Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

A protocol for directly accessing geminal C-4 diarylated pyrazol-5(4H)ones via tandem C-H aryne insertion and their inceptive neurobiological evaluation

K. A. Sudarshana^{a,b}, Manas Jyoti Sarma^{a,c}, Mydhili Radhakrishnan^{a,d}, Sumana Chakravarty^{a,d}, Pabbaraja Srihari^{a,b*} and Goverdhan Mehta^{c*}

^aDepartment of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007. Email: srihari@iict.res.in

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

^cSchool of Chemistry, University of Hyderabad, Hyderabad-500046, India. Email: gmehta43@gmail.com

^dApplied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India

	Table of Contents									
1.	Optimization Table	S2								
2.	General remarks	S3								
3.	Preparation of Pyrazolones and Aryne precursors	S3								
4.	X-ray Crystallography Information	S3								
5.	General procedure for the synthesis of geminal diarylated product	S4								
6.	General procedure for the synthesis of geminal C-diarylated product along	S4								
	with C, O-diarylated product									
7	Biological experiments	S5								
8.	Spectroscopic data	S6								
9.	References	S13								
10.	Ortep diagram of compound 8a & data	S14								
11.	Ortep diagram of compound 9a & data	S15								
12.	Ortep diagram of compound 10a & data	S16								
13.	NMR Spectra	S17-S60								

Optimization table

	O N [−] N Ph 6	TMS OTf 7a	Fluoride so Solven	Ph Ph ource t N-N Ph 8a	+ Ph	Ph N-N Ph 10a	
Entry	Base	1a:2a:fluoride source	Solvent	Temp ^r (⁰C)	Time (h)	Yield (%) 8a	Yield (%) 10a
1	CsF	1:2.5:5	MeCN	RT	24	-	-
2	CsF	1:2.5:5	MeCN	50	24	10	-
3	CsF	1:2.5:5	MeCN	100	16	50	-
4	CsF	1:1.1:2.5	MeCN	100	16	25	-
5 ^c	CsF	1:2.5:5	THF	100	16	39	-
6 ^c	CsF	1:2.5:5	MeCN	100	16	70	-
7 ^c	CsF	1:3.5:7	MeCN	100	16	72	-
8 ^c	CsF	1:2.5:5	MeCN	100	8	43	-
9 ^c	CsF	1:2.5:5	MeCN	100	24	73	-
10 ^c	CsF	1:2.5:5	MeCN	110	16	66	-
11 ^c	$\rm NH_4F$	1:2.5:5	MeCN	100	16	-	-
12 ^c	KF	1:2.5:5	MeCN	100	16	45	-
13 ^c	TBAF	1:2.5:5	THF	100	16	38	47

Table S1: Optimization of diarylation on pyrazolone^a

^a Reaction Condition: *O*-silyl aryl triflate (0.25 mmol), edaravone (0.1 mmol), fluoride source, solvent (1 mL); ^b isolated yield; ^c 4A^o Molecular seives added.

General Remarks

All reagents, starting materials were of technical grade and purchased from available commercial sources. Solvents used for reaction were dried before use. All the reactions were performed under moisture free N₂ atmosphere. Progress of reactions were monitored by TLC with UV light, iodine and p-anisaldehyde solution spray visualization technique. Products were purified by Column chromatography (100-200 mesh silica gel as stationary phase) with hexane and ethyl acetate as eluent. Melting point were recorded on Polmon MP96 instrument. ¹H NMR 400 or 500 MHz and ¹³C NMR spectra were recorded in CDCl₃ on Bruker NMR spectrometer. The Chemical shift values are given in δ units relative to the tetramethylsilane (TMS) signal as an internal reference in CDCl₃, and peak splitting patterns are denoted as s = singlet, d = doublet, dd = doublet of doublet and t = triplet. Coupling constants (*J*) were reported in hertz. Liquid Chromatography-Mass Spectrometry (LC-MS) were recorded on Shimadzu technology LCMS-8040 instrument. Shimadzu technology LAB solution instrument was used for HPLC separation of the compounds. IR spectra were recorded on an ECO-ATR, ALPHA BRUKER spectrometer. Waters-TOF spectrometer was used to record high-resolution mass spectra (HRMS).

