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Experimental

General Procedures

Unless otherwise stated, common chemicals and solvents (HPLC-grade or reagent-grade 

quality) were purchased from commercial sources and used without further purification. A hot 

plate magnetic stirrer and PEG bath was used as the heating source in all reactions requiring 

heat. Aluminium plates coated with a 0.2 mm-thick layer of silica gel 60 F254 were used for 

thin-layer chromatography (TLC) analysis, and flash column chromatography purification was 

carried out using silica gel 60 (230–400 mesh). Proton (1H) spectra were recorded at 25 °C 

using a 500 MHz spectrometer and proton-decoupled carbon (13C{1H}) NMR spectra were 

recorded at 125 MHz using the deuterated solvent as an internal deuterium lock. 1H NMR 

spectra were referenced to TMS (δ 0.00 ppm) and 13C{1H} NMR spectra recorded in CDCl3 

were referenced to CDCl3 (δ 77.0 ppm). High-resolution electrospray ionization mass spectra 

(ESI-MS) were recorded on an instrument equipped with a triple-time of flight detector.

Synthetic Procedures

(1S,5R,E)-3-Butylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (15). A stirred solution of 

butanal (147 mg, 2.04 mmol) and piperidine (60 µL, 0.61 mmol) in Cyrene (5 mL) was heated 

to 80 °C for 2.5 h after then allowed to cool to ambient temperature. The reaction mixture was 

subsequently diluted with Et2O (20 mL) and washed with sat. Na2HCO3 (1 × 40 mL). The 

aqueous layer was extracted with Et2O (3 × 15 mL), and the combined organic layers were 

dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified 

by flash column chromatography (SiO2, 10% EtOAc/hexanes) affording 15 as light-yellow oil 

(206 mg, 55%); Rf 0.47 (15% EtOAc/hexanes);  −158 (c 1.2, CH2Cl2); IR (ATR): 2963,  [𝛼]20
𝐷

1708, 1620, 1248, 1110, 988, 735 cm-1; 1H NMR (500 MHz, CDCl3) δ 6.94 (dddd, J = 7.5, 7.5, 

2.5, 1.7 Hz, 1H), 5.26 (s, 1H), 4.85 (br dd, J = 5.4, 5.4 Hz, 1H), 3.93 (ddd, J = 7.1, 5.4, 1.5 Hz, 

1H), 3.79 (dd, J = 7.1, 1.0 Hz, 1H), 2.95–2.86 (m, 1H), 2.55 (br d, J = 16.6 Hz, 1H), 2.16–2.02 

(m, 2H), 1.54–1.43 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 188.8, 

144.9, 128.3, 100.8, 72.6, 68.7, 31.9, 30.1, 21.4, 13.9; HRMS (ESI) calc. for C10H15O3
+ [M + 

H]+, 183.1016; found 183.1016.

(1S,5R,E)-3-Dodecylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (16). A stirred solution of 

dodecanal (10.01 g, 54.3 mmol) and piperidine (1.64 mL, 16.6 mmol) in Cyrene (70 mL) was 



heated to 80 °C for 2.5 h then allowed to cool. The reaction mixture was diluted with Et2O (100 

mL) and washed with sat. Na2HCO3 (1 × 500 mL). The aqueous layer was extracted with Et2O 

(3 × 100 mL), and the combined organic layers were dried over Na2SO4, filtered, and 

concentrated under reduced pressure. The residue was purified by dry flash chromatography 

(SiO2, 5% EtOAc/hexanes), affording 16 as light-yellow solid (10.12 g, 63%); Rf 0.34 (5% 

EtOAc/hexanes); mp 41–44 °C;  −87.3 (c 0.79, CH2Cl2); IR (ATR): 2915, 1709, 1617, [𝛼]20
𝐷

1112, 911, 641 cm-1; 1H NMR (500 MHz, CDCl3) δ 6.94 (dddd, J = 7.5, 7.5, 3.0, 1.4 Hz, 1H), 

5.25 (s, 1H), 4.85 (ddddd, J = 5.5, 5.5, 1.0, 1.0, 0.7 Hz, 1H), 3.93 (ddd, J = 7.1, 5.5, 1.6 Hz, 

