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$, DMSO- $\mathrm{d}_{6}(39.5 \mathrm{ppm})$, or acetone- d_{6} (206.7 and 30.4 ppm) for ${ }^{13} \mathrm{C}$. The coupling constants (J) are presented in hertz. The following abbreviations were used to explain NMR peak multiplicities: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=\operatorname{triplet}, \mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Mass spectra were recorded on a SHIMADZU LCMS-IT-TOF fitted with an ESI. IR spectroscopy was recorded using an attenuated total reflectance FTIR, and the wavenumbers of maximum absorption peaks are reported in cm^{-1}. Optical rotations were measured using a JASCO P-2200 polarimeter (concentration in $\mathrm{g} \mathrm{dL}^{-1}$). High performance liquid chromatography (HPLC) analyses were performed on a SHIMADZU analytical system equipped with two LC-20AT pumps. Melting point was determined on J-SCIENCE RFS-10.

Supporting Information I

2. Solvent Effect on the Reaction

Table S1. Optimization of reaction solvents ${ }^{\text {a }}$

${ }^{\text {a }}$ Reaction was conducted using $1 \mathrm{a}(0.1 \mathrm{mmol})$, NBS $(0.12 \mathrm{mmol})$, and $\mathbf{4 i}(5 \mu \mathrm{~mol})$ in solvent $(2 \mathrm{~mL})$. Remaining bromine species were quenched by aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ after 24 h . Hyphens in the table denote "not determined." ${ }^{b}$ Combined yield of $2 a$ and $3 a$. ${ }^{c}$ Determined by ${ }^{1}$ H NMR. ${ }^{d}$ Determined by chiral HPLC analysis. The enantiomer ratio of 3a was generally low (50:50-55:45).

Supporting Information I

3. Catalyst Synthesis

Typical Procedure for Synthesis of N-Alkylated Diamine. (1R,2R)-N, N^{\prime}-Bis(2-(tert-butyldimethylsiloxy)benzyl)-1,2-diphenylethane-1,2-diamine (S2a): Salicylaldehyde ($610 \mathrm{mg}, 5.00 \mathrm{mmol}$) and (R, R)-diphenyl-1,2-ethanediamine (530 mg , $2.50 \mathrm{mmol})$ were stirred in ethanol (15 mL) for 3 h at rt . To the mixture was added $\mathrm{NaBH}_{4}(1.00 \mathrm{~g}, 25.8 \mathrm{mmol})$ in one portion at $0{ }^{\circ} \mathrm{C}$, and then the solution was stirred at $50^{\circ} \mathrm{C}$ for 2 h . The solvent was removed by evaporation, and to the residue was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The whole was extracted with $\mathrm{EtOAc}(20 \mathrm{~mL} \times 3)$, and the combined organic layers were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give 2,2'-((3R,4R)-2,5-Diaza-3,4-diphenylhexamethylene)diphenol (S1a) (1.00 g) as a colorless oil, which was used in the next reaction without further purification. A mixture of diamine $\mathbf{S 1 a}(1.00 \mathrm{~g}, 2.36 \mathrm{mmol})$, imidazole ($802 \mathrm{mg}, 11.8 \mathrm{mmol}$) and TBSCl ($885 \mathrm{mg}, 5.90 \mathrm{mmol}$) in DMF (30 mL) was stirred for 3 h at rt . The mixture was poured into water (100 mL), and the whole was extracted with EtOAc $(30 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 15:1) to give the title compound $(1.46 \mathrm{~g}, 82 \%)$ as colorless oil: $[\alpha]_{\mathrm{D}}{ }^{29}+19.9\left(c 1.54, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.20(\mathrm{~d}$, $J=7.5,2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 8 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{t}, J=7.5,2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.5,2 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=$ $12.0,2 \mathrm{H}), 3.89(\mathrm{~d}, J=12.0,2 \mathrm{H}), 0.79(\mathrm{~s}, 18 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 153.6(\mathrm{C}), 141.5$ (C), $131.1(\mathrm{C}), 129.7(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.4(\mathrm{CH}), 126.7(\mathrm{CH}), 121.0(\mathrm{CH}), 118.5(\mathrm{CH}), 68.5(\mathrm{CH}), 46.4$ $\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}),-4.2\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 653(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$, 653.3959; found, 653.3969. IR (NaCl): 3340, 3060, 2936, 1594, 1490, 1267, 1104, 917, 835, 786.

(1R,2R)-N, N^{\prime}-Bis(2-(tert-butyldimethylsiloxy)-4-methylbenzyl)-1,2-diphenylethane-1,2-diamine (S2f): The typical procedure using 2-hydroxy-4-methylbenzaldehyde ($210 \mathrm{mg}, 1.54 \mathrm{mmol}$), $\mathrm{NaBH}_{4}(260 \mathrm{mg}, 7.70 \mathrm{mmol})$, $\mathrm{EtOH}(5 \mathrm{~mL})$, imidazole ($270 \mathrm{mg}, 3.97 \mathrm{mmol}$), $\mathrm{TBSCl}(360 \mathrm{mg}, 2.40 \mathrm{mmol})$, and DMF (5 mL) gave the title compound ($340 \mathrm{mg}, 65 \%$) as colorless oil: $[\alpha]_{\mathrm{D}}{ }^{31}-8.23\left(c 1.36, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.09-7.07(\mathrm{~m}, 10 \mathrm{H}), 7.00(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=13.0,2 \mathrm{H}), 3.43(\mathrm{~d}, J=13.0,2 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 153.4(\mathrm{C}), 141.5(\mathrm{C}), 137.2(\mathrm{C}), 129.4(\mathrm{CH}), 127.4(\mathrm{C}), 128.2(\mathrm{CH}), 127.8(\mathrm{CH}), 127.0(\mathrm{CH})$, $121.6(\mathrm{CH}), 119.3(\mathrm{CH}), 68.4(\mathrm{CH}), 46.0\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}),-4.2\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 681(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$, 681.4272; found, 681.4274. IR (NaCl): 3270, 2950, 2920, 1620, 1450, 1300, 1120, 850, 850, 770.

Supporting Information I

(1R,2R)-N, N^{\prime}-Bis(2-(tert-butyldimethylsiloxy)-4-chlorobenzyl)-1,2-diphenylethane-1,2-diamine (S2g): The typical procedure using 2-hydroxy-4-chlorobenzaldehyde ($690 \mathrm{mg}, 4.45 \mathrm{mmol}$), $\mathrm{NaBH}_{4}(490 \mathrm{mg}, 12.8 \mathrm{mmol}$), imidazole (480 mg , 7.06 mmol) , $\mathrm{TBSCl}(550 \mathrm{mg}, 3.67 \mathrm{mmol}$) and column chromatography (hexane/EtOAc $30: 1$) gave the title compound (750 $\mathrm{mg}, 70 \%$) as colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-25.0\left(c 1.01, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.13-7.01(\mathrm{~m}, 8 \mathrm{H}), 7.02-7.00(\mathrm{~m}$, $4 \mathrm{H}), 6.86$ (dd, $J=8.0,2.0,2 \mathrm{H}), 6.71(\mathrm{~d}, J=2.0,2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=14.0,2 \mathrm{H}), 3.42(\mathrm{~d}, J=14.0,2 \mathrm{H}), 0.87$ (s, $18 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 154.1(\mathrm{C}), 141.1(\mathrm{C}), 132.3(\mathrm{C}), 130.4(\mathrm{CH}), 129.7$ (C), $127.9(\mathrm{CH}), 127.9(\mathrm{CH}), 126.8(\mathrm{CH}), 121.0(\mathrm{CH}), 118.8(\mathrm{CH}), 68.2(\mathrm{CH}), 45.9\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-4.2\left(\mathrm{CH}_{3}\right) . \mathrm{MS}$ (ESI) $m / z: 721(\mathrm{M}+\mathrm{H}), 723(\mathrm{M}+2+\mathrm{H}), 725(\mathrm{M}+4+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Cl}_{2}$, 721.3179; found, 721.3151. IR (NaCl): 3200, 2950, 2850, 1600, 1470, 1400, 1240, 940, 850, 780.

(1R,2R)-N, N^{\prime}-Bis(2-(tert-butyldimethylsiloxy)-4-fluorobenzyl)-1,2-diphenylethane-1,2-diamine (S2h): The typical procedure using 2-hydroxy-4-fluorobenzaldehyde ($730 \mathrm{mg}, 5.21 \mathrm{mmol}$), $\mathrm{NaBH}_{4}(590 \mathrm{mg}, 7.70 \mathrm{mmol}$), EtOH (10 mL), imidazole ($570 \mathrm{mg}, 8.38 \mathrm{mmol}$), $\mathrm{TBSCl}(550 \mathrm{mg}, 3.67 \mathrm{mmol}$) and column chromatography (hexane/EtOAc 20:1) gave the title compound ($820 \mathrm{mg}, 73 \%$) as colorless oil: $[\alpha]]_{D^{22}}-20.3\left(c 1.59, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.14-7.07(\mathrm{~m}$, $8 \mathrm{H}), 7.01-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.58(\mathrm{td}, J=8.5,2.5,2 \mathrm{H}), 6.64(\mathrm{dd}, J=10.5,2.5,2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=14.0,2 \mathrm{H}), 3.41(\mathrm{~d}$, $J=14.0,2 \mathrm{H}), 0.87(\mathrm{~s}, 18 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, 100 \mathrm{MHz}\right): 162.0(\mathrm{~d}, J=243, \mathrm{C}), 154.5(\mathrm{~d}, J=11$, C), 141.3 (C), $130.4(\mathrm{CH}), 130.3(\mathrm{CH}), 128.0(\mathrm{~d}, J=7, \mathrm{CH}), 126.9(\mathrm{~d}, J=4, \mathrm{C}), 126.7(\mathrm{CH}), 107.4(\mathrm{~d}, J=21, \mathrm{CH}), 105.9$ (d, $J=21, \mathrm{CH}), 68.3(\mathrm{CH}), 46.0\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-4.3\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 689(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+$ H^{+}calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{Si}_{2}$, 689.3770; found, 689.3783. IR (NaCl): 3300, 2950, 2880, 1620, 1470, 1460, 1270, 1150, 980, 850.

(1R,2R)-N, N^{\prime}-Bis(2-(tert-butyldimethylsiloxy)-4-bromobenzyl)-1,2-diphenylethane-1,2-diamine (S2i): The typical procedure using 2-hydroxy-4-bromobenzaldehyde ($660 \mathrm{mg}, 3.30 \mathrm{mmol}$), NaBH_{4} ($200 \mathrm{mg}, 5.26 \mathrm{mmol}$), EtOH (20 mL), imidazole ($530 \mathrm{mg}, 7.70 \mathrm{mmol}$), $\mathrm{TBSCl}(700 \mathrm{mg}, 4.62 \mathrm{mmol})$, DMF (10 mL), and column chromatography (hexane/EtOAc 20:1) gave the title compound ($810 \mathrm{mg}, 65 \%$) as colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-26.9\left(c 1.04, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $7.12-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 8 \mathrm{H}), 6.85(\mathrm{~d}, J=2.0,2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=14.0,2 \mathrm{H}), 3.39(\mathrm{~d}, J=14.0,2 \mathrm{H}), 0.85$ $(\mathrm{s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 154.3(\mathrm{C}), 141.1(\mathrm{C}), 130.8(\mathrm{CH}), 130.2(\mathrm{C}), 130.0(\mathrm{CH})$, $126.80(\mathrm{CH}), 126.78(\mathrm{CH}), 124.0(\mathrm{CH}), 121.7(\mathrm{CH}), 120.1(\mathrm{C}), 68.3(\mathrm{CH}), 45.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-4.2\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 809(M+H), 811(M+2+H), 813(M+4+H)$. HRMS (ESI) $m / z:[M+H]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Br}_{2}$, 809.2169; found, 809.2200. IR (NaCl): 2940, 2850, 1600, 1460, 1390, 1260, 960, 850, 760, 690.

Supporting Information I

(1R,2R)- N, N^{\prime}-Bis(2-(tert-butyldimethylsiloxy)-4-iodobenzyl)-1,2-diphenylethane-1,2-diamine (S2j): The typical procedure using 2-hydroxy-4-iodobenzaldehyde ($980 \mathrm{mg}, 3.96 \mathrm{mmol}$), $\mathrm{NaBH}_{4}(230 \mathrm{mg}, 6.04 \mathrm{mmol})$, and EtOH (20 mL) gave S1f ($940 \mathrm{mg}, 70 \%$) as colorless solid. The typical procedure using a part of S1f ($500 \mathrm{mg}, 0.739 \mathrm{mmol}$), TBSCl (332 $\mathrm{mg}, 2.20 \mathrm{mmol}$), imidazole ($250 \mathrm{mg}, 3.68 \mathrm{mmol}$), DMF (10 mL), and column chromatography (hexane/EtOAc 20:1) gave the title compound ($590 \mathrm{mg}, 88 \%$) as colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-18.4\left(c 1.04, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.20(\mathrm{dd}, J=$ $8.0,2.0,2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.04(\mathrm{~d}, J=2.0,2 \mathrm{H}), 7.00(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0,2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=14.0$, $2 \mathrm{H}), 3.39(\mathrm{~d}, J=14.0,2 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 154.3(\mathrm{C}), 141.1(\mathrm{C})$, $131.1(\mathrm{CH}), 130.9(\mathrm{C}), 130.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.50(\mathrm{CH}), 127.47(\mathrm{CH}), 126.8(\mathrm{CH}), 91.4(\mathrm{C}), 68.2(\mathrm{CH}), 45.9\left(\mathrm{CH}_{2}\right)$, $25.6\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-4.2\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}) m / z: 905(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{I}_{2}$, 905.1892; found, 905.1857. IR (NaCl): 3200, 2950, 2880, 1560, 1490, 1380, 1220, 1125, 910, 810.

(1R,2R)- N, N^{\prime}-Bis(2-(tert-butyldimethylsiloxy)-4-trifluoromethylbenzyl)-1,2-diphenylethane-1,2-diamine (S2k): The typical procedure using 2-hydroxy-4-trifluoromethylbenzaldehyde ($1.25 \mathrm{~g}, 6.57 \mathrm{mmol}$), $\mathrm{NaBH}_{4}(740 \mathrm{mg}, 19.5 \mathrm{mmol})$, and $\mathrm{EtOH}(10 \mathrm{~mL})$ gave $\mathbf{S 1 g}(1.30 \mathrm{~g}, 71 \%)$ as colorless solid. The typical procedure using a part of $\mathbf{S 1 g}(400 \mathrm{mg}, 0.714 \mathrm{mmol})$, TBSCl ($332 \mathrm{mg}, 2.20 \mathrm{mmol}$), imidazole ($242 \mathrm{mg}, 3.56 \mathrm{mmol}$), DMF (10 mL), and column chromatography (hexane/EtOAc 20:1) gave the title compound ($590 \mathrm{mg}, 88 \%$) as colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-21.7\left(c \quad 1.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $7.25(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 8 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=14.0,2 \mathrm{H}), 3.51(\mathrm{~d}, J=$ $14.0,2 \mathrm{H}), 0.87(\mathrm{~s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 153.6(\mathrm{C}), 140.1(\mathrm{C}), 135.1(\mathrm{C}), 129.9$ $(\mathrm{CH}), 129.8(\mathrm{q}, J=32, \mathrm{C}) 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 127.0(\mathrm{CH}), 124.0(\mathrm{q}, J=270, \mathrm{C}), 117.9(\mathrm{CH}), 115.1(\mathrm{CH}), 68.4(\mathrm{CH})$, $46.1\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-4.3\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 789(\mathrm{M}+\mathrm{H})$. HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{6} \mathrm{Si}_{2}, 789.3706$; found, 789.3688. IR (NaCl): 3340, 2960, 2860, 1630, 1600, 1530, 1420, 1330, 1240, 1180.

Typical Procedure for Acylation and Reduction of Diamine. (1R,2R)-N, N^{\prime}-Bis(3-(tert-butyldimethylsiloxy)benzyl)-1, 2-diphenylethane-1,2-diamine (S2b): Under argon atmosphere, to a solution of (R, R)-diphenyl-1,2-ethanediamine (165 mg , $0.792 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mL}, 2.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added 3-(tert-butyldimethylsiloxy)benzoyl chloride ($430 \mathrm{mg}, 1.59 \mathrm{mmol}$). The solution was stirred for 1 h at rt . The reaction was quenched with 1 M HCl aq, and the whole mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were washed with 2 M HCl aq and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was dissolved in THF. Under argon atmosphere, to the solution was added a 1.0 M THF solution of $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.8 \mathrm{~mL}, 1.8 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was

Supporting Information I

heated under reflux for 10 h . After cooling to $0{ }^{\circ} \mathrm{C}$, MeOH was slowly added, and then the volatile materials were evaporated. The residue was purified by column chromatography (hexane/EtOAc $10: 1$) to give the title compound (120 mg , 20%) as yellow oil: $[\alpha]_{\mathrm{D}}{ }^{23}-14.3\left(c 1.05, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.20-7.12(\mathrm{~m}, 8 \mathrm{H}), 7.04-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.84$ (d, $J=7.5,2 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=13.0,2 \mathrm{H}), 3.44(\mathrm{~d}, J=13.0,2 \mathrm{H}), 2.36(\mathrm{brs}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 18 \mathrm{H})$, $0.20(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 155.6(\mathrm{C}), 142.2(\mathrm{C}), 141.1(\mathrm{C}), 129.2(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 121.0(\mathrm{CH}), 119.8(\mathrm{CH}), 118.5(\mathrm{CH}), 68.1(\mathrm{CH}), 51.2\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}),-4.3\left(\mathrm{CH}_{3}\right)$. MS (ESI) m/z: $653(\mathrm{M}$ $+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$, 653.3959; found, 653.3931. IR (NaCl): 3300, 2960, 2930, 1600, 1490, 1450, 1260, 1200, 850, 780.