Preparation of pyrazolones and aryne precursors

All the pyrazolone moieties were prepared by following known literature procedures.¹ *o*-silyl aryl triflates were used as aryne precursors and synthesized by known procedures.²

X-ray Crystallography Information

X-ray data for the compounds **8a**, **9a** and **10a** were collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs.³ The structure was solved using intrinsic phasing method⁴ and further refined with the SHELXL⁴ program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and U_{iso}(H) = 1.5U_{eq}(C) for methyl H or 1.2U_{eq}(C) for other H atoms]. Crystal suitable for single crystal X-ray was grown in diethyl ether/hexane (4:6) at 4 °C in a refrigerator.

General procedure for the synthesis of geminal diarylated product:

An oven dried ace pressure tube was charged with pyrazolone (0.1 mmol), CsF (0.5 mmol), aryne precursor (0.25 mmol) and 4 Å molecular sieves (100 mg) in acetonitrile medium (1 mL) under nitrogen atmosphere. The tube was then tightly capped and heated at 100 °C for 16 hours. After completion of the reaction, water was added and the reaction mixture was extracted with EtOAc. The organic layer was separated, dried over Na_2SO_4 and concentrated under reduce pressure. The crude mixture was purified by column chromatography using hexane:ethyl acetate (98:2) mixture as an eluent.

General procedure for the synthesis of geminal C-diarylated product along with C, O-diarylated product:

An oven dried ace pressure tube was charged with pyrazolone (0.1 mmol), 1M solution of TBAF (0.5 mmol) in THF, aryne precursor (0.25 mmol) and 4 Å molecular sieves (100 mg) in THF medium (1 mL) under nitrogen atmosphere. The tube was then tightly capped and heated at 100 °C for 16 h. After completion of the reaction, water was added and the reaction mixture was extracted with EtOAc. The organic layer was separated, dried over Na₂SO₄ and concentrated under reduce pressure. The crude residue was purified by column chromatography using hexane:ethyl acetate (98:2) mixture as an eluent to obtain mixture of geminal C-diarylated and C, O- diarylated products. The mixture of geminal C-diarylated and C, O- diarylated products. The mixture of geminal C-diarylated and more the basis of LC-MS data. HPLC separations are performed in Shimadzu UFLC instrument with LUNA C8 column by using acetonitrile and 0.1% formic acid in water as eluent.

Biological experiments:

1. Sulforhodamine B (SRB) assay

The cytotoxicity against Neuro 2a (N2A) cell line were assessed with three different concentrations (1 μ M,0.1 μ M,0.01 μ M) through SRB assay after 24 h of incubation. N2A cells were passaged and seeded in 96 well plates at a density of 9600 cm2 per well. After 24 hours, the cells were treated with ice cold 50% TCA and incubated at 4°C for 1 hour. The plates were rinsed and dried in slow flowing water before being incubated in room temperature with 0.04% SRB dye for 1 hour. The plates were then rinsed with 1% acetic acid and dried at room temperature. After adding 10mM Tris base to each well, the absorbance was measured at 510 nm using a microplate reader.

2. IC₅₀ determination

The most popular and useful method of determining a drug effectiveness is by calculating its half-maximal inhibitory concentration (IC₅₀). It provides a gauge of a drug's efficacy in pharmacological research by showing the amount of drug required to block a biological process by 50%. Plotting x-y and fitting the data with a straight line is the simplest way to estimate the IC₅₀ (linear regression). Next, using the fitted line, the IC₅₀ value is calculated, as follows:

Y = a * X + b, IC50 = (0.5 - b)/a.

3. AChE inhibitory activity

The AChE inhibitory activity of 16 compounds were screened in vitro in n2a cell line using *Ellman*'s spectrophotometric method. The chemical principle of *Ellman*'s method involves hydrolysis of acetylcholine by acetyl cholinesterase to produce acetic acid and choline, which reacts with *Ellman*'s reagent (5,5'-bisdithionitrobenzoic acid [DTNB]) to form a compound exhibiting light absorbance at 412 nm. Galantamine was used as positive control and test was conducted in triplicate.