1H), 3.78 (dd, J = 7.1, 1.0 Hz, 1H), 2.96–2.90 (m, 1H), 2.54 (br d, J = 16.6 Hz, 1H), 2.17–1.22 

(m, 2H), 1.50–1.39 (m, 2H), 1.31–1.22 (m, 16H), 0.88 (t, J = 7.0 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 188.9, 145.3, 128.1, 100.8, 72.6, 68.6, 31.9, 31.8, 29.61, 29.59, 29.5, 29.4, 29.3, 

28.13, 28.09, 22.7, 14.1; HRMS (ESI) calc. for C18H31O3
+ [M + H]+, 295.2268; found 

295.2265.

(1S,5R,E)-3-Octylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (17). The reaction of octanal 

(262 mg, 2.04 mmol) and piperidine (60 µL, 0.61 mmol) in Cyrene (5 mL) as for the 

preparation of 15 afforded 17 as a light-yellow oil (304 mg, 63%); Rf 0.43 (10% 

EtOAc/hexanes);  −111 (c 1.0, CH2Cl2); IR (ATR): 2925, 1709, 1620, 1266, 1111, 735 [𝛼]20
𝐷

cm-1; 1H NMR (500 MHz, CDCl3) δ 6.94 (dddd, J = 7.6, 7.6, 3.0, 1.6 Hz, 1H), 5.25 (s, 1H), 

4.84 (br dd, J = 5.4, 5.4 Hz, 1H), 3.92 (ddd, J = 7.2, 5.4, 1.6 Hz, 1H), 3.78 (dd, J = 7.2, 1.1 Hz, 

1H), 2.94–2.87 (m, 1H), 2.54 (br d, J = 16.4, Hz, 1H), 2.16–2.04 (m, 2H), 1.51–1.40 (m, 2H), 

1.34–1.20 (m, 8H), 0.88 (t, J = 7.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 188.8, 145.2, 128.1, 

100.8, 72.6, 68.6, 31.8, 31.7, 29.3, 29.0, 28.11, 28.09, 22.6, 14.0; HRMS (ESI) calc. for 

C14H23O3
+ [M + H]+, 239.1642; found 239.1638.

(1S,5R,E)-3-Tetradecylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (18). The reaction of 

tetradecanal (429 mg, 2.02 mmol) and piperidine (60 µL, 0.61 mmol) in Cyrene (5 mL) as for 

the preparation of 15 afforded 18 as a colourless solid (393 mg, 60%); Rf 0.44 (5% 

EtOAc/hexanes); mp 52–56 °C;  −84.3 (c 0.89, CH2Cl2); IR (ATR): 2914, 1709, 1616, [𝛼]20
𝐷

1111, 785, 641 cm-1; 1H NMR (500 MHz, CDCl3) δ 6.94 (dddd, J = 7.5, 7.5, 3.0, 1.7 Hz, 1H), 

5.25 (s, 1H), 4.84 (br dd, J = 5.5, 5.5 Hz, 1H), 3.93 (ddd, J = 7.1, 5.5, 1.7 Hz, 1H), 3.78 (dd, J 



= 7.1, 1.1 Hz, 1H), 2.96–2.89 (m, 1H), 2.54 (br d, J = 16.6 Hz, 1H), 2.17–2.03 (m, 2H), 1.50–

1.39 (m, 2H), 1.35–1.19 (m, 20H), 0.88 (t, J = 7.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 

188.8, 145.2, 128.1, 100.8, 72.6, 68.6, 31.9, 31.8, 29.7, 29.63, 29.61, 29.5, 29.4, 29.3, 28.13, 

28.11, 22.7, 14.1; HRMS (ESI) calc. for C20H35O3
+ [M + H]+, 323.2581; found 323.2576.

(S,E)-3-Butylidene-5-(hydroxymethyl)dihydrofuran-2(3H)-one (19). A solution of 15 (186 

mg, 1.02 mmol), PTSA.H2O (306 mg, 1.61 mmol) and 70% m-CPBA (274 mg, 1.11 mmol) in 

CH2Cl2 (5 mL) was stirred at ambient temperature for 2 h. The reaction was quenched by the 

addition of 10% w/w palladium on carbon (25 mg), and when the evolution of oxygen had 

ceased, the mixture was diluted with EtOAc (10 mL) and washed with sat. NaHCO3 (50 mL). 