(1R,2R)-N, N^{\prime}-Bis(4-(tert-butyldimethylsiloxy)benzyl)-1,2-diphenylethane-1,2-diamine (S2c): The typical procedure using 4-(tert-butyldimethylsiloxy)benzoyl chloride ($570 \mathrm{mg}, 2.05 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 2.1 \mathrm{mmol}$), and a 1.0 M THF solution of $\mathrm{BH}_{3} \cdot \mathrm{THF}(10 \mathrm{~mL}, 10 \mathrm{mmol})$ gave the title compound ($620 \mathrm{mg}, 95 \%$) as colorless solid of $\mathrm{mp} 73.0-74.3{ }^{\circ} \mathrm{C}$: $[\alpha]_{\mathrm{D}}{ }^{30}-19.8\left(c 1.12, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.20-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 8 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 4 \mathrm{H}), 3.69$ $(\mathrm{s}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=14.0,2 \mathrm{H}), 3.41(\mathrm{~d}, J=14.0,2 \mathrm{H}), 1.00(\mathrm{~s}, 18 \mathrm{H}), 0.20(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 154.4(\mathrm{C})$, $141.2(\mathrm{C}), 133.4(\mathrm{C}), 129.2(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 126.8(\mathrm{CH}), 119.8(\mathrm{CH}), 68.3(\mathrm{CH}), 50.8\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right)$, $18.2(\mathrm{C}),-4.4\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 653(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$, 653.3959; found, 653.3965. IR (KBr): 3200, 2950, 2930, 2860, 1500, 1440, 1260, 920, 840, 780.

(1R,2R)- N, N^{\prime} - Dibenzyl-1,2-diphenylethane-1,2-diamine (S1e): The typical procedure using benzoyl chloride (0.56 mL , $4.8 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$, and a 1.0 M THF solution of $\mathrm{BH}_{3} \cdot \mathrm{THF}(35 \mathrm{~mL}, 35 \mathrm{mmol})$ gave the title compound ($510 \mathrm{mg}, 65 \%$) as colorless oil: $[\alpha]_{\mathrm{D}}{ }^{26}-25.5\left(c \quad 1.38, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}$, $6 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=13.0,2 \mathrm{H}), 3.49(\mathrm{~d}, J=13.0,2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{1)}$

(1R,2R)-N,N-Bis(2-(methoxymethoxy)phenyl)-1,2-diphenylethane-1,2-diamine (S2d): Under argon atmosphere, to a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.10 \mathrm{~g}, 0.10 \mathrm{mmol})$, $r a c-\mathrm{BINAP}(0.12 \mathrm{~g}, 0.20 \mathrm{mmol})$, and $\mathrm{NaO} t \mathrm{Bu}(380 \mathrm{mg}, 3.95 \mathrm{mmol})$ was added (R, R)-diphenyl-1,2-ethanediamine ($212 \mathrm{mg}, 1.00 \mathrm{mmol}$) in toluene $(5 \mathrm{~mL})$. The mixture was stirred for 30 min at rt , and a solution of 1-bromo-2-(methoxymethoxy)benzene $(0.56 \mathrm{~g}, 2.6 \mathrm{mmol})$ in toluene (2 mL) was added. The mixture was heated under reflux for 18 h . After cooling to rt , the mixture was filtered through celite, and then the filtrate was concentrated

[^0]
Supporting Information I

under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc $5: 1$) to give the title compound (500 mg , quant) as yellow solid of $\mathrm{mp} 108.8-110.3^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{26}+94.7\left(c 1.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): 7.22-7.18(\mathrm{~m}, 10 \mathrm{H}), 6.94(\mathrm{dd}, J=7.5,1.5,2 \mathrm{H}), 6.69(\mathrm{t}, J=7.5,1.5,2 \mathrm{H}), 6.54(\mathrm{t}, J=7.5,1.5,2 \mathrm{H}), 6.30(\mathrm{dd}, J=7.5$, $1.5,2 \mathrm{H}), 5.23(\mathrm{brs}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=6.5,2 \mathrm{H}), 5.11(\mathrm{~d}, J=6.5,2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.42(6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $144.7(\mathrm{C}), 140.2(\mathrm{C}), 137.8(\mathrm{C}), 128.3(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3(\mathrm{CH}), 122.5(\mathrm{CH}), 117.1(\mathrm{CH}), 113.9(\mathrm{CH}), 112.1(\mathrm{CH}), 95.0$ $\left(\mathrm{CH}_{2}\right), 63.9(\mathrm{CH}), 56.0\left(\mathrm{CH}_{3}\right)$. MS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 507(\mathrm{M}+\mathrm{H})$. HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$, 507.2260; found, 507.2284. IR (NaCl): 3400, 3065, 2950, 1600, 1500, 1453, 1253, 1150, 1077, 996.

(4R,5R)-1,3-Bis(2-(methoxymethoxy)phenyl)-4,5-diphenyl imidazolinium tetrafluoroborate (S2d'): A mixture of S2d ($97 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{NH}_{4} \mathrm{BF}_{4}(31 \mathrm{mg}, 0.30 \mathrm{mmol})$, and $\mathrm{CH}(\mathrm{OEt})_{3}(2.0 \mathrm{~mL}, 12 \mathrm{mmol})$ was heated at $120{ }^{\circ} \mathrm{C}$ for 3 h . After cooling to rt , the formed colorless precipitate was collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the title compound as colorless solid ($80 \mathrm{mg}, 0.14 \mathrm{mmol}$) of $\mathrm{mp} 194.6-195.8^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{26}+284\left(c 0.664, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 9.07$ ($\mathrm{s}, 1 \mathrm{H}$), $7.41-7.39(\mathrm{~m}, 10 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{dd}, J=8.0,1.0,2 \mathrm{H}), 6.96(\mathrm{td}, J=8.0,1.0,2 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{~s}$, $4 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 158.3(\mathrm{CH}), 151.4(\mathrm{C}), 135.3(\mathrm{C}), 130.8(\mathrm{CH}), 130.1(\mathrm{CH}), 129.6(\mathrm{CH})$, $127.4(\mathrm{CH}), 126.7(\mathrm{CH}), 123.2(\mathrm{C}), 122.6(\mathrm{CH}), 115.4(\mathrm{CH}), 95.7\left(\mathrm{CH}_{2}\right), 75.4(\mathrm{CH}), 56.6\left(\mathrm{CH}_{3}\right)$. MS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 495(\mathrm{M}-$ BF_{4}). HRMS (ESI) $m / z:\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}, 495.2284$; found, 495.2261. IR (KBr): 3080, 2915, 2360, 2341, 1620, 1588, 1497, 1269, 1156, 972.

Typcal Procedure for Synthesis of Thiourea. (4R,5R)-1,3-Bis(2-(tert-butyldimethylsiloxy)benzyl)-4,5-diphenylimida-zolidine-2-thione (S3a): To a solution of S2a ($170 \mathrm{mg}, 0.250 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.12 \mathrm{~mL} 0.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$, was added thiophosgen ($35 \mu \mathrm{~L} 0.46 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 9 h at rt , and then water (10 mL) was added. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layers were washed brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 20:1) to give the title compound ($100 \mathrm{mg}, 55 \%$) as colorless oil: $[\alpha]_{\mathrm{D}}{ }^{22}+135\left(c 1.04, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.43(\mathrm{~d}, J=6.0,2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{td}, J=7.5,1.0,2 \mathrm{H}), 6.68(\mathrm{dd}, J=$ $7.0,1.0,2 \mathrm{H}), 5.54(\mathrm{~d}, J=15.5,2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=15.5,2 \mathrm{H}), 0.72(\mathrm{~s}, 18 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}),-0.02(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 183.5(\mathrm{C}), 153.4(\mathrm{C}), 138.9(\mathrm{C}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 126.8(\mathrm{CH})$, $125.5(\mathrm{C}), 121.3(\mathrm{CH}), 110.7(\mathrm{CH}), 69.3(\mathrm{CH}), 42.8\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}),-4.5\left(\mathrm{CH}_{3}\right) . \operatorname{MS}(\mathrm{ESI}) m / z: 717(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, 695.3523$; found, 695.3504. IR (NaCl): 2972, 2856, 1948, 1730, 1599, 1582, 1258, 1105, 920, 778.

Supporting Information I

(4R,5R)-1,3-Bis(3-(tert-butyldimethylsiloxy)-4,5-diphenylimidazolidine-2-thione (S3b): The typical procedure using S2b ($100 \mathrm{mg}, 0.153 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(64 \mu \mathrm{~L}, 0.49 \mathrm{mmol})$, and thiophosgen ($20 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) gave the title compound (70 mg , $67 \%)$ as yellow oil: $[\alpha]_{\mathrm{D}}{ }^{23}+87.5\left(c 1.05, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.30-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{t}, J=8.5,2 \mathrm{H})$, 6.98-6.96(m, 4H), $6.84(\mathrm{~d}, J=7.5,2 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 4 \mathrm{H}), 5.81(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.3(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=15.0,2 \mathrm{H}), 0.96$ $(\mathrm{s}, 18 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 183.6(\mathrm{C}), 153.4(\mathrm{C}), 138.9(\mathrm{C}), 138.0(\mathrm{C}), 129.0(\mathrm{CH})$, $128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.0(\mathrm{CH}), 126.9(\mathrm{CH}), 121.3(\mathrm{CH}), 118.8(\mathrm{CH}), 69.2(\mathrm{CH}), 42.8\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{3}\right), 17.9(\mathrm{C}),-$ $4.4\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 695(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{~S}$, 695.3523; found, 695.3535 . IR (NaCl): 3020, 2953, 2860, 1615, 1450, 1410, 1270, 1210, 980, 860.

(4R,5R)-1,3-Bis(4-(tert-butyldimethylsiloxy)benzyl)-4,5-diphenylimidazolidine-2-thione (S3c): The typical procedure using S2c ($110 \mathrm{mg}, 0.168 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(64 \mu \mathrm{~L}, 0.49 \mathrm{mmol})$, and thiophosgen ($21 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) gave the title compound ($85.2 \mathrm{mg}, 80 \%$) as colorless solid of $\mathrm{mp} 115.2-116.7^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{31}+43.3\left(c \quad 1.09, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.29-$ $7.25(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0,4 \mathrm{H}), 6.93(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0,4 \mathrm{H}), 5.79(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=15.0$, $2 \mathrm{H}), 0.96(\mathrm{~s}, 18 \mathrm{H}), 0,17(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 182.2(\mathrm{C}), 155.2(\mathrm{C}), 138.4(\mathrm{C}), 129.8(\mathrm{CH}), 129.0(\mathrm{CH})$, $128.8(\mathrm{C}), 128.6(\mathrm{CH}), 127.1(\mathrm{CH}), 120.1(\mathrm{CH}), 68.9(\mathrm{CH}), 48.3\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}),-4.4\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$: $695(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{~S}$, 695.3523; found, 695.3502. IR (NaCl): 2980, 2850, 1510, 1460, 1410, 1260, 1220, 1120, 910, 840.

(4R,5R)-1,3-Dibenzyl-4,5-diphenylimidazolidine-2-thione (4e): The typical procedure using S1e ($0.10 \mathrm{~g}, 0.25 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.10 \mathrm{~mL}, 0.75 \mathrm{mmol})$, thiophosgen $(25 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ and column chromatography (hexane/EtOAc 10:1) gave the title compound (120 mg , quantity) as colorless solid of $\mathrm{mp} 171.1-172.2^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{31}+152\left(c 0.153, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): 7.30-7.23(\mathrm{~m}, 16 \mathrm{H}), 6.97(\mathrm{~m}, 4 \mathrm{H}), 5.87(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=15.0,2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{2)}$

(4R,5R)-1,3-Bis(2-(tert-butyldimethylsiloxy)-4-methylbenzyl)-4,5-diphenylimidazolidine-2-thione (S3f): The typical procedure using S2f ($170 \mathrm{mg}, 0.250 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ gave the title compound ($100 \mathrm{mg}, 55 \%$) as yellow oil: $[\alpha]_{\mathrm{D}}{ }^{23}+91.7\left(c 1.54, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.31-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.04(\mathrm{~m}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0,2 \mathrm{H}), 6.50(\mathrm{~s}$, $2 \mathrm{H}), 5.52(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=15.0,2 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 0.71(\mathrm{~s}, 18 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$

[^1]
Supporting Information I

NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 183.4(\mathrm{C}), 153.2(\mathrm{C}), 139.0(\mathrm{C}), 137.9(\mathrm{C}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 126.9(\mathrm{CH})$, $123.3(\mathrm{C}), 122.1(\mathrm{CH}), 119.5(\mathrm{CH}), 69.0(\mathrm{CH}), 42.6\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right) .17 .9(\mathrm{C}),-4.4\left(\mathrm{CH}_{3}\right) . \operatorname{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$: $723(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{~S}$, 723.3836; found, 723.3863. IR (NaCl): 2950, 2910, 2860, 1470, 1400, 1320, 1280, 1120, 820, 770.

(4R,5R)-1,3-Bis(2-(tert-butyldimethylsiloxy)-4-chlorobenzyl)-4,5-diphenylimidazolidine-2-thione (S3g): The typical procedure using S2g ($550 \mathrm{mg}, 1.11 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.47 \mathrm{~mL}, 3.3 \mathrm{mmol})$, thiophosgen $(93 \mu \mathrm{~L}, 1.2 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and column chromatography (hexane/EtOAc 10:1) gave the title compound ($800 \mathrm{mg}, 94 \%$) as colorless solid of mp $176.4-$ $178.0^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{31}+76.0\left(c 1.12, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.34(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~m}$, $4 \mathrm{H}), 6.91(\mathrm{dd}, J=8.0,2.0,2 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0,2 \mathrm{H}), 5.48(\mathrm{~d}, J=16.0,2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=16.0,2 \mathrm{H}), 0.71(\mathrm{~s}$, $18 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 183.6(\mathrm{C}), 154.0(\mathrm{C}), 138.5$ (C), $133.0(\mathrm{C}), 129.5(\mathrm{CH})$, $129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 126.7(\mathrm{CH}), 125.2(\mathrm{C}), 121.5(\mathrm{CH}), 119.1(\mathrm{CH}), 69.3(\mathrm{CH}), 42.5\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 17.9(\mathrm{C}),-4.5$ $\left(\mathrm{CH}_{3}\right)$. MS $(\mathrm{ESI}) m / z: 763(\mathrm{M}+\mathrm{H}), 765(\mathrm{M}+2+\mathrm{H}), 767(\mathrm{M}+4+\mathrm{H})$. HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{SCl}_{2}$, 763.2743; found, 763.2723. IR (KBr): 2950, 2850, 1590, 1560, 1480, 1400, 1350, 1270, 1200, 950.

(4R,5R)-1,3-Bis(2-(tert-butyldimethylsiloxy)-4-fluorobenzyl)-4,5-diphenylimidazolidine-2-thione (S3h): The typical procedure using S2h ($540 \mathrm{mg}, 0.784 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{~mL}, 2.4 \mathrm{mmol})$, thiophosgen ($66 \mu \mathrm{~L}, 0.72 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and column chromatography (hexane/EtOAc $15: 1$) gave the title compound ($440 \mathrm{mg}, 77 \%$) as pale orange amorphous of mp $145.0-147.0^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{23}+141\left(c 1.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.38(\mathrm{dd}, J=8.0,6.0,2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 6 \mathrm{H})$, $7.01-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.65(\mathrm{td}, J=8.0,2.5,2 \mathrm{H}), 6.39(\mathrm{dd}, J=8.0,2.5,2 \mathrm{H}), 5.45(\mathrm{~d}, J=15.5,2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=$ $15.5,2 \mathrm{H}), 0.71(\mathrm{~s}, 18 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 183.4(\mathrm{C}), 163.4(\mathrm{~d}, J=245, \mathrm{C}), 154.4(\mathrm{~d}$, $J=10, \mathrm{C}), 138.7(\mathrm{C}), 129.6(\mathrm{~d}, J=9, \mathrm{CH}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 126.7(\mathrm{CH}), 122.4(\mathrm{C}), 108.2(\mathrm{~d}, J=21, \mathrm{CH}), 106.3(\mathrm{~d}$, $J=21, \mathrm{CH}), 69.3(\mathrm{CH}), 42.4\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 17.9(\mathrm{C}),-4.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}) m / z: 731(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{Si}_{2} \mathrm{~S}$, 731.3334; found, 731.3328. IR (KBr): 2930, 2870, 1560, 1500, 1460, 1440, 1330, 1290, 1240, 1100.

(4R,5R)-1,3-Bis(2-(tert-butyldimethylsiloxy)-4-bromobenzyl)-4,5-diphenylimidazolidine-2-thione (S3i): The typical procedure using S2i ($530 \mathrm{mg}, 0.655 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mL}, 2.3 \mathrm{mmol})$, thiophosgen ($55 \mu \mathrm{~L}, 0.72 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and column chromatography (hexane/EtOAc $15: 1$ to $10: 1$) gave the title compound as colorless solid of $\mathrm{mp} 165.8-166.6^{\circ} \mathrm{C}$:

Supporting Information I

$[\alpha]_{\mathrm{D}}{ }^{23}+45.6\left(c 1.24, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.30-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0,2.0,2 \mathrm{H}), 7.01(\mathrm{~m}, 4 \mathrm{H}), 6.82$ $(\mathrm{d}, J=2.0,2 \mathrm{H}), 5.44(\mathrm{~d}, J=14.0,2 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=14.0,2 \mathrm{H}), 0.71(\mathrm{~s}, 18 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 183.6(\mathrm{C}), 154.1(\mathrm{C}), 138.4(\mathrm{C}), 129.9(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 126.7(\mathrm{CH}), 125.7(\mathrm{C})$, $124.5(\mathrm{CH}), 122.0(\mathrm{CH}), 120.9(\mathrm{C}), 69.3(\mathrm{CH}), 42.5\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 17.9(\mathrm{C}),-4.4\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 851(\mathrm{M}+\mathrm{H})$, $853(\mathrm{M}+2+\mathrm{H}), 855(\mathrm{M}+4+\mathrm{H})$. HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{SCl}_{2}, 851.1733$; found, 851.1730. IR (NaCl): 2950, 2890, 1580, 1470, 1400, 1260, 1110, 950, 820, 770.

(4R,5R)-1,3-Bis(2-(tert-butyldimethylsiloxy)-4-iodobenzyl)-4,5-diphenylimidazolidine-2-thione (S3j): The typical procedure using S2j ($440 \mathrm{mg}, 0.487 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}\left(0.33 \mathrm{~mL}, 2.4 \mathrm{mmol}\right.$), thiophosgen ($66 \mu \mathrm{~L}, 0.72 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and column chromatography (hexane/EtOAc 15:1) gave the title compound ($440 \mathrm{mg}, 77 \%$) as pale orange amorphous of mp $193.0-194.1^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{28}+10.3\left(c 1.50, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.30-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.01-$ $6.99(\mathrm{~m}, 6 \mathrm{H}), 5.45(\mathrm{~d}, J=14.0,2 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=14.0,2 \mathrm{H}), 0.70(\mathrm{~s}, 18 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}),-0.02(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 183.6(\mathrm{C}), 154.1(\mathrm{C}), 138.4(\mathrm{C}), 130.5(\mathrm{CH}), 130.0(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 127.9(\mathrm{CH})$, $126.7(\mathrm{CH}), 126.5(\mathrm{C}), 92.2(\mathrm{C}), 69.4(\mathrm{CH}), 42.6\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 17.9(\mathrm{C}),-4.5\left(\mathrm{CH}_{3}\right)$. MS $(\mathrm{ESI}) m / z: 947(\mathrm{M}+\mathrm{H})$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{SI}_{2}, 947.1456$; found, 947.1441. IR (KBr): 2980, 2850, 1580, 1480, 1360, 1260, 1100, 930, 830, 780.