Spectroscopic data

3-Methyl-1, 4, 4-triphenyl-1*H*-pyrazol-5(4H)-one (8a):

(23 mg, 70% and 12 mg, 38%); Yellow solid; mp 68-70 °C; IR (KBr, cm⁻¹): v 2922, 1714, 1593, 1495, 1356, 1269, 1159, 748, 692; ¹H NMR (400 MHz, $CDCl_3$): δ 7.99 (d, J = 8.0 Hz, 2H); 7.42-7.35 (m, 8H); 7.25-7.17 (m, 5H);

2.17 (s, 3H) ¹³C NMR (101 MHz, CDCl₃): δ 173.6, 161.8, 138.1, 137.3, 130.3,

129.1, 128.9, 128.5, 128.2, 125.2, 122.8, 120.5, 118.9, 69.0, 15.5; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₂H₁₉N₂O 327.1486 found 327.1490.

1-(2-Ethylphenyl)-3methyl-4, 4-diphenyl-1*H*-pyrazol-5(4H)-one (8b):

(24 mg, 68%); Yellow oil; IR (KBr, cm⁻¹): v 2966, 2922, 1717, 1597, 1495, 1447, 1361, 1268, 1163, 752, 698; ¹H NMR (500 MHz, CDCl₃): δ 7.45-7.35 (m, 6H); 7.33-7.25 (m, 8H); 2.59 (q, J = 7.5 Hz, 2H); 2.14 (s, 3H); 1.14 $(t, J = 7.5Hz, 3H); {}^{13}C NMR (101 MHz, CDCl_3): \delta 174.4, 161.5, 141.5,$

137.3, 135.1, 129.4, 129.1, 129.0, 128.5, 128.2, 127.5, 126.7, 115.5, 67.6, 24.7, 15.6, 14.6. HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₂₃N₂O 355.1799 found 355.1809.

1, 3, 4, 4-Tetraphenyl-1*H*-pyrazol-5(4H)-one (8c):

(23 mg, 59% and 18 mg, 46%); Yellow solid; mp 144-146 °C; IR (KBr, cm⁻¹): v 2923, 2852, 1714, 1594, 1491, 1374, 1293, 1162, 756, 690; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 8.0 Hz, 2H); 7.75 (d, J = 8.4 Hz, 2H); 7.47-7.41 (m, 6H); 7.37-731 (m, 7H); 7.30-7.27 (m, 2H);

7.25-7.21 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 174.9, 160.2, 138.1, 136.6, 130.9, 130.2, 129.0, 128.9, 128.4, 128.2, 127.6, 125.4, 119.1, 67.7; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₇H₂₁N₂O 389.1643 found 389.1646.

1, 4, 4-Triphenyl-3-propyl-1*H*-pyrazol-5(4H)-one (8d):

(23 mg, 65%); Yellow solid; ; mp 81-83 °C; IR (KBr, cm⁻¹): v 2925, 2851, 1711, 1642, 1595, 1493, 1449, 1357, 1272, 1159, 1032, 755, 696; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 7.6 Hz, 2H); 7.42-7.33 (m, 8H); 7.24-7.17 (m, 5H), 2.41 (t, J = 7.2 Hz, 2H); 1.68-1.60 (m, 2H); 0.93 (t, J = 7.6Hz, 3H).¹³C NMR (101 MHz, CDCl₃): δ 173.8, 164.8, 138.3, 137.5, 133.5, 130.3, 129.0, 128.5, 128.2, 125.0, 122.3, 120.5, 119.0, 115.5, 69.2, 31.3, 19.0, 13.9; HRMS (ESI) m/z

 $[M+H]^+$ calcd for C₂₄H₂₃N₂O 355.1805 found 355.1804.

3-Cyclopropyl-4, 4-diphenyl-1*H*-pyrazol-5(4H)-one (8e):

(25 mg, 70%); White solid; mp 136-138 °C; IR (KBr, cm⁻¹): v 2923, 2853,

1711, 1592, 1551, 1490, 1344, 1261, 1187, 1110, 807, 769, 698; ¹H NMR

 $(500 \text{ MHz}, \text{CDCl}_3)$: δ 7.97 (d, J = 7.5 Hz, 2H); 7.40-7.33 (m, 12H); 7.17 (t,

J = 7.5 Hz, 1H); 1.70-1.64 (m, 1H); 1.08-1.05 (m, 2H); 0.93-0.89 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 173.7, 167.1, 138.3, 137.7, 128.9, 128.8, 128.7, 128.1, 125.0, 118.8, 69.4, 10.6, 9.9; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₂₁N₂O 353.1658 found 353.1652.