The aqueous layer was extracted with EtOAc (4 × 10 mL), and the combined organic layers 

were dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

dissolved in THF (5 mL) and 2M HCl (5 mL) and stirred at ambient temperature for 4 h, then 

diluted with sat. NaHCO3 solution (50 mL). The mixture was extracted with EtOAc (5 × 10 

mL), the combined organic extracts, dried and concentrated under reduced pressure. The 

residue was purified via flash column chromatography (SiO2, 50% EtOAc/hexanes to 60% 

EtOAc/hexanes) affording 19 as a light-yellow oil (108 mg, 64%); Rf 0.29 (50% 

EtOAc/hexanes); See Table 2 for [α]D; IR (ATR): 3419, 2958, 1734, 1202, 1042, 732 cm-1; 1H 

NMR (500 MHz, CDCl3) δ 6.75 (dddd, J = 7.6, 7.6, 3.0, 3.0 Hz, 1H), 4.65 (dddd, J = 8.5, 5.7, 

5.1, 3.1 Hz, 1H), 3.88 (dd, J = 12.4, 3.1 Hz, 1H), 3.65 (dd, J = 12.4, 5.1 Hz, 1H), 2.88 (ddddd, 

J = 16.9, 8.5, 3.0, 1.8, 1.5 Hz, 1H), 2.70 (ddddd, J = 16.9, 5.7, 3.1, 1.8, 1.5 Hz, 1H), 2.16 (app. 

dddt, J = 7.6, 7.6, 1.8, 1.5 Hz, 2H), 1.98 (br s, 1H), 1.52 (app. tq, J = 7.4, 7.4 Hz, 2H), 0.95 (t, 

J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 170.8, 141.3, 125.9, 77.3, 64.5, 32.2, 26.7, 

21.4, 13.8; HRMS (ESI) calc. for C9H14O3Na+ [M + Na]+, 193.0835; found 193.0835.

(S,E)- 3-Octylidene-5-(hydroxymethyl)dihydrofuran-2(3H)-one (20). The reaction of 17 

(249 mg, 1.05 mmol), PTSA·H2O (240 mg, 1.26 mmol) and 70% m-CPBA (265 mg, 1.08 

mmol) in CH2Cl2 (5 mL) as for the preparation of 19 afforded 20 as a yellow oil (120 mg, 51%); 

Rf 0.34 (40% EtOAc/hexanes); See Table 2 for [α]D; IR (ATR): 3414, 2926, 1743, 1218, 1010, 

734 cm-1; 1H NMR (500 MHz, CDCl3) δ 6.75 (dddd, J = 7.5, 7.5, 3.0, 3.0 Hz, 1H), 4.65 (dddd, 

J = 8.6, 5.6, 5.1, 3.0 Hz, 1H), 3.88 (ddd, J = 12.4, 6.7, 3.0 Hz, 1H), 3.65 (ddd, J = 12.4, 6.3, 

5.2 Hz, 1H), 2.92–2.84 (m, 1H), 2.72–2.66 (m, 1H), 2.22–2.12 (m, 2H), 2.08–1.87 (m, 1H), 



1.48 (tt, J = 7.1, 7.1 Hz, 2H), 1.36–1.20 (m, 8H), 0.88 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 170.7, 141.6, 125.7, 77.2, 64.6, 31.7, 30.3, 29.3, 29.0, 28.1, 26.8, 22.6, 14.0; HRMS 

(ESI) calc. for C13H22O3Na+ [M + Na]+, 249.1461; found 249.1457.