(4R,5R)-1,3-Bis(2-(tert-butyldimethylsiloxy)-4-trifluoromethylbenzyl)-4,5-diphenylimidazolidine-2-thione (S3k): The typical procedure using S2k ($530 \mathrm{mg}, 0.654 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mL}, 2.1 \mathrm{mmol})$, thiophosgen ($60 \mu \mathrm{~L}, 0.76 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ gave the title compound $(420 \mathrm{mg}, 73 \%)$ as pale yellow amorphous of $\mathrm{mp} 132.8-133.8^{\circ} \mathrm{C}:[\alpha] \mathrm{D}^{23}+88.5(c$ $\left.1.13, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.52(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.04(\mathrm{~m}, 4 \mathrm{H})$, $6.90(\mathrm{~s}, 2 \mathrm{H}), 5.52(J=16.0,2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=16.0,2 \mathrm{H}), 0.74(\mathrm{~s}, 18 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 183.9(\mathrm{C}), 153.5(\mathrm{C}), 138.2(\mathrm{C}), 130.7(\mathrm{C}), 130.4(\mathrm{q}, ~ J=32, \mathrm{C}), 129.3(\mathrm{CH}), 128.9(\mathrm{CH}), 126.6(\mathrm{CH})$, $123.5(\mathrm{q}, J=270, \mathrm{C}), 117.9(\mathrm{CH}), 117.9(\mathrm{CH}), 115.5(\mathrm{CH}), 69.7(\mathrm{CH}), 42.9\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 17.9(\mathrm{C}),-4.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}$ (ESI) $m / z: 831(M+H)$. HRMS (ESI) $m / z:[M+H]^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{6} \mathrm{Si}_{2} \mathrm{~S}$, 831.3271; found, 831.3306. IR (NaCl): 2930, 2840, 1630, 1420, 1340, 1250, 1125, 960, 840, 770.

Typical Procedure for Deprotection of Chiral Lewis Base Catalyst. (4R,5R)-1,3-Bis(2-hydroxybenzyl)-4,5-diphenyl-imidazolidine-2-thione (4a): To a solution of $\mathbf{S 3 a}(100 \mathrm{mg}, 0.144 \mathrm{mmol})$ in THF (10 mL), was added a 1.0 M THF solution

Supporting Information I

of TBAF $(2.9 \mathrm{~mL}, 2.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , and then sat $\mathrm{NH}_{4} \mathrm{Cl} \mathrm{aq}(30 \mathrm{~mL})$ was added. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The combined organic layers were washed with sat NaHCO_{3} aq and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 5:1) to give the title compound ($60 \mathrm{mg}, 90 \%$) as colorless solid of $\mathrm{mp} 163.5-165.5^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{27}+301(c$ 1.16, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.42($ brs, 2 H$), 7.33-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.69-6.61(\mathrm{~m}$, $4 \mathrm{H}), 5.52(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=15.0,2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 179.4(\mathrm{C}), 155.4(\mathrm{C}), 137.2$ (C), $131.4(\mathrm{CH}), 130.1(\mathrm{CH}), 129.4(\mathrm{CH}), 129.1(\mathrm{CH}), 127.2(\mathrm{CH}), 119.8(\mathrm{CH}), 119.7(\mathrm{C}), 117.3(\mathrm{CH}), 70.0(\mathrm{CH}), 45.8$ $\left(\mathrm{CH}_{2}\right)$. MS (ESI) $m / z: 467(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, 467.1793; found, 467.1772. IR (KBr): 3744, 2914, 1490, 1425, 1348, 1289, 1217, 1092, 923, 749.

(4R,5R)-1,3-Bis(3-hydroxybenzyl)-4,5-diphenylimidazolidine-2-thione (4b): The typical procedure using S3b (100 mg , $0.144 \mathrm{mmol})$, THF $(10 \mathrm{~mL})$, a 1.0 M THF solution of TBAF ($2.8 \mathrm{~mL}, 2.8 \mathrm{mmol}$), and column chromatography (hexane/EtOAc $=5: 1$ and then $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 5$) gave the title compound ($60.3 \mathrm{mg}, 92 \%$) as pale yellow amorphous of $\mathrm{mp} 94.0-95.5^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{23}+93.7\left(c 1.50, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.27-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{dd}, J=8.0,7.0,2 \mathrm{H})$, $6.97(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0,2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.0,2 \mathrm{H}), 5.69(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=15.0$, 2H). ${ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 182.2(\mathrm{C}), 156.0(\mathrm{C}), 137.9(\mathrm{C}), 137.6(\mathrm{C}), 129.8(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 127.1$ $(\mathrm{CH}), 120.6(\mathrm{CH}), 115.0(\mathrm{CH}), 114.9(\mathrm{CH}), 69.4(\mathrm{CH}), 48.3\left(\mathrm{CH}_{2}\right)$. MS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 467(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, 467.1793$; found, 467.1772. IR (KBr): 3560, 2920, 1590, 1450, 1410, 1350, 1300, 1220, 1150, 960.

$(4 R, 5 R)-1,3-B i s(4-h y d r o x y b e n z y l)-4,5-d i p h e n y l i m i d a z o l i d i n e-2-t h i o n e ~(4 c): ~ T h e ~ t y p i c a l ~ p r o c e d u r e ~ u s i n g ~ S 3 c ~(79.8 ~ m g, ~$ $0.115 \mathrm{mmol})$, THF (10 mL), a 1.0 M THF solution of TBAF ($2.3 \mathrm{~mL}, 2.3 \mathrm{mmol}$), and column chromatography (hexane/EtOAc $=9: 1$ and then $\mathrm{CHCl}_{3}: \mathrm{MeOH}=1: 9$) gave the title compound ($35.9 \mathrm{mg}, 67 \%$) as colorless amorphous of mp $176.0-178.2{ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{23}+92.2\left(c \quad 0.668, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.30-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~m}$, $4 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0,4 \mathrm{H}), 5.76(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=15.0,2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 182.0$ (C), $155.3(\mathrm{C}), 138.1(\mathrm{C}), 129.9(\mathrm{CH}), 129.1(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{C}), 127.0(\mathrm{CH}), 115.4(\mathrm{CH}), 69.0(\mathrm{CH}), 48.3\left(\mathrm{CH}_{2}\right)$. MS (ESI) $m / z: 467(M+H)$. HRMS (ESI) $m / z:[M+H]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, 467.1793$; found, 467.1772. IR (KBr): 3280, 3000, 2920, 1610, 1590, 1510, 1450, 1350, 1200, 1150.

(4R,5R)-1,3-Bis(2-hydroxy-4-methylbenzyl)-4,5-diphenylimidazolidine-2-thione (4f): The typical procedure using S3f

Supporting Information I

($49 \mathrm{mg}, 0.068 \mathrm{mmol}$), THF (5 mL), a 1.0 M THF solution of TBAF ($2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$), and column chromatography (hexane/EtOAc 4:1) gave the title compound ($30 \mathrm{mg}, 90 \%$) as colorless solid of $\mathrm{mp} 133.4-145.0^{\circ} \mathrm{C}$: $[\alpha]_{\mathrm{D}}{ }^{30}+337$ (c 1.00, CHCl_{3}). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.40(\mathrm{brs}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 6.50-6.48(\mathrm{~m}, 4 \mathrm{H})$, $5.51(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=15.0,2 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 179.3(\mathrm{C}), 155.3(\mathrm{C})$, $140.3(\mathrm{C}), 137.3(\mathrm{C}), 131.2(\mathrm{CH}), 129.4(\mathrm{CH}), 129.0(\mathrm{CH}), 127.3(\mathrm{CH}), 120.6(\mathrm{CH}), 117.9(\mathrm{CH}), 116.7(\mathrm{C}), 66.9(\mathrm{CH}), 45.7$ $\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 495(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, 495.2106$; found, 495.2088. IR (NaCl): 3330, 2910, 1630, 1560, 1490, 1410, 1280, 1220, 940, 770.

(4R,5R)-1,3-Bis(2-hydroxy-4-chlorobenzyl)-4,5-diphenylimidazolidine-2-thione (4g): The typical procedure using $\mathbf{S 3 g}$ $(600 \mathrm{mg}, 0.790 \mathrm{mmol})$, THF (30 mL), a $1.0 \mathrm{M} \mathrm{THF} \mathrm{solution} \mathrm{of} \mathrm{TBAF}(15.0 \mathrm{~mL}, 15.0 \mathrm{mmol})$ and column chromatography (hexane/EtOAc $3: 1$ to $1: 1$) followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane gave the title compound ($208 \mathrm{mg}, 49 \%$) as colorless solid of mp $136.4-137.0^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{23}+251\left(c 1.07, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.69$ (brs, 2 H$), 7.38-7.32$ (m, 6H), 7.00-6.95 (m, 6H), $6.64(\mathrm{dd}, J=8.0,2.0,2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.0,2 \mathrm{H}), 5.39(\mathrm{~d}, J=12.0,2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J$ $=12.0,2 \mathrm{H}) \cdot{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 179.6(\mathrm{C}), 156.2(\mathrm{C}), 136.6(\mathrm{C}), 135.4(\mathrm{C}), 132.1(\mathrm{CH}), 129.5(\mathrm{CH}), 129.3(\mathrm{CH})$, $127.1(\mathrm{CH}), 120.0(\mathrm{CH}), 118.3(\mathrm{C}), 117.7(\mathrm{CH}), 70.4(\mathrm{CH}), 45.4\left(\mathrm{CH}_{2}\right) . \operatorname{MS}(\mathrm{ESI}) m / z: 535(\mathrm{M}+\mathrm{H}), 537(\mathrm{M}+2+\mathrm{H}), 539$ $(\mathrm{M}+4+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SCl}_{2}$, 535.1014; found, 535.1011. IR (NaCl): 3220, 2910, 2870, 1600, 1490, 1400, 1200, 890, 740, 680.

(4R,5R)-1,3-Bis(2-hydroxy-4-fluorobenzyl)-4,5-diphenylimidazolidine-2-thione (4h): The typical procedure using S3h ($440 \mathrm{mg}, 0.602 \mathrm{mmol}$), THF (6 mL), a 1.0 M THF solution of TBAF ($6.0 \mathrm{~mL}, 6.0 \mathrm{mmol}$), and column chromatography followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane gave the title compound ($220 \mathrm{mg}, 73 \%$) as beige powder of mp 139.4$140.4^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{30}+266\left(c 1.08, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.73(\mathrm{brs}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{~m}, 4 \mathrm{H}), 6.68$ (dd, $J=8.0,2.5,2 \mathrm{H}), 6.52(\mathrm{dd}, J=8.0,7.5,2 \mathrm{H}), 6.36(\mathrm{dd}, J=8.0,7.5,2.5,2 \mathrm{H}), 5.39(\mathrm{~d}, J=15.5,2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~d}$, $J=15.5,2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 179.5(\mathrm{C}), 163.5(\mathrm{~d}, J=245, \mathrm{C}), 157.1(\mathrm{~d}, J=12, \mathrm{C}), 136.8(\mathrm{C}), 132.2(\mathrm{~d}, J=$ $10, \mathrm{CH}), 129.5(\mathrm{CH}), 129.3(\mathrm{CH}), 127.1(\mathrm{CH}), 115.7(\mathrm{C}), 106.7(\mathrm{~d}, J=20, \mathrm{CH}), 104.7(\mathrm{~d}, J=20, \mathrm{CH}), 70.2(\mathrm{CH}), 46.0$ $\left(\mathrm{CH}_{2}\right)$. MS (ESI) $m / z: 535(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{~S}$, 503.1605 ; found, 503.1602. IR (KBr): 3490, 3000, 2860, 1500, 1470, 1420, 1340, 1220, 1120, 800.

(4R,5R)-1,3-Bis(2-hydroxy-4-bromobenzyl)-4,5-diphenylimidazolidine-2-thione (4i): The typical procedure using S3i

Supporting Information I

$(250 \mathrm{mg}, 0.293 \mathrm{mmol})$, THF (5 mL), a 1.0 M THF solution of TBAF ($3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$), and column chromatography (hexane/EtOAc 1:20 to 1:1) gave brown oil (230 mg) including the title compound and impurity. The oil was dissolved in pyridine $(1 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL}, 0.1 \mathrm{mmol})$, and the mixture was heated under reflux for 1 h . After the mixture was cooled to rt, the reaction was quenched by the addition of water. The aqueous layer was separated and extracted with EtOAc $(5 \mathrm{~mL} \times 3)$. The combined organic layers were washed with $2 \mathrm{M} \mathrm{HCl} \mathrm{aq} \mathrm{and} \mathrm{brine} ,\mathrm{dried} \mathrm{over} \mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 5:1) to give the acetylated product (200 mg , quant) as colorless amorphous. The amorphous and $\mathrm{K}_{2} \mathrm{CO}_{3}(170 \mathrm{mg}, 1.23 \mathrm{mmol})$ were suspended in $\mathrm{MeOH}(5 \mathrm{~mL})$ and stirred at rt for 1 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and poured into water (10 mL). The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 5:1) to give the title compound ($130 \mathrm{mg}, 3$ steps 72%) as colorless amorphous of $\mathrm{mp} 111.5-112.4{ }^{\circ} \mathrm{C}$: $[\alpha]_{\mathrm{D}}{ }^{23}$ +83.4 (c 1.00, CHCl_{3}). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.66(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{~d}, J=2.0,2 \mathrm{H}), 6.99-6.96(\mathrm{~m}$, $4 \mathrm{H}), 6.78(\mathrm{dd}, J=8.0,2.0,2 \mathrm{H}), 6.44(\mathrm{~d}, J=8.0,2 \mathrm{H}), 5.38(\mathrm{~d}, J=16.0,2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=16.0,2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 179.7(\mathrm{C}), 156.3(\mathrm{C}), 136.6(\mathrm{C}), 132.4(\mathrm{CH}), 129.5(\mathrm{CH}), 129.4(\mathrm{CH}), 127.2(\mathrm{CH}), 123.3(\mathrm{C}), 122.9$ $(\mathrm{CH}), 120.6(\mathrm{CH}), 118.8(\mathrm{C}), 70.5(\mathrm{CH}), 45.5\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI}) m / z: 623(\mathrm{M}+\mathrm{H}), 625(\mathrm{M}+2+\mathrm{H}), 625(\mathrm{M}+4+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SBr}_{2} \mathrm{~K}, 660.9562$; found, 660.9550. IR (KBr): 3400, 3000, 2920, 1600, 1480, 1430, 1410, 1220, 880, 700.

(4R,5R)-1,3-Bis(2-hydroxy-4-iodobenzyl)-4,5-diphenylimidazolidine-2-thione (4j): The typical procedure using S3j (360 $\mathrm{mg}, 0.380 \mathrm{mmol})$, THF (10 mL), a 1.0 M THF solution of TBAF ($6.0 \mathrm{~mL}, 6.0 \mathrm{mmol}$), and column chromatography (hexane/EtOAc 1:9 to $1: 1$) gave yellow oil (330 mg) including the title compound and impurity. The oil was dissolved in pyridine $(1 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL}, 0.1 \mathrm{mmol})$, and the mixture was heated under reflux for 0.5 h . After the mixture was cooled to rt, the reaction was quenched by the addition of water. The aqueous layer was separated and extracted with EtOAc $(5 \mathrm{~mL} \times 3)$. The combined organic layers were washed with $2 \mathrm{M} \mathrm{HCl} \mathrm{aq} \mathrm{and} \mathrm{brine} ,\mathrm{dried} \mathrm{over} \mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc $8: 1$ to $3: 1$) to give the acetylated product (260 mg , quant) as colorless amorphous. The amorphous and $\mathrm{K}_{2} \mathrm{CO}_{3}(140 \mathrm{mg}, 1.01 \mathrm{mmol}$) were suspended in $\mathrm{MeOH}(10 \mathrm{~mL})$ and stirred at rt for 0.5 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and poured into water $(10 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 5:1) to give the title compound ($99 \mathrm{mg}, 3$ steps 23%) as colorless amorphous of mp 144.0$145.5^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{23}+41.4\left(c 1.28, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.50(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 8 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 6 \mathrm{H})$, $6.19(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=15.0,2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 179.7(\mathrm{C}), 156.0$ (C), $136.6(\mathrm{C}), 132.6(\mathrm{CH}), 129.5(\mathrm{CH}), 129.3(\mathrm{CH}), 128.9(\mathrm{CH}), 127.2(\mathrm{CH}), 126.5(\mathrm{CH}), 119.6(\mathrm{C}), 95.0(\mathrm{C}), 70.4(\mathrm{CH})$, $45.6\left(\mathrm{CH}_{2}\right)$. MS (ESI) $m / z: 719(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SI}_{2} \mathrm{Na}, 740.9546$; found, 740.9529. IR (NaCl): 3200, 3020, 2910, 1650, 1600, 1470, 1410, 1200, 880, 750, 700.

Supporting Information I

(4R,5R)-1,3-Bis(2-hydroxy-4-fluorobenzyl)-4,5-diphenylimidazolidine-2-thione (4k): The typical procedure using S3k ($83.0 \mathrm{mg}, 0.100 \mathrm{mmol}$), THF (3 mL), a $1.0 \mathrm{M} \mathrm{THF} \mathrm{solution} \mathrm{of} \mathrm{TBAF} \mathrm{(} 1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$), and column chromatography (hexane/EtOAc 2:1) gave yellow oil (57 mg) including the title compound and impurity. The oil was dissolved in pyridine $(1 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL}, 0.1 \mathrm{mmol})$, and the mixture was heated under reflux for 3 h . After the mixture was cooled to rt , the reaction was quenched by the addition of water. The aqueous layer was separated and extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined organic layers were washed with 2 M HCl aq and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 1:0, 5:1 and then $2: 1$) to give the acetylated product ($50 \mathrm{mg}, 77 \%$) as colorless oil. The amorphous and $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{mg}, 0.36 \mathrm{mmol})$ were suspended in $\mathrm{MeOH}(5 \mathrm{~mL})$ and stirred at rt for 3 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and poured into water $(10 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 5:1) to give the title compound ($34 \mathrm{mg}, 3$ steps 56%) as beige oil: $[\alpha]_{\mathrm{D}}{ }^{30}+127\left(c 1.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.80(\mathrm{~s}, 2 \mathrm{H})$, $7.37-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0,2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0,2 \mathrm{H}), 5.40(\mathrm{~d}, J=15.0,2 \mathrm{H}), 4.43(\mathrm{~s}$, $2 \mathrm{H}), 4.18(\mathrm{~d}, J=15.0,2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 180.0(\mathrm{C}), 155.7(\mathrm{C}), 136.5(\mathrm{C}), 132.3(\mathrm{q}, J=32, \mathrm{C}), 131.8(\mathrm{CH})$, $129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 127.0(\mathrm{CH}), 123.5(\mathrm{q}, J=270, \mathrm{C}), 123.4(\mathrm{C}), 116.4(\mathrm{q}, J=5, \mathrm{CH}), 114.5(\mathrm{q}, J=5, \mathrm{CH}), 70.7(\mathrm{CH})$, $45.8\left(\mathrm{CH}_{2}\right)$. MS (ESI) $m / z: 603(\mathrm{M}+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SF} 6 \mathrm{~K}$, 641.1100; found, 641.1121. IR (NaCl): 3250, 3030, 2930, 1570, 1500, 1440, 1320, 1210, 1160, 740.