4,4-Bis(3,4-difluorophenyl)-1-phenyl-3-propyl-1*H*-pyrazol-5(4H)-one (8f):

(26 mg, 62%); Yellow oil; IR (KBr, cm⁻¹): v 2963, 2930, 1716, 1604, 1674, 1500, 1423, 1284, 1213, 1120, 776; ¹H NMR (500 MHz, CDCl₃): δ 7.96 (d, J = 8.5 Hz, 2H); 7.42 (t, J = 8.25 Hz, 2H); 7.24-7.17 (m, 3H); 7.07-7.03 (m, 2H); 6.96-6.93 (m, 2H); 2.38 (t, J = 7.5 Hz, 2H); 1.70 (q, J = 7.5 Hz, 2H); 0.98 (t, J = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 172.4, 163.2,

151.9, 151.8, 151.6; 149.4, 149.3, 149.1, 137.8, 133.6, 129.0, 125.6, 124.6, 124.5, 124.5, 118.9, 118.2, 118.0, 118.0, 117.8, 67.3, 31.2, 19.0, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) : δ -

134.71, -134.76, -136.70, -136.76; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₄H₁₉F₄N₂O₃ 427.1428 found 427.1426.

4,4-bis(3,4-Dimethylphenyl)-1, 3-diphenyl-1*H*-pyrazol-5(4H)-one (8g):

(28 mg, 64%); Yellow solid; m.p. 88-90 °C; IR (KBr, cm⁻¹): v 2921, 2854, 1721, 1596, 1497, 1371, 1293, 1154, 1071, 871, 796, 693; ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, J = 8.0 Hz, 1H); 7.77-7.75 (m, 2H); 7.63-7.61 (m, 1H); 7.43 (t, J = 7.5 Hz, 1H); 7.37 (t, J = 7.5 Hz, 1H); 7.34-7.30 (m, 2H); 7.28 (d, J = 7.5 Hz, 1H); 7.25- 7.20 (m, 2H); 7.17 (s, 1H); 7.13 (dd, J = 8.0 Hz, 2.0 Hz, 1H); 7.07 (d, J = 8.0 Hz, 1H); 7.00-6.95 (m, 1H); 6.65-6.54 (m, 1H); 2.22 (s, 4H); 2.19 (s, 5H); 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 175.3, 160.6, 155.0, 149.3, 138.3, 137.1, 136.7, 135.0, 134.1, 131.2, 130.0, 129.5, 129.0, 128.9, 128.3, 128.1, 127.8, 126.9, 126.5, 125.2, 122.4, 119.1, 116.9, 112.5, 67.2, 20.0, 19.5; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₁H₂₉N₂O 445.2274 found 445.2264

4,4-bis(3,4-Dimethylphenyl)- 3-methyl-1-phenyl-1*H*-pyrazol-5(4H)-one (8h):

(28 mg, 73%); White solid; mp 143-144 °C; IR (KBr, cm⁻¹): υ 2920, 2861, 1715, 1596, 1497, 1355, 1269, 1115,1021, 756; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 7.6 Hz, 2H); 7.41 (t, *J* = 7.6 Hz, 2H); 7.19 (t, *J* = 7.6 Hz, 1H); 7.13 (d, *J* = 8.0 Hz, 2H); 6.99 (s, 2H); 6.96 (d, *J* = 7.6 Hz, 2H); 2.26 (s, 6H); 2.24 (s, 6H); 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 174.1, 162.4, 138.3, 137.4, 136.7, 134.7, 130.2, 129.2, 128.8, 125.9, 125.0, 118.9, 68.6, 20.0, 19.5, 15.6; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₆H₂₇N₂O 383.2118 found 383.2117

3-Cyclopropyl-4,4-bis(3,4-difluorophenyl)-1-phenyl-1*H*-pyrazol-5(4H)-one (8i):

(25 mg, 60%); Yellow solid; mp 102-104 °C; IR (KBr, cm⁻¹): v 3065, 3008, 1705, 1610, 1596, 1517, 1499, 1414, 1354, 1283, 1224, 1122, 762; ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8.0 Hz, 2H); 7.40 (t, J =8.0 Hz, 2H); 7.23-7.15 (m, 5H); 7.09-7.06 (m, 2H); 1.62-1.57 (m, 1H);