Majoranolide (1). The reaction of 18 (325 mg, 1.01 mmol), PTSA·H2O (233 mg, 1.23 mmol) 

and 70% m-CPBA (269 mg, 1.09 mmol) in CH2Cl2 (5 mL) as for the preparation of 19 afforded 

1 as a colourless solid (136 mg, 43%); Rf 0.32 (30% EtOAc/hexanes); mp 61–64 °C; See Table 

2 for [α]D; IR (ATR): 3295, 2916, 1743, 1467, 1211, 1046, 706 cm-1; 1H NMR (500 MHz, 

CDCl3) δ 6.75 (dddd, J = 7.5, 7.5, 3.0, 3.0 Hz, 1H), 4.65 (dddd, J = 8.5, 5.7, 5.2, 3.1 Hz, 1H), 

3.88 (dd, J = 12.4, 3.1 Hz, 1H), 3.65 (dd, J = 12.4, 5.2 Hz, 1H), 2.88 (ddddd, J = 16.9, 8.5, 3.0, 

1.6, 1.6 Hz, 1H), 2.69 (ddddd, J = 16.9, 5.8, 3.0, 1.9, 1.9 Hz, 1H), 2.18 (app. dddt, J = 7.5, 7.5, 

1.6, 1.6 Hz, 2H), 1.82 (br s, 1H), 1.48 (app. tt, J = 7.5, 7.5 Hz, 2H), 1.34–1.20 (m, 20H), 0.88 

(t, J = 7.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 170.7, 141.6, 125.7, 77.2, 64.6, 31.9, 30.3, 

29.67, 29.64 (2C), 29.62, 29.5, 29.4, 29.3 (2C), 28.1, 26.8, 22.7, 14.1; HRMS (ESI) calc. for 

C19H35O3
+ [M + H]+, 311.2581; found 311.2579.

Majoranolide B (2). The reaction of 16 (10.07 g, 34.2 mmol), PTSA.H2O (7.09 g, 37.3 mmol) 

and m-CPBA 70% (9.09 g, 36.9 mmol) in CH2Cl2 (150 mL) as for the preparation of 19 

afforded 2 as a beige solid (6.14 g, 64%); Rf 0.35 (30% EtOAc/hexanes); mp 54–59 °C; See 

Table 2 for [α]D; IR (ATR): 3300, 2915, 1743, 1467, 1215, 1037, 706 cm-1; 1H NMR (500 

MHz, CDCl3) δ 6.75 (dddd, J = 7.6, 7.6, 3.0, 3.0 Hz, 1H), 4.65 (dddd, J = 8.5, 5.7, 5.2, 3.0 Hz, 

1H), 3.88 (dd, J = 12.3, 2.0 Hz, 1H), 3.65 (dd, J = 12.3, 4.9 Hz, 1H), 2.88 (ddddd, J = 16.9, 

8.5, 3.0, 1.7, 1.7 Hz, 1H), 2.69 (ddddd, J = 16.9, 5.7, 3.0, 1.7, 1.7 Hz, 1H), 2.17 (app. dddt, J = 

7.6, 7.4, 1.7, 1.7 Hz, 2H), 2.01 (br s, 1H), 1.47 (app. tt, J = 7.4, 7.4 Hz, 2H), 1.33–1.22 (m, 

16H), 0.88 (t, J = 7.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 170.8, 141.6, 125.6, 77.3, 64.6, 

31.9, 30.3, 29.60, 29.58, 29.50, 29.4, 29.32, 29.31, 28.1, 26.7, 22.7, 14.1; HRMS (ESI) calc. 

for C17H31O3
+ [M + H]+, 283.2268; found 283.2261.

Identification of 2-butylfuran in crude mixtures from the Baeyer-Villiger reaction.

In the crude reaction mixture obtained from the oxidation of 15, the presence of 2-butylfuran 

(S5) was observed, with the fragmentation pattern matched against the NIST 2020 database. A 

plausible mechanistic proposal for the formation of the furan is shown in Scheme S1. If the 



reaction results in oxygen insertion into the C3-C4 bond, the formation of S1 would be 

expected, which could hydrolyse to S2 due to the acidic conditions and presence of water from 

the oxidant. Ketone S2 could further hydrolyse to S3, then cyclise to S4, which could then 

undergo sequential dehydration reactions resulting in the furan S5. Furans such as S5 are 

oxidatively sensitive, and react with m-CPBA, which was present in the reaction mixture. The 

isolation or preparation of these furans was not an objective in the current work, although 

similar compounds are found in the genus Persea. Further reports of this process will be 

published in due course. The formation of lactone 19 via oxygen insertion into the C4-C5 bond 

giving S6, rearrangement to intermediate formate ester S7, and then hydrolysis is also shown.
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Scheme S1. Detection of furan S5 by Baeyer-Villiger reaction on 15.
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Table 1: Comparison of obtained NMR data of compounds 1 and 2 with NMR data found by 