(4R,5R)-1,3-Bis(2-(methoxymethoxy)phenyl)-4,5-diphenylimidazolidine-2-thione (S3d): A mixture of S2d (58 mg, 0.10 $\mathrm{mmol}), \mathrm{NaO} t \mathrm{Bu}(12 \mathrm{mg}, 0.13 \mathrm{mmol})$, and $\mathrm{S}_{8}(5.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was stirred for 3 h and then concentrated under reduced pressure. The resulting solids were dissolved in CHCl_{3} and filtered through silica pad $\left(\mathrm{CHCl}_{3}\right)$. The filtrate was concentrated under reduced pressure to give the title compound as colorless solid of $\mathrm{mp} 144.5-145.1^{\circ} \mathrm{C}$: $[\alpha]_{\mathrm{D}}{ }^{28}-37.1\left(c 0.450, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.43(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{t}, J=8.0,2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.0,2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0,2 \mathrm{H}), 6.86(\mathrm{t}, J=8.0,2 \mathrm{H}), 5.34(\mathrm{~d}, J=6.5,2 \mathrm{H}), 5.28(\mathrm{~d}, J=6.5,2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13}$ C NMR (acetone- $d_{6}, 100 \mathrm{MHz}$): $184.3(\mathrm{C}), 153.7(\mathrm{C}), 140.0(\mathrm{C}), 132.4(\mathrm{CH}), 129.2(\mathrm{C}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 120.9(\mathrm{CH}), 115.0(\mathrm{CH}), 94.5\left(\mathrm{CH}_{2}\right), 73.0(\mathrm{CH}), 55.8\left(\mathrm{CH}_{3}\right) . \mathbf{M S}(\mathrm{ESI}) m / z: 461(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z: ~[M+H]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, 527.2005$; found, 527.2029. IR (NaCl): 3066, 2913, 2846, 1508, 1260, 1080, 990, 750.

($4 R, 5 R$)-1,3-Bis(2-hydroxybenzyl)-4,5-diphenylimidazolidine-2-thione (4d): To a solution of $\mathbf{S 3 d}$ ($58 \mathrm{mg}, 0.10 \mathrm{mmol}$) in dioxane (5.0 mL) was added $12 \mathrm{M} \mathrm{HCl}(1.0 \mathrm{~mL})$, and the mixture was heated at $50^{\circ} \mathrm{C}$ for 1 h . After colling to rt, the

Supporting Information I

mixture was concentrated under reduced pressure and purified by column chromatography (hexane/EtOAc $2: 1$) to give the title compound ($40 \mathrm{mg}, 2$ steps 91%) as colorless solid of mp $163.5-165.5^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{28}-140\left(c 0.182, \mathrm{CHCl}_{3}\right) . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.43-7.26(\mathrm{~m}, 10 \mathrm{H}), 7.16(\mathrm{td}, J=8.0,1.0,2 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{td}, J=8.0,1.0,2 \mathrm{H}), 5.32(\mathrm{~s}$, 2H). ${ }^{13}$ C NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$): 183.1 (C), 153.9 (C), $139.6(\mathrm{C}), 132.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.1(\mathrm{CH}), 126.9(\mathrm{C}), 118.9(\mathrm{CH}), 116.8(\mathrm{CH}), 72.2(\mathrm{CH})$. MS (ESI) $m / z: 461(\mathrm{M}+\mathrm{Na})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}$, 461.1300; found, 461.1296. IR (NaCl): 3300, 3040, 2980, 2360, 1497, 1324, 752, 700.

Supporting Information I

4. Preparation of Stilbenecarboxylic Acids

$\operatorname{method} A$

method B

Typical Procedure A. (E)-2-Styryl Benzoic Acid (1a): A mixture of methyl o-iodobenzoate ($4.60 \mathrm{~g}, 17.6 \mathrm{mmol}$), styrene $(2.5 \mathrm{~mL}, 21 \mathrm{mmol})$, triphenylphosphine $(0.30 \mathrm{~g}, 1.2 \mathrm{mmol})$, palladium acetate ($0.13 \mathrm{~g}, 0.58 \mathrm{mmol}$), and triethylamine (5.3 $\mathrm{mL}, 41 \mathrm{mmol}$) was heated at $100^{\circ} \mathrm{C}$ for 12 h . After cooling to rt , the mixture was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and washed with 2 M HCl aq (20 mL). The aqueous layer was extracted with EtOAc ($20 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc 10:1) to give methyl (E)-2-styrylbenzoate (4.18 g , quant) as colorless oil. A mixture of the ester ($4.16 \mathrm{~g}, 17.5 \mathrm{mmol}$), $\mathrm{EtOH}(30 \mathrm{~mL})$, and $6 \mathrm{M} \mathrm{KOH} \mathrm{aq}(4.5 \mathrm{~mL}, 27 \mathrm{mmol})$ was stirred at rt for 12 h . The mixture was diluted with water (20 mL) and washed with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was discarded, and the aqueous layer was acidified with 1 M HCl aq and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting solids were recrystallized from hexane/EtOAc to give the title compound ($2.58 \mathrm{~g}, 66 \%$) as a colorless solid of $\mathrm{mp} 159.5-161.0{ }^{\circ} \mathrm{C}:{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.10(\mathrm{dd}, J=8.0$, $1.0,1 \mathrm{H}), 8.08(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{td}, J=7.5,1.0,1 \mathrm{H})$, $7.05(\mathrm{~d}, J=16.0,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$

(E)-2-(4-Methylstyryl)benzoic Acid (1b): Typical procedure A using methyl o-iodobenzoate ($560 \mathrm{mg}, 2.20 \mathrm{mmol}$), p-methylstyrene ($890 \mathrm{mg}, 7.50 \mathrm{mmol}$), $\mathrm{PPh}_{3}(140 \mathrm{mg}, 0.534 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(56 \mathrm{mg}, 0.25 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 15$ mmol) gave (E)-2-(p-methylstyryl)benzoate ($470 \mathrm{mg}, 1.86 \mathrm{mmol}, 84 \%$) as colorless oil. The ester was hydrolyzed using $\mathrm{EtOH}(10 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{KOH}(1.5 \mathrm{~mL}, 9.0 \mathrm{mmol})$ gave the title compound ($430 \mathrm{mg}, 62 \%$) as colorless solid of $\mathrm{mp} 153.1-$ $154.3{ }^{\circ} \mathrm{C}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.11(\mathrm{~d}, J=7.5,1 \mathrm{H}), 8.05(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5$, $1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.03(\mathrm{~d}, J=16.0,1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$

[^2]
Supporting Information I

(E)-2-(4-(tert-Butyl)styryl)benzoic Acid (1c): Typical procedure A using methyl o-bromobenzoate ($1.30 \mathrm{~g}, 6.00 \mathrm{mmol}$), p-tert-butylstyrene ($1.64 \mathrm{~g}, 10.0 \mathrm{mmol}$), $\mathrm{PPh}_{3}(160 \mathrm{mg}, 0.600 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(67 \mathrm{mg}, 0.30 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL}, 38$ mmol) gave (E)-2-(p-tert-butylstyryl)benzoate ($1.65 \mathrm{~g}, 5.60 \mathrm{mmol}, 94 \%$) as colorless solid. The ester was hydrolyzed using $\mathrm{EtOH}(10 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{KOH}(4.0 \mathrm{~mL}, 24.0 \mathrm{mmol})$ gave the title compound ($1.25 \mathrm{~g}, 80 \%$) as colorless solid of $\mathrm{mp} 160.0-$ $161.5^{\circ} \mathrm{C}:{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.05(\mathrm{dd}, J=8.0,1.0,1 \mathrm{H}), 8.00(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.56(\mathrm{td}, J=$ $8.0,1.0,1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.34(\mathrm{td}, J=8.0,1.0,2 \mathrm{H}), 7.02(\mathrm{~d}, J=16.0,1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{4)}$

(E)-2-(4-Methoxylstyryl)benzoic Acid (1d): Typical procedure A using methyl o-iodobenzoate ($780 \mathrm{mg}, 2.97 \mathrm{mmol}$), p-methoxystyrene ($530 \mathrm{mg}, 3.96 \mathrm{mmol}$), $\mathrm{PPh}_{3}(60 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(24 \mathrm{mg}, 0.11 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL}, 7.5$ mmol) gave (E)-2-(p-methoxystyryl)benzoate ($490 \mathrm{mg}, 1.83 \mathrm{mmol}, 60 \%$) as yellow oil. The ester was hydrolyzed using $\mathrm{EtOH}(10 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{KOH}(1.0 \mathrm{~mL}, 6.0 \mathrm{mmol})$ gave the title compound ($230 \mathrm{mg}, 50 \%$) as yellow solid of $\mathrm{mp} 161.4-$ $162.9^{\circ} \mathrm{C}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{dt}, J=8.0,1.0$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.0,1 \mathrm{H}), 6.91(\mathrm{dd}, J=7.0,2.0,2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$

(E)-2-(4-Acetoxylstyryl)benzoic Acid (1e): Typical procedure A using tert-butyl o-iodobenzoate ($780 \mathrm{mg}, 2.97 \mathrm{mmol}$), p-acethoxystyrene ($0.66 \mathrm{~g}, 5.0 \mathrm{mmol}$), $\mathrm{PPh}_{3}(87 \mathrm{mg}, 0.33 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(33 \mathrm{mg}, 0.15 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL}, 39$ mmol) gave (E)-2-(p-acethoxystyryl)benzoate ($840 \mathrm{mg}, 2.48 \mathrm{mmol}, 82 \%$) as yellow oil. The ester was hydrolyzed using DMSO (20 mL) and $6 \mathrm{M} \mathrm{KOH}(6.0 \mathrm{~mL}, 36 \mathrm{mmol}$) gave (E)-2-(4-hydroxystyryl)benzoic acid ($400 \mathrm{mg}, 94 \%$) as pale yellow solid. The phenol was dissolved in pyridine $(5 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{~mL}, 5 \mathrm{mmol})$, and the mixture was stirred at rt for 23 h . The reaction was quenched with 2 M HCl aq $(20 \mathrm{~mL})$. The whole was extracted with EtOAc $(5 \mathrm{~mL} \times 3)$. The combined organic layers were washed with 2 M HCl aq and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc $4: 1$ to $1: 1$) to give the title compound ($355 \mathrm{mg}, 1.25 \mathrm{mmol}$) as colorless solid of mp $133.8-135.1^{\circ} \mathrm{C}:{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.06(\mathrm{~d}, J=8.0,1 \mathrm{H}), 8.00(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.71(\mathrm{~d}$, $J=8.0,1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=8.0,1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0,1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$

4) Triandafillidi, I.; Raftopoulou, M.; Savvidou, A.; Kokotos, C. G. ChemCatChem 2017, 9, 4120.

S18

Supporting Information I

(E)-2-(4-Chlorostyryl)benzoic Acid (1f): Typical procedure A using methyl o-iodobenzoate ($705 \mathrm{mg}, 2.69 \mathrm{mmol}$), p-chlorostyrene ($500 \mathrm{mg}, 3.62 \mathrm{mmol}$), $\mathrm{PPh}_{3}(53 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(22 \mathrm{mg}, 95 \mu \mathrm{~mol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL}, 7.5 \mathrm{mmol})$ gave (E)-2-(p-chlorostyryl)benzoate ($720 \mathrm{mg}, 2.64 \mathrm{mmol}, 98 \%$) as colorless solid. The ester was hydrolyzed using EtOH (5 $\mathrm{mL})$ and $6 \mathrm{M} \mathrm{KOH}(1.0 \mathrm{~mL}, 6.0 \mathrm{mmol})$ gave the title compound ($453 \mathrm{mg}, 66 \%$) as pale yellow solid of $\mathrm{mp} 141.8-142.3^{\circ} \mathrm{C}$: ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.12(\mathrm{~d}, J=7.5,1 \mathrm{H}), 8.05(\mathrm{~d}, J=16.5,1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.48$ $(\mathrm{d}, J=8.0,2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=16.5,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$

(E)-2-(4-Nitrostyryl)benzoic Acid (1g): Typical procedure A using methyl o-iodobenzoate ($1.00 \mathrm{~g}, 3.96 \mathrm{mmol}$), p-nitrostyrene ($770 \mathrm{mg}, 5.16 \mathrm{mmol}$), $\mathrm{PPh}_{3}(77 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(31 \mathrm{mg}, 0.14 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 15$ mmol) gave (E)-2-(p-nitrostyryl)benzoate ($680 \mathrm{mg}, 2.40 \mathrm{mmol}, 67 \%$) as yellow oil. The ester was hydrolyzed using EtOH $(10 \mathrm{~mL})$ and $9 \mathrm{M} \mathrm{KOH}(2.0 \mathrm{~mL}, 18 \mathrm{mmol})$ gave the title compound ($390 \mathrm{mg}, 50 \%$) as yellow solid of $\mathrm{mp} 199.1-200.8^{\circ} \mathrm{C}$: ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.14(\mathrm{~d}, J=7.5,1 \mathrm{H}), 8.05-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.62(\mathrm{t}, J$ $=7.5,2 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$

(E)-2-(3-Methylstyryl)benzoic Acid (1h): Typical procedure A using methyl o-iodobenzoate ($1.26 \mathrm{~g}, 5.00 \mathrm{mmol}$), m-methylstyrene ($890 \mathrm{mg}, 7.50 \mathrm{mmol}$), $\mathrm{PPh}_{3}(57 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(22 \mathrm{mg}, 0.10 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL}, 7.5$ mmol) gave (E)-2-(m-methylstyryl)benzoate ($470 \mathrm{mg}, 1.86 \mathrm{mmol}, 84 \%$) as colorless oil. The ester was hydrolyzed using $\mathrm{EtOH}(10 \mathrm{~mL})$ and $5 \mathrm{M} \mathrm{KOH}(2.0 \mathrm{~mL}, 10 \mathrm{mmol})$ gave the title compound ($140 \mathrm{mg}, 30 \%$) as pink powder of $\mathrm{mp} 163.0-$ $164.2{ }^{\circ} \mathrm{C}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.06(\mathrm{dd}, J=7.5,1.0,1 \mathrm{H}), 8.02(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.0,1.0,1 \mathrm{H}), 7.55$ $(\mathrm{ddd}, J=8.0,7.5,1.0,1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{dd}, J=8.0,7.5,1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.0,1.0,1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0,1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$

(E)-2-(3-Methoxystyryl)benzoic Acid (1i): Typical procedure A using methyl o-iodobenzoate ($1.2 \mathrm{~g}, 5.0 \mathrm{mmol}$), m-methoxylstyrene $(1.0 \mathrm{~g}, 7.6 \mathrm{mmol}), \mathrm{PPh}_{3}(0.14 \mathrm{~g}, 0.54 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(56 \mathrm{mg}, 0.25 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL}, 75$ mmol) gave (E)-2-(m-methylstyryl)benzoate $(1.0 \mathrm{~g}, 3.7 \mathrm{mmol}, 75 \%$) as colorless oil. The ester was hydrolyzed using EtOH $(10 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{KOH}(2.0 \mathrm{~mL}, 12 \mathrm{mmol})$ gave the title compound ($270 \mathrm{mg}, 30 \%$) as colorless solid of $\mathrm{mp} 244.1-$ $245.5{ }^{\circ} \mathrm{C}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.06(\mathrm{dd}, J=7.5,1.0,1 \mathrm{H}), 8.02(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.58(\mathrm{td}, J=$ $8.0,1.0,1 \mathrm{H}), 7.36(\mathrm{td}, J=8.0,1.0,1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0,1 \mathrm{H})$, $6.85(\mathrm{dd}, J=8.0,1.0,1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{5}$)

Supporting Information I

(E)-2-(3-Chlorostyryl)benzoic Acid (1j): Typical procedure A using methyl o-iodobenzoate ($1.00 \mathrm{~g}, 3.81 \mathrm{mmol}$), m-chlorostyrene ($760 \mathrm{mg}, 5.50 \mathrm{mmol}$), $\mathrm{PPh}_{3}(82 \mathrm{mg}, 0.32 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(33 \mathrm{mg}, 0.14 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL}, 7.5$ mmol) gave (E)-2-(m-chlorostyryl)benzoate ($340 \mathrm{mg}, 1.23 \mathrm{mmol}, 30 \%$) as colorless solid. The ester was hydrolyzed using $\mathrm{EtOH}(5 \mathrm{~mL})$ and $6 \mathrm{M} \mathrm{KOH}(1.0 \mathrm{~mL}, 6.0 \mathrm{mmol})$ gave the title compound ($300 \mathrm{mg}, 93 \%$) as colorless solid of $\mathrm{mp} 144.5-$ $146.5{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.07(\mathrm{~d}, J=8.0,1 \mathrm{H}), 8.04(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0$, $1 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=16.0,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$

tert-Butyl 2-[(diethoxyphosphoryl)methyl]benzoate (S4): To a solution of tert-butyl o-methylbenzoate (1.17 g, 7.80 mmol) and N-bromosuccinimide ($1.45 \mathrm{~g}, 8.20 \mathrm{mmol}$) in $\mathrm{PhCl}(20 \mathrm{~mL})$ was added AIBN ($64 \mathrm{mg}, 0.40 \mathrm{mmol}$) at rt. The mixture was heated under reflux for 2 h , cooled to rt , and filtered through silica pad (hexane/EtOAc 20:1). The filtrate was concentrated under reduced pressure to give tert-butyl o-(bromomethyl)benzoate as a yellow oil. A mixture of the ester $(1.59 \mathrm{~g}, 6.94 \mathrm{mmol})$ and triethyl phosphite $(7.0 \mathrm{~mL}, 40 \mathrm{mmol})$ was stirred at $150{ }^{\circ} \mathrm{C}$ for 3 h , cooled to rt , and concentrated under reduced pressure. The crude mixture was purified by column chromatography (EtOAc) to afford the title compound as a yellow oil (1.42 g, 72\%): ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.86(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=8.0,1 \mathrm{H})$, $4.00(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~d}, J=23.0,2 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=7.0,6 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{6}$) This compound was used next reaction without further purification.

Typical Procedure B. (E)-2-(2-Methylstyryl)benzoic Acid (1k): To a mixture of phosphonate $\mathbf{S 4}$ ($2.00 \mathrm{~g}, 7.02 \mathrm{mmol}$) in THF (50 mL) was added $\mathrm{NaH}\left(60 \%\right.$ in oil, $0.56 \mathrm{~g}, 14 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After $30 \mathrm{~min}, o$-tolaldehyde $(750 \mathrm{mg}, 4.67 \mathrm{mmol})$ was added to the mixture at $0{ }^{\circ} \mathrm{C}$. The mixture was heated at $70^{\circ} \mathrm{C}$ with continuous stirring for 11 h . After cooled to rt , sat $\mathrm{NH}_{4} \mathrm{Cl}$ aq was added. The whole was extracted with EtOAc ($30 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 20:1) to give tert-butyl (E)-2-(o-methylstyryl)benzoate ($1.12 \mathrm{~g}, 4.20 \mathrm{mmol}, 90 \%$) as colorless oil. A mixture of the ester $(1.12 \mathrm{~g}, 4.20 \mathrm{mmol})$, $\mathrm{EtOH}(20 \mathrm{~mL})$, and $6 \mathrm{M} \mathrm{KOH} \mathrm{aq}(7.0 \mathrm{~mL}, 42 \mathrm{mmol})$ was stirred at rt for 48 h . The mixture was diluted with water (20 mL), and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was discarded, and the aqueous layers were acidified with 1 M HCl aq and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting solids were recrystallized from hexane/EtOAc to give the title compound ($580 \mathrm{mg}, 57 \%$) as a colorless powder of mp $173.0-175.2{ }^{\circ} \mathrm{C}:{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.09$ $(\mathrm{dd}, J=8.0,1.0,1 \mathrm{H}), 7.93(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.67(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{td}, J=8.0,1.0,1 \mathrm{H}), 7.31(\mathrm{td}, J=8.0$,

[^3]
Supporting Information I

$1.0,1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. $\left.{ }^{3}\right)$

(E)-2-(2-Chlorostyry)benzoic Acid (11): Typical procedure A using methyl o-iodobenzoate ($900 \mathrm{mg}, 3.43 \mathrm{mmol}$), o-chlorostyrene ($730 \mathrm{mg}, 5.28 \mathrm{mmol}$), $\mathrm{PPh}_{3}(82 \mathrm{mg}, 0.32 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(33 \mathrm{mg}, 0.14 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL}, 7.5$ mmol) gave (E)-2-($($-chlorostyryl)benzoate ($760 \mathrm{mg}, 2.79 \mathrm{mmol}, 81 \%$) as yellow oil. The ester was hydrolyzed using EtOH $(10 \mathrm{~mL})$ and $9 \mathrm{M} \mathrm{KOH}(2.0 \mathrm{~mL}, 18 \mathrm{mmol})$ to give the title compound ($390 \mathrm{mg}, 50 \%$) as colorless solid of mp 176.2$176.9^{\circ} \mathrm{C}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.13(\mathrm{~d}, J=7.5,1 \mathrm{H}), 8.06(\mathrm{~d}, J=16.5,1 \mathrm{H}), 7.79(\mathrm{t}, J=8.5,2 \mathrm{H}), 7.62(\mathrm{t}, J=7.5$, $1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. $\left.{ }^{3}\right)$

(E)-2-Methyl-6-styrylbenzoic Acid (1m): Typical procedure A using methyl 2-bromo-6-methylbenzoate ($450 \mathrm{mg}, 2.00$ $\mathrm{mmol})$, styrene ($270 \mathrm{mg}, 2.59 \mathrm{mmol}$), $\mathrm{PPh}_{3}(37 \mathrm{mg}, 0.14 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(16 \mathrm{mg}, 70 \mu \mathrm{~mol})$, and $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL}, 38 \mathrm{mmol})$ gave (E)-2-methyl-6-styrylbenzoate ($250 \mathrm{mg}, 50 \%$) as colorless oil. The ester was hydrolyzed using DMSO (5.0 mL) and 5 $\mathrm{M} \mathrm{KOH}(1.0 \mathrm{~mL}, 5.0 \mathrm{mmol})$ to give the title compound ($220 \mathrm{mg}, 91 \%$) as colorless solid of $\mathrm{mp} 102.2-103.6^{\circ} \mathrm{C}:{ }^{1} \mathbf{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): 7.55(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0$, $1 \mathrm{H}), 7.08$ (d, $J=16.0,1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 175.5$ (C), 137.1 (C), 135.9 (C), 135.7 (C), 131.8 $(\mathrm{CH}), 131.8(\mathrm{C}), 130.2(\mathrm{CH}), 129.6(\mathrm{CH}), 128.7(\mathrm{CH}), 128.0(\mathrm{CH}), 126.8(\mathrm{CH}), 125.8(\mathrm{CH}), 123.4(\mathrm{CH}), 20.2\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 237(\mathrm{M}-\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2}, 237.0916$; found, 237.0913. IR (NaCl): 3030, 2905, 2340, 1695, 1580, 1382, 1286, 1130, 960.

(E)-5-Methyl-2-styrylbenzoic Acid (1n): Typical procedure A using methyl 2-bromo-5-methylbenzoate ($1.00 \mathrm{~g}, 4.65$ mmol), styrene ($630 \mathrm{mg}, 6.05 \mathrm{mmol}$), $\mathrm{PPh}_{3}(120 \mathrm{mg}, 0.458 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(50 \mathrm{mg}, 0.23 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL}, 38$ mmol) gave (E)-5-methyl-2-styrylbenzoate ($740 \mathrm{mg}, 63 \%$) as colorless oil. The ester was hydrolyzed using EtOH (5.0 mL) and $5 \mathrm{M} \mathrm{KOH}(1.8 \mathrm{~mL}, 9.0 \mathrm{mmol})$ gave the title compound ($400 \mathrm{mg}, 57 \%$) as colorless solid of $\mathrm{mp} 149.7-151.5^{\circ} \mathrm{C}:{ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.02(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.39-7.34(\mathrm{~m}$, $3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0,1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 173.5$ (C), 137.5 (C), 137.4 (C), 137.2 (C), $134.0(\mathrm{CH}), 132 .(\mathrm{CH}), 131.0(\mathrm{CH}), 128.7(\mathrm{CH}), 127.7(\mathrm{CH}), 127.4(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1(\mathrm{C}), 126.8$ (CH), $21.0\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 237(\mathrm{M}-\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Cl}, 257.0369$; found, 257.0363. IR (NaCl): 3030, 2916, 2360, 2341, 1680, 1490, 1350, 1277, 1248, 966, 750.

(E)-5-chloro-2-strylbenzoic acid (10): Typical procedure A using tert-butyl 2-bromo-5-chlorobenzoate ($698 \mathrm{mg}, 2.40$

Supporting Information I

mmol), styrene ($324 \mathrm{mg}, 3.12 \mathrm{mmol}$), $\mathrm{PPh}_{3}(26 \mathrm{mg}, 96 \mu \mathrm{~mol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 48 \mu \mathrm{~mol})$, and $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL}, 38 \mathrm{mmol})$ gave tert-butyl (E)-5-chloro-2-styrylbenzoate ($330 \mathrm{mg}, 69 \%$) as colorless oil. The ester was hydrolyzed using DMSO (5.0 $\mathrm{mL})$ and $5 \mathrm{M} \mathrm{KOH}(1.1 \mathrm{~mL}, 5.0 \mathrm{mmol})$ to give the title compound ($20 \mathrm{mg}, 69 \%$) as colorless solid of $\mathrm{mp} 147.0-147.5^{\circ} \mathrm{C}$: ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.02(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.98(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.53-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}$, $J=8.0,2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0,1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 172.0(\mathrm{C}), 138.6(\mathrm{C}), 136.9(\mathrm{C})$, $133.1(\mathrm{CH}), 133.0(\mathrm{C}), 132.4(\mathrm{CH}), 131.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{C}), 128.1(\mathrm{CH}), 126.9(\mathrm{CH}), 126.2(\mathrm{CH})$. MS (ESI) $m / z: 257(M-H), 259(M+2-H)$. HRMS (ESI) $m / z:[M-H]^{-}$calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Cl}$, 257.0369; found, 257.0363. IR (NaCl): 3050, 2917, 2360, 2341, 1693, 1477, 1411, 1296, 1240, 1112, 964.

(\boldsymbol{E})-4-Methyl-2-styrylbenzoic acid (1p): Typical procedure A using methyl 2-bromo-4-methylbenzoate (400 mg, 1.75 $\mathrm{mmol})$, styrene ($240 \mathrm{mg}, 2.28 \mathrm{mmol}$), $\mathrm{PPh}_{3}(46 \mathrm{mg}, 0.17 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{mg}, 88 \mu \mathrm{~mol})$, and $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL}, 38 \mathrm{mmol})$ gave (E)-4-methyl-2-styrylbenzoate (570 mg , quantity) as colorless oil. The ester was hydrolyzed using EtOH (10 mL) and $5 \mathrm{M} \mathrm{KOH}(1.0 \mathrm{~mL}, 5.0 \mathrm{mmol})$ to give the title compound (140 mg, 32%) as colorless solid of $\mathrm{mp} 188.7-190.1^{\circ} \mathrm{C}$: $\mathbf{~}^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.06(\mathrm{~d}, J=16.0,1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.5,2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.5$, $1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.01(\mathrm{~d}, J=16.0,1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathrm{~d}$-acetone, 100 MHz$): 167.8(\mathrm{C}), 142.5(\mathrm{C}), 139.1$ (C), $137.8(\mathrm{C}), 131.0(\mathrm{CH}), 130.6(\mathrm{CH}), 128.6(\mathrm{CH}), 127.9(\mathrm{CH}), 127.6(\mathrm{CH}), 127.2(\mathrm{CH}), 126.67(\mathrm{CH}) 126.66(\mathrm{CH}), 126.2$ (C), $20.5\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 237(\mathrm{M}-\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2}, 237.0916$; found, 237.0909. IR (NaCl): 2916, 2848, 2360, 2341, 1673, 1301, 1241, 944.

Supporting Information I

5. Enantioselective Bromolactonization of 1.

Typical Procedure. (S)-3-[(R)-Bromo(phenyl)methyl]isobenzofuran-1(3H)-one (2a) and (3R,4S)-4-Bromo-3,4-dihy-dro-3-phenylisochromen-1-one (3a): Carboxylic acid 1a ($21.4 \mathrm{mg}, 0.100 \mathrm{mmol}$) and catalyst $\mathbf{4 i}(3.0 \mathrm{mg}, 50 \mu \mathrm{mmol})$ were placed in a $10-\mathrm{mL}$ tube and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$, and the mixture was cooled at $-60{ }^{\circ} \mathrm{C}$. After 10 min , N -bromosuccinimide ($21.2 \mathrm{mg}, 0.120 \mathrm{mmol}$) was added, and the mixture was stirred at $-60^{\circ} \mathrm{C}$ for 72 h . 2-Methyl-2-butene $(0.1 \mathrm{~mL})$ and sat $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ were added to the mixture at a 10 min interval, and the mixture was warmed to rt . The whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The ratio of 2a and 3a was determined to be $8: 1$ on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.23 and 5.59 ppm in the crude mixture. The crude mixture was purified by column chromatography (hexane/EtOAc 5:1) to give an $8: 1$ mixture of $\mathbf{2 a}$ and $\mathbf{3 a}(28.0 \mathrm{mg}, 90 \%)$ as a colorless solid. The isomers were separated by additional column chromatography (hexane/EtOAc 10:1) for characterization.

2a: Colorless solid of mp $121.1-122.0^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-21.2\left(c 0.782, \mathrm{CHCl}_{3}\right)$ for $92: 8 \mathrm{er}$; lit: $[\alpha]_{\mathrm{D}}{ }^{20}-5.8\left(c 0.35, \mathrm{CHCl}_{3}\right)$ for 57:43 er. ${ }^{7}{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.84(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.67-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.94(\mathrm{~d}$, $J=6.0,1 \mathrm{H}), 5.23(\mathrm{~d}, J=6.0,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{7}$) The enantiomer ratio (er) was determined by HPLC (Daicel Chiralpak IC-3, $i-\mathrm{PrOH} / \mathrm{hexane} 1: 2,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=19.3 \mathrm{~min}(3 R, \alpha S)$ and $22.1 \min (3 S, \alpha R)$).

3a: Colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}+2.34\left(c 0.211, \mathrm{CHCl}_{3}\right)$ for $56: 44 \mathrm{er}$; lit: $[\alpha]_{\mathrm{D}}{ }^{26}-70.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for the other enantiomer with 92% ee. ${ }^{3}{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.18(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.94(\mathrm{~d}$, $J=4.5,1 \mathrm{H}), 5.59(\mathrm{~d}, J=4.5,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$ The er was determined by HPLC (Daicel Chiralcel OJ, i - $\mathrm{PrOH} / \mathrm{hex}$ ane $1: 4,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=18.4 \mathrm{~min}(3 R, 4 S)$ and $19.8 \mathrm{~min}(3 S, 4 R)$).
(S)-3-[(R)-Bromo(4-methylphenyl)methyl]isobenzofuran-1(3H)-one (2b) and (3R,4S)-4-Bromo-3-(4-methylphenyl)-3,4-dihydroisochromen-1-one (3b): The typical procedure using $\mathbf{1 b}(24.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave a 5:2 mixture of $\mathbf{2 b}$ and $\mathbf{3 b}(29.8 \mathrm{mg}, 93 \%)$ as a colorless oil. The ratio of $\mathbf{2 b}$ and $\mathbf{3 b}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.20 and 5.54 ppm in the crude mixture. The isomers were separated by column chromatography (hexane/EtOAc

Supporting Information I

10:1) for characterization.

2b: Colorless solid of $\mathrm{mp} 161.0-161.9^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{24}-16.0\left(c 1.50, \mathrm{CHCl}_{3}\right)$ for $94: 6$ er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.83(\mathrm{~d}, J$ $=7.5,1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0,2 \mathrm{H}), 5.93(\mathrm{~d}, J=6.0,1 \mathrm{H}), 5.20(\mathrm{~d}$, $J=6.0,1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 169.3(\mathrm{C}), 146.4(\mathrm{C}), 139.0(\mathrm{C}), 133.8(\mathrm{CH}), 133.0(\mathrm{C}), 129.9$ $(\mathrm{CH}), 129.3(\mathrm{CH}), 128.4(\mathrm{CH}), 126.7(\mathrm{C}), 125.8(\mathrm{CH}), 123.8(\mathrm{CH}), 82.6(\mathrm{CH}), 53.5(\mathrm{CH}), 21.2\left(\mathrm{CH}_{3}\right)$. MS (ESI) m/z: 317 $(\mathrm{M}+\mathrm{H}), 319(\mathrm{M}+2+\mathrm{H})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Br}, 317.0177$; found, 317.0179. IR (NaCl): 3050, 2940, 2846, 1766, 1609, 1513, 1294, 1047, 749, 636. The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $1: 11,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=16.0 \mathrm{~min}(3 R, \alpha S)$ and $\left.17.4 \mathrm{~min}(3 S, \alpha R)\right)$. The Absolute stereochemistry was determined $(3 S, \alpha R)$ by X-ray crystallography analysis, for which suitable single crystal was obtained by slow evaporation of a solution in hexane/EtOAc.. The crystal data of $\mathbf{3 b}$ are as follows; space group, $P 4_{3} ; a=8.67730$ (1), $\left.b=8.67730(1), c=17.8920(5) ; V=1347.19, Z=4, D \mathrm{x}=1.564 .{ }^{8}\right)$

3b: Cololess oil. $[\alpha]_{\mathrm{D}}{ }^{24}+2.32\left(c 0.525, \mathrm{CHCl}_{3}\right)$ for $52: 48 \mathrm{er}$; lit: $[\alpha]_{\mathrm{D}}{ }^{28}-73.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for the other enantiomer with 83% ee. ${ }^{3}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.15(\mathrm{dd}, J=7.5,1.0,1 \mathrm{H}), 7.59(\mathrm{td}, J=7.5,1.0,1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.11$ $(\mathrm{m}, 4 \mathrm{H}), 5.88(\mathrm{~d}, J=4.5,1 \mathrm{H}), 5.54(\mathrm{~d}, J=4.5,1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$ The er was determined by HPLC (Daicel Chiralpak IC-3, i - $\mathrm{PrOH} /$ hexane $1: 9,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 4{ }^{\circ} \mathrm{C}$, retention time $=17.5$ $\min (3 R, 4 S)$ and $20.0 \min (3 S, 4 R))$.
(S)-3-[(R)-Bromo(4-tert-butylphenyl)methyl]isobenzofuran-1(3H)-one (2c) and (3R,4S)-4-Bromo-3-(4-tert-butyl-phenyl)-3,4-dihydroisochromen-1-one (3c): The typical procedure using $\mathbf{1 c}(28.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave a $1: 1 \mathrm{mixture}$ of $\mathbf{2 c}$ and $\mathbf{3 c}(33.1 \mathrm{mg}, 92 \%)$ as a colorless oil. The ratio of $\mathbf{2 c}$ and $\mathbf{3 c}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.18 and 5.54 ppm in the crude mixture. The isomers were separated by column chromatography (hexane/EtOAc 10:1) for characterization.