Fraga et al.1 

Position (+)-Majoranolide1 1 (+)-Majoranolide B1 2
2 170.6 170.7 170.6 170.8

3 125.6 125.7 125.6 125.6

4 26.8 26.8 26.8 26.7

5 77.2 77.2 77.2 77.3

6 64.6 64.6 64.6 64.6

7 141.5 141.6 141.5 141.6

8 30.2 30.3 30.2 30.3

16 29.6 29.6 31.9 31.9

17 29.6 29.6 22.6 22.7

17 31.9 31.9 14.0 14.1

19 22.6 22.7 --- ---

20 14.0 14.1 --- ---

1. B. M. Fraga, C. E. Diaz, P. Bolanos, M. Bailen, M. F. Andres and A. Gonzalez-Coloma, 

Phytochemistry, 2020, 176, 112398.



1H NMR spectrum of (1S,5R,E)-3-butylidene-6,8-dioxabicyclo[3.2.1]octan-4-one  (15, 500 MHz, CDCl3)
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13C{1H} NMR spectrum of (1S,5R,E)-3-butylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (15, 125 MHz, CDCl3)

PPM 160 120 80 40 0

188.836

144.886

128.331

100.823

77.265
77.011
76.757
72.608
68.659

31.869
30.106

21.441

13.894



1H NMR spectrum of (1S,5R,E)-3-dodecylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (16, 500 MHz, CDCl3)
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13C{1H} NMR spectrum of (1S,5R,E)-3-dodecylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (16, 125 MHz, CDCl3)

PPM 160 120 80 40 0

188.866

145.289

128.058

100.774

77.254
77.000
76.746
72.587
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31.891
31.804
29.609
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1H NMR spectrum of (1S,5R,E)-3-octylylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (17, 500 MHz, CDCl3)
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13C{1H} NMR spectrum of (1S,5R,E)-3-octylylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (17, 125 MHz, CDCl3)

PPM 160 120 80 40 0

188.847

145.248

128.064

100.766

77.254
77.209
77.000
76.746
72.577
68.629

31.791
31.705
29.341
29.047
28.114
28.085
22.596

14.048



1H NMR spectrum of (1S,5R,E)-3-tetradecylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (18, 500 MHz, CDCl3)
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13C{1H} NMR spectrum of (1S,5R,E)-3-tetradecylidene-6,8-dioxabicyclo[3.2.1]octan-4-one (18, 125 MHz, CDCl3)

PPM 160 120 80 40 0

188.836
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77.254
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72.594
68.645

31.908
31.826
29.654
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14.102



1H NMR spectrum of (S,E)-3-butylidene-5-(hydroxymethyl)dihydrofuran-2(3H)-one (19, 500 MHz, CDCl3)
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13C{1H} NMR spectrum of (S,E)-3-butylidene-5-(hydroxymethyl)dihydrofuran-2(3H)-one (19, 125 MHz, CDCl3).

PPM 160 120 80 40 0

170.818

141.317

125.904

77.339
77.254
77.211
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76.746

64.536

32.217

26.741
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1H NMR spectrum of (S,E)- 3-octylidene-5-(hydroxymethyl)dihydrofuran-2(3H)-one (20, 500 MHz, CDCl3)
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13C{1H} NMR spectrum of (S,E)- 3-octylidene-5-(hydroxymethyl)dihydrofuran-2(3H)-one (20, 125 MHz, CDCl3)
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1H NMR spectrum of majoranolide (1, 500 MHz, CDCl3)
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13C{1H} NMR spectrum of majoranolide (1, 125 MHz, CDCl3)
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1H NMR spectrum of majoranolide B (2, 500 MHz, CDCl3)
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13C{1H} NMR spectrum of majoranolide B (2, 125 MHz, CDCl3)
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