2c: Colorless solid of mp $117.3-118.1^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}-14.1\left(c 0.938, \mathrm{CHCl}_{3}\right)$ for $91: 9 \mathrm{er}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.84(\mathrm{~d}, J$ $=7.5,1 \mathrm{H}), 7.65-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 4 \mathrm{H}), 5.92(\mathrm{~d}, J=7.0,1 \mathrm{H}), 5.18(\mathrm{~d}, J=7.0,1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$

[^4]
Supporting Information I

NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 169.3(\mathrm{C}), 152.1(\mathrm{C}), 146.4(\mathrm{C}), 133.8(\mathrm{CH}), 133.2(\mathrm{C}), 129.9(\mathrm{CH}), 128.2(\mathrm{CH}), 126.7(\mathrm{C})$, $125.7(\mathrm{CH}), 125.6(\mathrm{CH}) 124.0(\mathrm{CH}), 82.4(\mathrm{CH}), 53.6(\mathrm{CH}), 34.6(\mathrm{C}), 31.2\left(\mathrm{CH}_{3}\right) . \mathbf{M S}(\mathrm{ESI}) m / z: 381(\mathrm{M}+\mathrm{Na}), 383(\mathrm{M}+2$ +Na). HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{NaBr}, 381.0466$; found, 381.0468. IR (NaCl): 3026, 2963, 2868, $1770,1610,1466,1360,1285,1061,752$. The er was determined by HPLC (Daicel Chiralpak AD-H, i-PrOH/hexane 1:29, $0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=18.0 \mathrm{~min}(3 R, \alpha S)$ and $\left.19.5 \mathrm{~min}(3 S, \alpha R)\right)$. The absolute configuration was tentatively assigned by analogy.

3c: Cololess solid of mp $117.4-118.0^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}+3.16\left(c 1.00, \mathrm{CHCl}_{3}\right)$ for $53: 47$ er. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.15(\mathrm{dd}$, $J=7.5,1.0,1 \mathrm{H}), 7.59(\mathrm{td}, J=7.5,1.0,1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 4 \mathrm{H}), 5.88(\mathrm{~d}, J=4.5,1 \mathrm{H}), 5.54(\mathrm{~d}, J=4.5$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): 163.1 (C), $152.0(\mathrm{C}), 137.9(\mathrm{C}), 134.5(\mathrm{CH}), 133.3(\mathrm{C}), 130.3(\mathrm{CH}), 129.8$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 126.1(\mathrm{CH}), 125.7(\mathrm{CH}), 124.2(\mathrm{C}), 84.1(\mathrm{CH}), 46.0(\mathrm{CH}), 34.6(\mathrm{C}), 21.1\left(\mathrm{CH}_{3}\right)$. MS (ESI) m/z: $381(\mathrm{M}+$ $\mathrm{Na}), 383(\mathrm{M}+2+\mathrm{Na})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Br}, 359.0647$; found, 359.0651. IR (NaCl): 2963, 2868, 1730, 1460, 1370, 1236, 1110, 1049, 764. The er was determined by HPLC (Daicel Chiralpak AD-H, i-PrOH/hexane $1: 11,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=15.4 \mathrm{~min}(3 R, 4 S)$ and $\left.16.0 \mathrm{~min}(3 S, 4 R)\right)$. The absolute configuration was tentatively assigned by analogy.

(3SR,4RS)-4-Bromo-3-(4-methoxyphenyl)-3,4-dihydroisochromen-1-one (3d): The typical procedure using $\mathbf{1 d}$ (25.4 mg , $0.100 \mathrm{mmol})$ gave $\mathbf{3 d}(25.8 \mathrm{mg}, 77 \%)$ as a colorless oil in $50: 50 \mathrm{er}{ }^{\mathbf{1}}{ }^{\mathbf{H}} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.14(\mathrm{dd}, J=7.0,1.5,1 \mathrm{H})$, $7.60(\mathrm{td}, J=7.0,1.5,1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5,2 \mathrm{H}), 5.84(\mathrm{~d}, J=5.0,1 \mathrm{H}), 5.52(\mathrm{~d}, J=$ $5.0,1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3}$) The er was determined by HPLC (Daicel Chiralpak $\mathrm{AD}-\mathrm{H}, i-\mathrm{PrOH} /$ hexane $1: 5,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=18 \mathrm{~min}$ and 20 min).
(S)-3-[(R)-Bromo(4-acetoxyphenyl)methyl]isobenzofuran-1(3H)-one (2e) and (3R,4S)-4-Bromo-3-(4-acetoxyphen$\mathbf{y l})$-3,4-dihydroisochromen-1-one (3e): The typical procedure using $\mathbf{1 e}(28.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave a $1: 1$ mixture of $\mathbf{2 e}$ and $\mathbf{3 e}\left(30.3 \mathrm{mg}, 84 \%\right.$ as a colorless oil. The ratio of $\mathbf{2 e}$ and $\mathbf{3 e}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.20 and 5.31 ppm in the crude mixture. The isomers were separated by column chromatography (hexane/EtOAc 10:1) for characterization.

2e: Colorless solid of $\mathrm{mp} 131.1-131.8^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}-5.42\left(c 1.05, \mathrm{CHCl}_{3}\right)$ for 68:32 er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.84(\mathrm{~d}, J$ $=7.5,1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.41(J=8.5,2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5,2 \mathrm{H}), 5.91(\mathrm{~d}, J=6.0,1 \mathrm{H}), 5.20(\mathrm{~d}, J$ $=6.0,1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 169.1(\mathrm{C}), 169.0(\mathrm{C}), 150.9(\mathrm{C}), 146.1(\mathrm{C}), 133.9(\mathrm{CH}), 133.4(\mathrm{C})$,

Supporting Information I

$130.0(\mathrm{CH}), 129.7(\mathrm{CH}), 126.7(\mathrm{C}), 125.8(\mathrm{CH}), 123.7(\mathrm{CH}), 121.7(\mathrm{CH}), 82.4(\mathrm{CH}), 52.5(\mathrm{CH}), 21.1\left(\mathrm{CH}_{3}\right)$. MS (ESI) m/z: $383(\mathrm{M}+\mathrm{Na}), 385(\mathrm{M}+2+\mathrm{Na})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Br}, 361.0075$; found, 361.0079. IR $(\mathrm{NaCl}): 3022,2924,2851,1770,1605,1507,1370,1286,1205,1057,735$. The er was determined by HPLC (Daicel Chiralpak IC-3, $i-\mathrm{PrOH} /$ hexane $1: 2,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=34.9 \mathrm{~min}(3 R, \alpha S)$ and $39.6 \mathrm{~min}(3 S, \alpha R)$). The absolute configuration was tentatively assigned by analogy.

3e: Cololess solid of $\mathrm{mp} 113.8-115.2^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{24}+2.56\left(c 0.812, \mathrm{CHCl}_{3}\right)$ for 52:48 er; lit: $[\alpha]_{\mathrm{D}}{ }^{25}-58.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for the other enantiomer with 80% ee. ${ }^{3}{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.15(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.62(\mathrm{t}, J=7.0,1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0,2 \mathrm{H}), 5.90(\mathrm{~d}, J=4.0,1 \mathrm{H}), 5.31(\mathrm{~d}, J=4.0,1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3}$ The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} / \mathrm{hexane} 1: 5,0.6 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=22.2 \mathrm{~min}(3 R, 4 S)$ and $\left.29.6 \mathrm{~min}(3 S, 4 R)\right)$.
(S)-3-[(R)-Bromo(4-chlorophenyl)methyl]isobenzofuran-1(3H)-one (2f) and (3R,4S)-4-Bromo-3-(4-chlorophenyl)-3,4-dihydroisochromen-1-one ($\mathbf{3 f}$): The typical procedure using $\mathbf{1 f}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ and the reaction for 120 h gave a 7:2 mixture of $\mathbf{2 f}$ and $\mathbf{3 f}(30.0 \mathrm{mg}, 90 \%)$ as a colorless oil. The ratio of $\mathbf{2 f}$ and $\mathbf{3 f}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.15 and 5.50 ppm in the crude mixture. The isomers were separated by column chromatography (hexane/EtOAc 10:1) for characterization.

2f: Colorless solid of mp $137.2-138.5^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{24}-12.9\left(c 0.700, \mathrm{CHCl}_{3}\right)$ for $85: 15 \mathrm{er}^{1}{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.85(\mathrm{~d}$, $J=7.5,1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0,2 \mathrm{H}), 5.93(\mathrm{~d}, J=6.0,1 \mathrm{H}), 5.15$ (d, $J=6.0,1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 169.0(\mathrm{C}), 146.0(\mathrm{C}), 134.9(\mathrm{C}), 134.5(\mathrm{C}), 134.0(\mathrm{CH}), 130.1(\mathrm{CH}), 129.9$ $(\mathrm{CH}), 128.8(\mathrm{CH}), 126.5(\mathrm{C}), 125.9(\mathrm{CH}), 123.6(\mathrm{CH}), 82.3(\mathrm{CH}), 52.1(\mathrm{CH}) . \mathbf{M S}(\mathrm{ESI}) m / z: 337(\mathrm{M}+\mathrm{H}), 339(\mathrm{M}+2+\mathrm{H})$, $341(\mathrm{M}+4+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{ClBr}, 336.9631$; found, 336.9643. IR (NaCl): 2913, 2852, 1758, 1592, 1491, 1289, 1210, 1052, 754. The er was determined by HPLC (Daicel Chiralpak AD-H, i-PrOH/hexane 1:11, $0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=21.8 \mathrm{~min}(3 R, \alpha S)$ and $24.5 \mathrm{~min}(3 S, \alpha R)$). The absolute configuration was tentatively assigned by analogy.

3f: Colorless solid of $\mathrm{mp} 130.5-131.5^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{24}+2.44\left(c 0.531, \mathrm{CHCl}_{3}\right)$ for $51: 49 \mathrm{er}$; lit: $[\alpha]_{\mathrm{D}}{ }^{25}-51.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for the other enantiomer with 95% ee. ${ }^{3)}{ }^{1} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 8.15 (dd, $J=8.0,1.5,1 \mathrm{H}$), $7.62(\mathrm{ddd}, J=8.0,7.51 .5,1 \mathrm{H}$), $7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=5.0,1 \mathrm{H}), 5.50(\mathrm{~d}, J=5.0,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3}$) The er was determined by HPLC (Daicel Chiralpak IC-3, $i-\mathrm{PrOH} /$ hexane $1: 9,0.6 \mathrm{~mL} / \mathrm{min}$,

Supporting Information I

$220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=22.0 \mathrm{~min}(3 R, 4 S)$ and $\left.25.5 \mathrm{~min}(3 S, 4 R)\right)$.

$(\boldsymbol{S}) \mathbf{- 3}$-[(R)-Bromo(4-nitrophenyl)methyl]isobenzofuran-1(3H)-one (2g): The typical procedure using $\mathbf{1 g}(25.0 \mathrm{mg}, 0.100$ $\mathrm{mmol})$ gave a crude product including a trace amount of $\mathbf{2 g}$. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.17(\mathrm{~d}, J=7.0,2 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $7.0,1 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{~d}, J=6.5,1 \mathrm{H}), 5.19(\mathrm{~d}, J=6.5,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{9)}$ The er was not determined. The absolute configuration was tentatively assigned by analogy.
(S)-3-[(R)-Bromo(3-methylphenyl)-methyl]isobenzofuran-1(3H)-one (2h) and (3R,4S)-4-Bromo-3-(3-methylphen-yl)-3,4-dihydroisochromen-1-one (3h): The typical procedure using $\mathbf{1 h}(24.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ and the reaction for 120 h gave a $6: 1$ mixture of $\mathbf{2 h}$ and $\mathbf{3 h}(27.5 \mathrm{mg}, 88 \%)$ as a colorless oil. The ratio of $\mathbf{2 h}$ and $\mathbf{3 h}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.15 and 5.85 ppm in the crude mixture. The isomers were separated by column chromatography (hexane/EtOAc 10:1) for characterization.

2h: Colorless solid of mp 118.9-119.5 ${ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{24}-21.3\left(c 0.372, \mathrm{CHCl}_{3}\right)$ for 93:7 er. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.85(\mathrm{~d}$, $J=8.0,1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{td}, J=8.0,1.0,1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=6.5,1 \mathrm{H}), 5.15(\mathrm{~d}, J$ $=6.5,1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 169.3(\mathrm{C}), 146.2(\mathrm{C}), 138.4(\mathrm{C}), 136.0(\mathrm{C}), 133.8(\mathrm{CH}), 129.9(\mathrm{CH})$, $129.8(\mathrm{CH}), 129.1(\mathrm{CH}), 128.5(\mathrm{CH}), 126.7(\mathrm{C}), 125.7(\mathrm{CH}), 125.6(\mathrm{CH}), 123.9(\mathrm{CH}), 82.4(\mathrm{CH}), 53.5(\mathrm{CH}), 21.3\left(\mathrm{CH}_{3}\right)$. MS (ESI) m/z: $317(\mathrm{M}+\mathrm{H}), 319(\mathrm{M}+2+\mathrm{H})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Br}, 317.0177$; found, 317.0166. IR (NaCl): 2913, 2869, 1783, 1592, 1462, 1289, 1215, 1047, 985, 709. The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $1: 11,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=13.9 \mathrm{~min}(3 R, \alpha S)$ and 16.0 min $(3 S, \alpha R)$). The absolute configuration was tentatively assigned by analogy.

3h: Colorless oil. $[\alpha]_{D^{24}}^{24}+2.28\left(c 0.803, \mathrm{CHCl}_{3}\right)$ for 60:40 er; lit: $[\alpha]_{\mathrm{D}}{ }^{27}-71.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for the other enantiomer with 90% ee. ${ }^{3)}{ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.15(\mathrm{~d}, J=7.0,1 \mathrm{H}), 7.59(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.48(\mathrm{t}, J=7.0,2 \mathrm{H}), 7.19(\mathrm{t}, J=7.5,1 \mathrm{H})$, $7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5,1 \mathrm{H}), 5.88(\mathrm{~d}, J=4.5,1 \mathrm{H}), 5.57(\mathrm{~d}, J=4.5,1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3}$) The er was determined by HPLC (Daicel Chiralpak IC-3, i-PrOH/hexane $1: 5,0.6 \mathrm{~mL} / \mathrm{min}$, $220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=22.2 \mathrm{~min}(3 S, 4 R)$ and $24.1 \mathrm{~min}(3 R, 4 S)$).

[^5]
Supporting Information I

(S)-3-[(R)-Bromo(3-methoxyphenyl)methyl]isobenzofuran-1(3H)-one (2i) and (3R,4S)-4-Bromo-3-(3-methoxy-phenyl)-3,4-dihydroisochromen-1-one (3i): The typical procedure using $\mathbf{1 i}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave a 7:2 mixture of $\mathbf{2 i}$ and $\mathbf{3 i}(23.5 \mathrm{mg}, 71 \%)$ as a colorless oil. The ratio of $\mathbf{2 i}$ and $\mathbf{3 i}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.19 and 5.54 ppm in the crude mixture. The isomers were separated by preparative TLC (hexane/EtOAc 3:1) for characterization.

2i: Colorless solid of $\left.m p 83.6-84.7^{\circ} \mathrm{C} .[\alpha]\right]^{24}-4.89\left(c 0.564, \mathrm{CHCl}_{3}\right)$ for $87: 12$ er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.84(\mathrm{~d}, J$ $=8.0,1 \mathrm{H}), 7.66-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=8.0,1 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=6.0,1 \mathrm{H}), 5.19(\mathrm{~d}, J=6.0$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 169.2(\mathrm{C}), 159.6$ (C), 146.2 (C), 137.2 (C), 133.8 (CH), 129.9 (CH), 129.6 $(\mathrm{CH}), 126.7(\mathrm{C}), 125.7(\mathrm{CH}), 123.7(\mathrm{CH}), 120.7(\mathrm{CH}), 114.7(\mathrm{CH}), 114.2(\mathrm{CH}), 82.4(\mathrm{CH}), 55.3(\mathrm{CH}), 52.3\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 355(\mathrm{M}+\mathrm{Na}), 357(\mathrm{M}+2+\mathrm{Na})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NaBr}$, 354.9946; found, 354.9958. IR (NaCl): 3014,2937 , 2836, 1770, 1600, 1285, 1267, 1051, 756. The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $1: 11,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=22.2 \mathrm{~min}(3 R, \alpha S)$ and 24.2 min $(3 S, \alpha R))$. The absolute configuration was tentatively assigned by analogy.

3i: Cololess solid of mp 92.2-93.5 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}+1.74\left(c 0.241, \mathrm{CHCl}_{3}\right)$ for 60:40 er. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.14(\mathrm{~d}, \mathrm{~J}=$ $6.5,1 \mathrm{H}), 7.60(\mathrm{td}, J=7.5,1.0,1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 3 \mathrm{H}), 5.88(\mathrm{~d}, J=4.0,1 \mathrm{H}), 5.54$ $(\mathrm{d}, J=4.0,1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 163.0(\mathrm{C}), 159.8(\mathrm{C}), 137.8(\mathrm{C}), 137.7(\mathrm{C}), 134.5(\mathrm{CH}), 130.4$ $(\mathrm{CH}), 129.9(\mathrm{CH}), 129.8(\mathrm{CH}), 128.3(\mathrm{CH}), 124.1(\mathrm{C}), 118.6(\mathrm{CH}), 114.2(\mathrm{CH}), 112.3(\mathrm{CH}), 83.9(\mathrm{CH}), 55.2(\mathrm{CH}), 45.9$ $\left(\mathrm{CH}_{3}\right)$. MS $(\mathrm{ESI}) m / z: 355(\mathrm{M}+\mathrm{Na}), 357(\mathrm{M}+2+\mathrm{Na})$. HRMS $(\mathrm{ESI}) m / z:[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{KBr}, 370.9685$; found, 370.9686. IR (NaCl): 3010, 2932, 2836, 1731, 1600, 1286, 1267, 1046, 755. The er was determined by HPLC (Daicel Chiralpak IC-3, $i-\mathrm{PrOH} / \mathrm{hexane} 1: 2,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=17.6 \mathrm{~min}(3 R, 4 S)$ and 19.4 min $(3 S, 4 R))$. The absolute configuration was tentatively assigned by analogy.

(S)-3-[(R)-Bromo(3-chlorophenyl)methyl]isobenzofuran-1(3H)-one (2j): The typical procedure using $\mathbf{1 j}$ ($26.0 \mathrm{mg}, 0.100$ mmol) and the reaction for 120 h gave $\mathbf{2 j}(13.1 \mathrm{mg}, 41 \%)$ as a colorless solid of $\mathrm{mp} 114.5-115.6^{\circ} \mathrm{C}$: $[\alpha]_{\mathrm{D}}{ }^{24}-8.21(c 0.380$, CHCl_{3}) for 78:22 er. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.86(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=2.5$,

Supporting Information I

$1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{~d}, J=7.0,1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.0,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$ The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} / \mathrm{hexane} 1: 19,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=26.6$ $\min (3 R, \alpha S)$ and $29.6 \min (3 S, \alpha R))$. The absolute configuration was tentatively assigned by analogy.
(S)-3-[(R)-Bromo(2-methylphenyl)methyl]isobenzofuran-1(3H)-one (2 k) and (3R,4S)-4-Bromo-3-(2-methylphenyl)-3,4-dihydroisochromen-1-one (3k): The typical procedure using $\mathbf{1 k}(24.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ and the reaction for 120 h gave a $3: 1$ mixture of $\mathbf{2 k}$ and $\mathbf{3 k}(24.2 \mathrm{mg}, \mathbf{7 7 \%})$ as a colorless oil. The ratio of $\mathbf{2 k}$ and $\mathbf{3 k}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.33 and 5.53 ppm in the crude mixture. The isomers were separated by column chromatography (hexane/EtOAc 10:1) for characterization.

$\mathbf{2 k}$: Colorless solid of mp $148.5-149.4^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}+4.78\left(c 0.750, \mathrm{CHCl}_{3}\right)$ for $82: 18$ er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.91(\mathrm{~d}$, $J=10.0,1 \mathrm{H}), 7.83(\mathrm{dd}, J=7.0,1.0,1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=8.0,1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0,1 \mathrm{H})$, $6.00(\mathrm{~d}, J=8.0,1 \mathrm{H}), 5.33(\mathrm{~d}, J=8.0,1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 169.2(\mathrm{C}), 146.7(\mathrm{C}), 135.5(\mathrm{C})$, $135.2(\mathrm{C}), 133.8(\mathrm{CH}), 130.8(\mathrm{CH}), 130.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6(\mathrm{CH}), 126.7(\mathrm{CH}), 126.5(\mathrm{C}), 125.8(\mathrm{CH}), 124.6(\mathrm{CH})$, $81.3(\mathrm{CH}), 49.9(\mathrm{CH}), 19.5\left(\mathrm{CH}_{3}\right)$. MS $(\mathrm{ESI}) m / z: 317(\mathrm{M}+\mathrm{H}), 319(\mathrm{M}+2+\mathrm{H})$. HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Br}, 317.0177$; found, 317.0190. IR (NaCl): 3020, 2931, 2860, 1766, 1648, 1457, 1299, 1198, 1057, 968, 737. The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $1: 11,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=$ $12.5 \mathrm{~min}(3 R, \alpha S)$ and $14.5 \mathrm{~min}(3 S, \alpha R))$. The absolute configuration was tentatively assigned by analogy.

3k: Colorless oil. $[\alpha]_{\mathrm{D}}{ }^{24}+1.30\left(c 0.784, \mathrm{CHCl}_{3}\right)$ for $58: 42$ er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.19(\mathrm{dd}, J=8.0,1.5,1 \mathrm{H}), 7.64$ $(\mathrm{td}, J=8.0,1.5,1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=5.0,1 \mathrm{H}), 5.53(\mathrm{~d}, J=5.0,1 \mathrm{H})$, $2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{10)}$ The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $1: 5,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=12.9 \mathrm{~min}(3 R, 4 S)$ and $\left.13.6 \mathrm{~min}(3 S, 4 R)\right)$. The absolute configuration was tentatively assigned by analogy.
(S)-3-[(R)-Bromo(2-chlorophenyl)methyl]isobenzofuran-1(3H)-one (2l) and (3RS,4SR)-4-Bromo-3-(2-chlorophenyl)-3,4-dihydroisochromen-1-one (31): The typical procedure using $\mathbf{1 1}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$ gave a $3: 1 \mathrm{mixture}$ of $\mathbf{2 l}$ and $\mathbf{3 1}(24.0 \mathrm{mg}, 72 \%)$ as a colorless oil. The ratio of $\mathbf{2 l}$ and $\mathbf{3 1}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.80 and 5.66 ppm in the crude mixture. The isomers were separated by preparative TLC (hexane/EtOAc $5: 1)$ and further characterized.

[^6]
Supporting Information I

21: Colorless solid of $\mathrm{mp} 110.2-111.8^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{20}-1.47\left(c 0.134, \mathrm{CHCl}_{3}\right)$ for 80:20 er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.86(\mathrm{~d}$, $J=7.5,1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.68-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{~d}, J=6.0,1 \mathrm{H}), 5.80(\mathrm{~d}, J=6.0,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{3)}$ The er was determined by HPLC (Daicel Chiralpak IC-3, i-PrOH/hexane 1:29, $0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=21.0 \mathrm{~min}(3 R, \alpha S)$ and $\left.27.1 \mathrm{~min}(3 S, \alpha R)\right)$. The absolute configuration was tentatively assigned by analogy.

31: Colorless solid of mp $129.7-131.1^{\circ} \mathrm{C}$ in $50: 50$ er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.20(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.59(\mathrm{t}, J=8.0$, $1 \mathrm{H}), 7.51(\mathrm{t}, J=8.0,1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=8.0,1 \mathrm{H}), 7.16(\mathrm{t}, J=8.0,1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.30(\mathrm{~d}, J=$ $3.5,1 \mathrm{H}), 5.61(\mathrm{~d}, J=3.5,1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{9)}$ The er was determined by HPLC (Daicel Chiralpak IC-3, $i-\mathrm{PrOH} /$ hexane $1: 29,0.6 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=22.9 \mathrm{~min}$ and 25.5 min).
(S)-3-[(R)-Bromo(phenyl)methyl]-7-methylisobenzofuran-1(3H)-one (2m) and (3R,4S)-4-Bromo-3,4-dihydro-8-methyl-3-phenylisochromen-1-one (3m): The typical procedure using $\mathbf{1 m}(24.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave a 1:2 mixture of $\mathbf{2 m}$ and $\mathbf{3 m}(19.3 \mathbf{m g}, 61 \%)$ as a colorless oil. The ratio of $\mathbf{2 m}$ and $\mathbf{3 m}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals of the isomers at 5.20 and 5.52 ppm , respectively in the crude mixture. The isomers were separated by preparative TLC (hexane/EtOAc 5:1) and further characterized.

2m: Colorless oil. $[\alpha]_{\mathrm{D}}{ }^{24}-9.30\left(c 0.300, \mathrm{CHCl}_{3}\right)$ for $61: 39 \mathrm{er}$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.48(\mathrm{t}, J=8.0,1 \mathrm{H}), 7.41-7.35$ $(\mathrm{m}, 3 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 5.86(\mathrm{~d}, J=6.0,1 \mathrm{H}), 5.20(\mathrm{~d}, J=6.0,1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 169.3$ (C), $146.7(\mathrm{C}), 139.8(\mathrm{C}), 136.0(\mathrm{C}), 133.4(\mathrm{CH}), 131.4(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 124.1(\mathrm{C}), 121.0(\mathrm{CH})$, $81.7(\mathrm{CH}), 53.6(\mathrm{CH}), 17.3\left(\mathrm{CH}_{3}\right)$. MS $(\mathrm{ESI}) m / z: 339(\mathrm{M}+\mathrm{Na}), 341(\mathrm{M}+2+\mathrm{Na})$. HRMS $(\mathrm{ESI}) m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NaBr}$ for, 338.9997 ; found, 338.9992. IR (NaCl): 3030, 2925, 1765, 1600, 1380, 1260, 1044. The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} / \mathrm{hexane} 1: 11,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=12.0 \mathrm{~min}$ $(3 R, \alpha S)$ and $13.2 \mathrm{~min}(3 S, \alpha R))$. The absolute configuration was tentatively assigned by analogy.

$\mathbf{3 m}$: Colorless solid of $\mathrm{mp} 93.6-94.5^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{28}-2.45\left(c 0.660, \mathrm{CHCl}_{3}\right)$ for $48: 52$ er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.40(t, J$ $=8.0,1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 7 \mathrm{H}), 5.87(\mathrm{~d}, J=4.0,1 \mathrm{H}), 5.52(\mathrm{~d}, J=4.0,1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 162.3$

Supporting Information I

$(\mathrm{C}), 143.3(\mathrm{C}), 138.5(\mathrm{C}), 136.4(\mathrm{C}), 133.4(\mathrm{CH}), 133.3(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 126.2(\mathrm{CH}), 126.1(\mathrm{CH}), 122.7(\mathrm{C})$, $83.2(\mathrm{CH}), 47.2(\mathrm{CH}), 22.3\left(\mathrm{CH}_{3}\right)$. MS (ESI) $m / z: 339(\mathrm{M}+\mathrm{Na}), 341(\mathrm{M}+2+\mathrm{Na})$. HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Br}$ for, 317.0177; found, 317.0182. IR (NaCl): 3020, 2924, 2851, 1730, 1216, 1118, 1050, 760. HPLC (Daicel Chiralpak IC-3, $i-\mathrm{PrOH} /$ hexane $1: 5,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=20.7 \mathrm{~min}(3 R, 4 S)$ and $24.1 \mathrm{~min}(3 S, 4 R)$). The absolute configuration was tentatively assigned by analogy.
(S)-3-[(R)-Bromo(phenyl)methyl]-6-methylisobenzofuran-1(3H)-one (2n) and (3R,4S)-4-Bromo-3,4-dihydro-7-methyl-3-phenylisochromen-1-one (3n): The typical procedure using $\mathbf{1 n}(24.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave a $6: 1$ mixture of $\mathbf{2 n}$ and $\mathbf{3 n}(26.2 \mathrm{mg}, 82 \%)$ as a colorless oil. The ratio of $\mathbf{2 n}$ and $\mathbf{3 n}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.19 and 5.55 ppm in the crude mixture. The isomers were separated by column chromatography (hexane/EtOAc 10:1) for characterization.

2n: Colorless solid of mp 154.1-154.8 ${ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{24}-22.0\left(c 1.11, \mathrm{CHCl}_{3}\right)$ for $92: 8$ er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.62(\mathrm{~s}$, $1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.88(\mathrm{~d}, J=6.0,1 \mathrm{H}), 5.19(\mathrm{~d}, J=6.0,1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): 169.3(\mathrm{C}), 143.6(\mathrm{C}), 140.3(\mathrm{C}), 136.1(\mathrm{C}), 134.9(\mathrm{CH}), 129.0(\mathrm{CH}), 128.63(\mathrm{CH}), 128.60(\mathrm{CH}), 126.9(\mathrm{C}), 125.7$ $(\mathrm{CH}), 123.4(\mathrm{CH}), 82.4(\mathrm{CH}), 53.7(\mathrm{CH}), 21.2\left(\mathrm{CH}_{3}\right)$. MS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 339(\mathrm{M}+\mathrm{Na}), 341(\mathrm{M}+2+\mathrm{Na})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NaBr}$ for, 338.9997; found, 338.9992. IR (NaCl): 3030, 2920, 2850, 1760, 1490, 1294, 1150, 1062. The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $1: 11,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}$, retention time $=18.3 \mathrm{~min}(3 R, \alpha S)$ and $20.3 \mathrm{~min}(3 S, \alpha R))$. The absolute configuration was tentatively assigned by analogy.

3n: Colorless solid of mp $112.8-113.6^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{27}+1.51\left(c 0.153, \mathrm{CHCl}_{3}\right)$ for $63: 37 \mathrm{er}$; lit: $\left.[\alpha]\right]^{27}+58.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for the other enantiomer with 80% ee. ${ }^{10)}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.0,1.0,1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H})$, $7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=4.5,1 \mathrm{H}), 5.55(\mathrm{~d}, J=4.5,1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR was in agreement with that reported. ${ }^{11)}$ The er was determined by HPLC (Daicel Chiralpak IC-3, i-PrOH/hexane $1: 2,0.6 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=$ $15.5 \min (3 R, 4 S)$ and $16.6 \min (3 S, 4 R))$.
(S)-3-[(R)-Bromo(phenyl)methyl]-6-chloroisobenzofuran-1(3H)-one (20) and (3R,4S)-4-Bromo-7-chloro-3,4-dihy-dro-3-phenylisochromen-1-one (3o): The typical procedure using $\mathbf{1 0}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave a $1: 1 \mathrm{mixture}$ of $\mathbf{2 o}$ and $\mathbf{3 o}(26.9 \mathrm{mg}, 79 \%)$ as a colorless oil. The ratio of $\mathbf{2 o}$ and $\mathbf{3 o}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.21 and 5.52 ppm in the crude mixture. The isomers were separated by preparative TLC (hexane/EtOAc $5: 1$) for characterization.
11) Nishiyori, R.; Tsuchihashi, A.; Mochizuki, A.; Kaneko, K.; Yamanaka, M.; Shirakawa, S. Chem.-Eur. J, 2018, 24, 16747.

Supporting Information I

20: Colorless solid of $\mathrm{mp} 119.2-120.3^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}-15.2\left(c 0.840, \mathrm{CHCl}_{3}\right)$ for $80: 20$ er. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3,} 400 \mathrm{MHz}\right): 7.80(\mathrm{~d}$, $J=2.0,1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.0,2.0,1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~d}, J=6.0,1 \mathrm{H}), 5.21$ (d, $J=6.0,1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 167.6$ (C), 144.3 (C), 136.4 (C), 135.6 (C), 134.0 (CH), 129.2 (CH), 128.8 $(\mathrm{CH}), 128.6(\mathrm{C}), 128.5(\mathrm{CH}), 125.6(\mathrm{CH}), 125.1(\mathrm{CH}), 82.2(\mathrm{CH}), 53.2(\mathrm{CH})$. MS $(\mathrm{ESI}) m / z: 359(\mathrm{M}+\mathrm{Na}), 361(\mathrm{M}+2+$ $\mathrm{Na}), 363(\mathrm{M}+4+\mathrm{Na})$. HRMS (ESI) $\mathrm{m} / z:[\mathrm{M}+\mathrm{K}]^{+}$calcd for, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{ClKBr}$ for 374.9190 ; found, 374.9181. IR (NaCl): 3030, 2923, 1777, 1469, 1291, 1206, 1060, 757. The er was determined by HPLC (Daicel Chiralpak AD-H, i-PrOH/hexane $1: 11,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=16.8 \mathrm{~min}(3 R, \alpha S)$ and $\left.21.9 \mathrm{~min}(3 S, \alpha R)\right)$. The absolute configuration was tentatively assigned by analogy.

3o: Colorless solid of mp $149.5-150.2{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{29}+2.45\left(c 1.22, \mathrm{CHCl}_{3}\right)$ for 53:47 er. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.12(\mathrm{~d}$, $J=2.0,1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.0,2.0,1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{~d}, J=4.0,1 \mathrm{H}), 5.52(\mathrm{~d}$, $J=4.0,1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 161.9(\mathrm{C}), 136.12$ (C), 136.10 (C), 135.9 (C), 134.6 (CH), 130.2 (CH), 129.8 $(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 126.3(\mathrm{CH}), 125.5(\mathrm{C}), 84.1(\mathrm{CH}), 45.0(\mathrm{CH})$. MS (ESI) m/z: $359(\mathrm{M}+\mathrm{Na}), 361(\mathrm{M}+2+$ Na), $363\left(\mathrm{M}+4+\mathrm{Na}\right.$). HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{ClNar}$ for, 358.9450; found, 358.9451. IR (NaCl): 3066, 2921, 2850, 1737, 1417, 1230, 1132, 1079, 755. The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane 1:5, $0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=13.2 \mathrm{~min}(3 R, 4 S)$ and $14.9 \mathrm{~min}(3 S, 4 R)$). The absolute configuration was tentatively assigned by analogy.
(S)-3-[(R)-Bromo(phenyl)methyl]-5-methylisobenzofuran-1(3H)-one (2p) and (3R,4S)-4-Bromo-3,4-dihydro-6-methyl-3-phenylisochromen-1-one (3p): The typical procedure using $\mathbf{1 p}(24.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ and NBP ($27.1 \mathrm{mg}, 0.100$ mmol) gave a $1: 1$ mixture of $\mathbf{2 p}$ and $\mathbf{3 p}(27.1 \mathrm{mg}, 85 \%)$ as a colorless oil. The ratio of $\mathbf{2 p}$ and $\mathbf{3 p}$ was determined on the basis of the integral area of ${ }^{1} \mathrm{H}$ NMR signals at 5.17 and 5.50 ppm in the crude mixture. The isomers were separated by preparative TLC (hexane/EtOAc 5:1) for characterization.

2p: Colorless solid of mp $151.1-152.8^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}+6.13\left(c 0.402, \mathrm{CHCl}_{3}\right)$ for $86: 14$ er. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.70(\mathrm{~d}$, $J=7.5,1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 5.88(\mathrm{~d}, J=6.0,1 \mathrm{H}), 5.17(\mathrm{~d}, J=6.0,1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 169.2(\mathrm{C}), 146.8(\mathrm{C}), 145.1(\mathrm{C}), 136.1(\mathrm{C}), 131.0(\mathrm{CH}), 129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 125.5$ $(\mathrm{CH}), 124.1(\mathrm{C}), 124.1(\mathrm{CH}), 82.2(\mathrm{CH}), 53.5(\mathrm{CH}), 22.1\left(\mathrm{CH}_{3}\right) . \mathbf{M S}(\mathrm{ESI}) m / z: 339(\mathrm{M}+\mathrm{Na}), 341(\mathrm{M}+2+\mathrm{Na})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Br}$ for, 317.0177; found, 317.0163. IR (NaCl): 3020, 2924, 1770, 1610, 1455, 1281,

Supporting Information I

1073, 770. The er was determined by HPLC (Daicel Chiralpak AD-H, $i-\mathrm{PrOH} / \mathrm{hexane} 1: 29,0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=30.6 \mathrm{~min}(3 R, \alpha S)$ and $37.0 \mathrm{~min}(3 S, \alpha R)$). The absolute configuration was tentatively assigned by analogy.

3p: Colorless solid of mp $109.2-110.8^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{29}+2.37\left(c 0.400, \mathrm{CHCl}_{3}\right)$ for $52: 48 \mathrm{er} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.03(\mathrm{~d}$, $J=8.0,1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 7 \mathrm{H}), 5.90(\mathrm{~d}, J=4.5,1 \mathrm{H}), 5.50(\mathrm{~d}, J=4.5,1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):$ $163.2(\mathrm{C}), 145.8(\mathrm{C}), 137.6(\mathrm{C}), 136.5(\mathrm{C}), 130.8(\mathrm{CH}), 130.5(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 126.4(\mathrm{CH})$, $121.5(\mathrm{C}), 84.1(\mathrm{CH}), 46.3(\mathrm{CH}), 21.8\left(\mathrm{CH}_{3}\right) . \mathbf{M S}(\mathrm{ESI}) m / z: 339(\mathrm{M}+\mathrm{Na}), 341(\mathrm{M}+2+\mathrm{Na})$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ calcd $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Br}$ for, 317.0177 ; found, 317.0182. IR (NaCl): 3030, 2923, 1729, 1613, 1375, 1239, 1077, 767. The er was determined by HPLC (Daicel Chiralpak AD-H, i-PrOH/hexane $1: 5,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$, retention time $=13.9 \mathrm{~min}$ $(3 R, 4 S)$ and $15.0 \mathrm{~min}(3 S, 4 R))$. The absolute configuration was tentatively assigned by analogy.

Supporting Information I

6. X-ray diffraction

Data collection and Structure solution details: Single crystal X-ray data for compound 2b was collected on a Rigaku XtaLaB P200 diffractometer $\mathrm{Cu}-\mathrm{K} \alpha$ radiation. Data collection, cell refinement, data reduction and analysis were carried out with the CrysAlisPro (Rigaku Oxford Diffraction). This structure was solved by intrinsic phasing methods with the SHELXT program and refines using SHELXL ${ }^{12}$ with anisotropic displacement parameters for non-H atoms. CCDC 2189245 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif

X-ray crystallographic data for compound $\mathbf{2 b}$ (CCDC 2189245).
Single crystals of $\mathbf{2 b}$ were obtained by slow evaporation of a solution containing $\mathbf{2 b}$ in the mixture of hexane and ethyl acetate at room temperature. A suitable crystal was selected and the crystal data and structure refinement results for compound $\mathbf{2 b}$ are listed in the Table S1.

Figure S1. ORTEP view of the compound 2b with thermal ellipsoids drawn at the 50% probability level
Table 1 Crystal data and structure refinement for 2b.

Identification code	$220708 \mathrm{KY}_{-}$auto (1)
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{2}$
Formula weight	317.17
Temperature/K	93

[^7]
Supporting Information I

Crystal system	tetragonal
Space group	P_{3}
a / \AA	8.67730(10)
b/ \AA	8.67730(10)
c/Å	17.8920(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1347.19(5)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.564
μ / mm^{-1}	4.114
$\mathrm{F}(000)$	640.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.1 \times 0.1$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 10.194$ to 144.442	
Index ranges	$-5 \leq \mathrm{h} \leq 9,-6 \leq \mathrm{k} \leq 10,-21 \leq 1 \leq 20$
Reflections collected	9588
Independent reflections	$2584\left[\mathrm{R}_{\text {int }}=0.0376, \mathrm{R}_{\text {sigma }}=0.0244\right]$
Data/restraints/parameters	2584/1/173
Goodness-of-fit on F^{2}	1.101
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0635, \mathrm{wR}_{2}=0.1655$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0637, \mathrm{wR}_{2}=0.1657$
Largest diff. peak/hole / e $\AA^{-3} 1.06 /-0.70$	
Flack parameter	-0.02(5)

Supporting Information I

7. DFT calculation

The initial transition state (TS) search was conducted using Gaussian 09W program at the B3LYP/6-31G(d) theoretical level. After conformational search, the geometry optimization of the conformers at the HF/3-21G theoretical level was performed with the coordinates of the two olefinic carbon atoms, the carboxylate oxygen atom, and the bromine atom fixed. Finally, TS search was performed at the $\omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-31 \mathrm{G}(\mathrm{d})$ theoretical level to give the $\mathrm{TS}_{\text {major }}$ and $\mathrm{TS}_{\text {minor }}$. The TS geometries were verified by vibrational frequency analysis. Single-point-energy calculations were performed at the $\omega B 97 X-D / 6-311+G(d, p)$ theoretical level with solvation correction for dichloromethane using the Polarizable Continuum Model.

Energies $($ RwB97XD $)=$
Zero-point correction =
Thermal correction to Energy =
Thermal correction to Enthalpy =
Thermal correction to Gibbs Free Energy =
Energies (RwB97XD:PCM) =
Sum of electronic and zero-point Energies =
Sum of electronic and thermal Energies =
Sum of electronic and thermal Enthalpies =
Sum of electronic and thermal Free Energies =

```
-5439.18935341
```

-5439.18935341
0.815083 (Hartree/Particle)
0.815083 (Hartree/Particle)
0.865968
0.865968
0.866912
0.866912
0.725214
0.725214
-5442.29554323
-5442.29554323
-5441.480460
-5441.480460
-5441.429575
-5441.429575
-5441.428631
-5441.428631
-5441.570329

```
-5441.570329
```

Atomic	Coordinates (Angstroms)		
Type	X	Y	
S	-1.402501	-3.407939	-0.459515
N	-1.731140	-1.291856	1.210896
C	-1.852625	-1.832289	-0.008870
C	4.233960	1.772265	0.622446
O	4.934869	0.770586	0.864945
O	3.862423	2.688040	1.391805
C	3.748448	1.902871	-0.827937
C	3.317443	0.763672	-1.562269
C	3.320473	-0.482600	-0.894525
H	3.366267	-0.488280	0.190547
C	3.333174	-1.795447	-1.522659
H	3.438542	-1.796150	-2.606791
Br	1.366832	-2.009133	-1.159430
C	-2.399554	0.014053	1.307241
H	-1.687825	0.739766	1.699429
C	-1.102970	-1.933932	2.362205
H	-1.343361	-2.999017	2.323078
H	-1.581814	-1.507597	3.248379
N	-2.426802	-0.934915	-0.840215
C	-2.740467	0.326180	-0.172859

Supporting Information I

H	-3.811275
C	-2.771074
H	-2.266740
H	-2.356100
C	3.787666
H	4.086284
C	3.420517
H	3.460638
C	2.931136
H	2.523804
C	2.98 S 17
H	2.665105
C	4.143845
C	5.706219
C	3.842935
C	5.232788
C	6.0102 S
C	4.6214 S
H	2.977108
H	5.461823
H	6.849022
H	4.378080
H	6.309708
C	-3.606289
C	-5.827644
C	-3.672495
C	-4.652903
C	-5.759430
C	-4.783482
H	-2.845188
H	-4.601964
H	-6.568456
H	-4.827783
H	-6.692726
C	-1.95S20
C	-0.486843
C	-0.555456
C	-2.605002
C	-1.876492
C	$0 . S 8041$
H	-0.033792
H	-3.691096
H	-2.396205
H	1.247737
H	0.094658
C	-4.262655
C	-7.031146
C	-4.805769
C	-5.135427
C	-6.515628
C	-6.177717
H	-4.125774
H	-7.S5084
H	-6.575934
H	-8.106764
O	-4.728381
C	0.396279
C	$3 . S 4217$
C	0.932954
C	1.268974
C	2.649392

0.528790	-0.281858
-1.142261	-2.233354
-0.376783	-2.834366
-2.111572	-2.524319
3.135630	-1.468768
4.013528	-0.909010
3.246803	-2.805052
4.220208	-3.284053
0.897038	-2.917658
0.041391	-3.447984
2.130535	-3.531062
2.240787	-4.562665
-2.852285	-0.831377
-4.794713	0.406095
-4.203368	-1.005349
-2.47S48	-0.045446
-3.447765	0.572018
-5.171317	-0.385093
-4.494283	-1.593955
-1.418634	0.108553
-3.147209	1.191755
-6.221361	-0.513155
-5.553145	0.895375
-0.047809	2.215254
-0.138643	3.899831
0.781445	3.332621
-0.935641	1.948956
-0.977983	2.788203
0.738841	4.172494
1.452875	3.548908
-1.603318	1.090580
-1.670338	2.575866
1.387194	5.042556
-0.174476	4.555528
1.468072	-0.774156
3.525924	-1.968947
1.465277	-0.711157
2.509066	-1.430947
3.536829	-2.029730
2.491893	-1.301478
0.648074	-0.217011
2.507204	-1.486304
4.339193	-2.545400
2.498439	-1.230954
4.319741	-2.429447
-1.057319	-2.449152
-0.783340	-2.752881
-0.006792	-3.190682
-1.983048	-1.854282
-1.835534	-2.009299
0.139532	-3.353547
0.713913	-3.640146
-2.565809	-1.537828
0.963601	-3.936547
-0.684193	-2.864485
-3.027295	-1.091744
-1.744067	2.4S424
-1.357941	2.492942
-0.475880	2.689985
-2.806880	2.203196
-2.627689	2.247618

Supporting Information I

C	2.312845	-0.275199	2.703935
H	0.852500	-3.785069	1.977587
H	$3.3 S 857$	-3.465399	2.069740
H	2.721983	0.718282	2.873346
H	4.234946	-1.180853	2.497215
O	0.050176	0.5 S 726	2.976502
H	0.478495	1.3932 S	$0 . S 9555$
C	1.444442	5.283174	0.413727
C	0.064199	5.881247	1.370653
C	-0.61 S 03	4.900594	1.825202
N	0.510547	3.982706	1.076588
H	1.628488	4.252333	-0.537398
H	-0.454629	6.010303	0.856253
H	0.201070	6.873283	2.238750
H	-1.087909	5.360739	0.865244
O	-1.359673	4.279499	2.698335
O	0.423218	3.140461	-0.661996
H	2.247830	5.644670	-1.117156
H	-3.764861	-3.170073	1.159337

Energies $($ RwB97XD $)=$
-5439.19244055
0.815672 (Hartree/Particle)
0.866499
0.867444
0.727434
-5442.29615823
-5441.480486
-5441.429659
-5441.428714
-5441.568724

Atomic		Coordinates (Angstroms)	
Type	X	Y	
S	1.543677	-2.127623	-2.397966
N	1.713287	0.562268	-2.089842
C	1.825043	-0.640126	-1.544300
C	2.122240	1.616256	-1.142781
H	1.290635	2.316117	-1.052012
C	1.049615	0.871938	-3.364501
H	1.524501	0.284636	-4.153897
H	1.263382	1.927062	-3.553578
N	2.192223	-0.567297	-0.264138
C	2.321103	0.827260	0.181381
H	3.340495	0.973713	0.551749
C	2.403196	-1.660652	0.677347

Supporting Information I

H	1.657604	-1.571504	1.473203
H	2.194531	-2.598730	0.157218
C	3.360982	2.327911	-1.633246
C	5.636466	3.659479	-2.547084
C	3.312729	3.692239	-1.909127
C	4.555498	1.626957	-1.825341
C	5.687625	2.291742	-2.278911
C	4.448764	4.358629	-2.363249
H	2.379839	4.232899	-1.770296
H	4.602878	0.557404	-1.626599
H	6.612861	1.742881	-2.425060
H	4.402067	5.422626	-2.574263
H	6.523004	4.176155	-2.902088
C	1.339852	1.149071	1.284893
C	-0.444728	1.691152	3.358865
C	-0.031110	0.948376	1.102205
C	1.808867	1.625068	2.508059
C	0.918364	1.899168	3.544659
C	-0.922268	1.220082	2.135039
H	-0.400141	0.542152	0.162056
H	2.876565	1.770056	2.654382
H	1.294005	2.265685	4.495724
H	-1.987221	1.031166	2.004011
H	-1.149615	1.885893	4.162864
C	3.795206	-1.606830	1.250260
C	6.372847	-1.360073	2.300411
C	3.991959	-1.315563	2.600383
C	4.916666	-1.779119	0.425895
C	6.200878	-1.649918	0.953350
C	5.268959	-1.195415	3.134631
H	3.116794	-1.171251	3.228612
H	7.048539	-1.787164	0.290146
H	5.403078	-0.971444	4.187792
H	7.377315	-1.263723	2.701511
O	4.827762	-2.039132	-0.908078
C	-0.434322	0.602588	-3.318123
C	-3.156947	0.038711	-3.123665
C	-1.269752	1.407550	-2.528041
C	-0.992163	-0.462217	-4.023309
C	-2.348610	-0.749213	-3.936295
C	-2.630300	1.111577	-2.413607
H	-0.343816	-1.080321	-4.638307
H	-2.769533	-1.586416	-4.483403
H	-3.265318	1.713694	-1.769208
H	-4.214391	-0.183884	-3.029733
O	-0.697039	2.460923	-1.895244
C	-3.289327	3.634757	2.944400
C	-2.147820	4.651727	2.953157
C	-1.614444	4.641562	1.521588
C	-2.630987	3.815931	0.750370
N	-3.542284	3.298871	1.617167
H	-1.409997	4.367093	3.704970
H	-2.560308	5.623182	3.242885
H	-1.517544	5.628345	1.062651
H	-0.645629	4.137104	1.440824
O	-2.628163	3.633905	-0.460080
O	-3.875398	3.204183	3.905948
H	3.935013	-2.320066	-1.157432
H	-4.225313	2.560990	1.300339
C	-4.454174	0.243561	0.716137
O	-3.716673	0.000713	1.700643

Supporting Information I

O	-5.000043	1.334802	0.423705
C	-4.709767	-0.899405	-0.271407
C	-3.792102	-1.952444	-0.463984
C	-2.577914	-1.982813	0.342074
H	-2.256787	-1.031116	0.741689
C	-1.913527	-3.118732	0.781170
H	-2.277771	-4.097360	0.472434
Br	-0.512143	-2.456552	-1.021574
C	-5.889565	-0.894124	-1.013887
H	-6.575427	-0.067347	-0.863243
C	-6.168077	-1.905935	-1.924936
H	-7.098375	-1.889473	-2.485319
C	-4.064339	-2.949979	-1.410785
H	-3.318270	-3.713964	-1.613441
C	-5.244557	-2.930845	-2.136115
H	-5.442411	-3.704881	-2.871205
C	-0.944508	-3.082772	1.894664
C	0.953971	-2.973653	3.940258
C	0.037068	-4.075819	2.003191
C	-0.986831	-2.052863	2.839284
C	-0.031949	-1.995407	3.850499
C	0.982483	-4.020761	3.017772
H	0.073252	-4.872936	1.264894
H	-1.778892	-1.311170	2.796469
H	-0.066694	-1.182713	4.569116
H	1.747618	-4.787677	3.087699
H	1.697004	-2.929917	4.731067
H	-1.379260	2.973767	-1.405634

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
S	1.021586	0.344587	-2.923496
N	2.082968	1.727544	-0.847879
C	1.483295	0.609214	-1.312760
C	-1.539393	-3.337539	1.747335
O	-2.616037	-2.970906	2.249088

Supporting Information I

O	-0.426719
C	-1.517095
C	-2.190948
C	-2.934575
H	-2.997189
C	-3.718468
H	-3.825661
Br	-2.021076
C	2.489011
H	2.218682
C	2.261439
H	2.147120
H	3.291690
N	1.289535
C	1.622489
H	2.207103
C	0.946836
H	0.296847
H	0.378900
C	-0.720426
H	-0.169738
C	-0.597809
H	0.035451
C	-2.035184
H	-2.493312
C	-1.250924
H	-1.120386
C	-4.898574
C	-7.156903
C	-5.833485
C	-5.099704
C	-6.226792
C	-6.959672
H	-5.676234
H	-4.389276
H	-6.380724
H	-7.681547
H	-8.036832
C	3.981145
C	6.726003
C	4.759212
C	4.590899
C	5.953622
C	6.127960
H	4.290663
H	4.002720
H	6.407390
H	6.723717
H	7.791212
C	0.338264
C	-2.166791
C	-0.286065
C	-0.295197
C	-1.548515
C	-1.525690
H	0.175389
H	0.177854
H	-2.032481
H	-1.993520
H	-3.141452
C	2.182587

-3.500258	2.303482
-3.607155	0.226597
-2.781021	-0.710246
-1.679308	-0.193304
-1.656485	0.894864
-0.706390	-0.940370
-0.879718	-2.008457
0.365714	-0.702513
1.591475	0.554667
2.500290	1.098934
2.970212	-1.571069
2.748092	-2.635794
3.309126	-1.417258
-0.230195	-0.280167
0.399560	1.013481
-0.305785	1.609452
-1.637846	-0.383231
-1.871940	0.457985
-1.767277	-1.306742
-4.642693	-0.257145
-5.244682	0.457080
-4.867223	-1.620875
-5.674759	-1.975751
-3.004598	-2.096786
-2.332976	-2.816064
-4.043858	-2.548197
-4.208561	-3.612100
-0.044506	-0.324494
1.214463	0.718814
0.546976	-1.176834
-0.001980	1.059142
0.625560	1.573047
1.174567	-0.657841
0.520520	-2.252120
-0.454258	1.743645
0.651464	2.647041
1.629128	-1.328703
1.700975	1.128020
1.364923	0.688253
0.932443	0.989124
2.256034	1.424080
0.256289	0.092851
0.039615	0.247747
2.042999	1.574787
3.119781	1.891015
-0.449218	-0.487133
-0.835181	-0.207754
2.742213	2.153980
0.760499	1.111674
0.756564	1.747219
1.237018	2.906198
1.999269	1.600974
-0.230343	2.505072
-0.000840	3.067436
2.240148	2.184850
2.794616	1.026026
-1.195244	2.655480
-0.807604	3.608940
3.211448	2.053056
1.423003	3.349095
-2.507409	-0.389236

Supporting Information I

C	4.645230	-3.832852	-0.424455
C	2.869905	-2.710425	-1.589232
C	2.724499	-3.017202	0.802002
C	3.961651	-3.667275	-1.617212
C	4.095483	-3.365527	-2.505825
H	2.442223	-2.311661	1.710078
H	4.364710	-4.036349	-2.558702
H	4.617675	-3.504958	-0.427980
O	5.605647	-4.340877	2.010747
H	2.132964	-2.844907	2.004945
C	1.180677	-3.120939	-1.087665
C	1.294133	4.029873	0.000247
C	-0.465333	5.922497	-1.284801
C	-0.093340	3.907095	0.342030
C	1.764975	5.112718	-0.740093
H	0.905585	6.060056	-0.182408
H	-0.960033	4.857883	0.778519
H	2.837385	5.203018	-0.906463
H	1.299941	6.890197	0.418498
O	-2.024594	4.729520	-1.949602
H	-1.155617	6.649193	-2.402401

[^0]: 1) Kobayashi, S.; Matsubara, R.; Nakamura, Y.; Kitagawa, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125, 2507.
[^1]: 2) Ryoda, A.; Yajima, N.; Haga, T.; Kumamoto, T.; Nakanishi, W.; Kawahata, M.; Yamaguchi, K.; Ishikawa, T. J. Org. Chem. 2008, 73, 1, 133.
[^2]: 3) Chen, J.; Zhou, L.; Tan, C. K.; Yeung, Y.-Y. J. Org. Chem. 2012, 77, 999.
[^3]: 6) Baird, L. J.; Colomban, C.; Turner, P. H.; Teesdale-Spittle, J. E.; Harvey, J. E. Org. Biomol. Chem., 2011, 9, 4432.
[^4]: ${ }^{8}$ CCDC 2189245 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

[^5]: 9) Tsuchihashi, A.; Shirakawa, S. Synlett, 2019, 30, 1662.
[^6]: 10) Chen, T.; Yeung, Y. Y. Org. Biomol. Chem. 2016, 14, 4571.
[^7]: ${ }^{12)}$ Sheldrick, G. M. A. Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122.