1.14-1.11 (m, 2H); 1.01-0.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 172.3, 165.7, 151.8, 151.8, 151.7, 151.6, 149.3, 149.3, 149.2, 149.1, 137.8, 133.8, 128.9, 125.5, 124.7, 118.8, 118.1, 117.9, 67.3, 10.6, 10.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -134.98, -135.03, -136.89, -136.95; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₁₇F₄N₂O 425.1272 found 425.1269

4,4-bis(3,4-Dimethylphenyl)- 3-propyl-1-phenyl-1*H*-pyrazol-5(4H)-one (8j):

(28 mg, 68%); Yellow oil; IR (KBr, cm⁻¹): v 2699, 2922, 1716, 1638, 1498, 1452, 1351, 109, 1115, 755; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 8.4Hz, 2H); 7.42-7.37 (m, 2H); 7.17 (t, J = 7.6 Hz, 1H); 7.11 (d, J = 7.6 Hz, 2H); 6.97 (s, 2H); 6.94 (d, J = 7.6 Hz, 2H); 2.38 (t, J = 7.6 Hz, 2H); 2.25 (s,

3-Cyclopropyl-4,4-bis(3,4-difluorophenyl)-1-phenyl-1H-pyrazol-5(4H)-one (8k):

(30 mg, 73%); White Solid; m.p. 108-110 °C; IR (KBr, cm⁻¹): v 2920, 1711, 1657, 1592, 1450, 1345, 1220, 1156, 1082, 1027, 906, 885, 802; ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, *J* = 7.5 Hz, 2H); 7.37 (t, *J* = 7.5 Hz, 2H); 7.15-7.04 (m, 7H); 2.26 (s, 6H); 2.23 (s, 6H); 1.69-1.64 (m, 1H); 1.09-1.06 (m, 2H); 0.92-.089 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 174.1, 167.4, 158.9, 138.4,

Ň-

137.1, 136.4, 135.0, 129.9, 129.6, 128.7, 126.1, 124.7, 118.7, 68.9, 20.0, 19.4, 10.4, 10.2; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₈H₂₉N₂O 409.2274 found 409.2267.

3-Methyl-5-phenoxy-1, 4-diphenyl-1H-pyrazole (10a):

(15 mg, 47%); White solid; mp 68-72 °C; IR (KBr, cm⁻¹): v 2923, 2853, 1714, 1495, 1385, 1356, 1269, 1159, 1110, 1034, 975, 748, 692; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: δ 7.65 (d, J = 7.6 Hz, 2H); 7.39-7.29 (m, 6H); 7.25-7.09 (m, 4H); 6.91 (t, J = 7.5 Hz, 1H); 6.83 (d, J = 8.4 Hz, 2H); 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 156.3; 148.9; 138.4; 132.2; 132.1, 132.0; 129.9; 129.0;

128.6; 128.5; 126.5; 124.5; 122.2; 118.1; 91.8; 14.6; HPLC: tR = 4.36 min (for 8a) tR = 7.61 min (for 10a) (LUNA C8, 65% ACN-0.1% FA in water, 1 mL/min); HRMS (ESI) m/z $[M+H]^+$ calcd for C₂₂H₁₉N₂O 327.1486 found 327.1488.

5-Phenoxy-1, 3, 4-triphenyl-1H-pyrazole (10b):

(12 mg, 32%); White solid; mp 127-130 °C; IR (KBr, cm⁻¹): v 2924, 2854, 1714, 1593, 1491, 1453, 1425, 1372, 1294, 1210, 1163, 1120, 1072, 1027, 963, 757, 694; ¹H NMR (500 MHz, CDCl₃): 8.10 (d, J = 8.0 Hz, 1H); 7.76-7.73 (m, 2H); 7.60-7.58 (m, 1H); 7.46-7.42 (m, 3H); 7.39-7.30 (m, 7H); 7.30-7.28 (m,1H); 7.24-7.13 (m, 4H); 6.91-6.84 (m, 1H) ¹³C NMR (101 MHz, CDCl₃): δ 156.6, 150.9, 146.0, 138.2, 136.6, 133.3, 130.2, 129.6, , 129.1, 128.9, 128.3, 128.0, 127.7, 126.9, 125.4, 123.2, 122.5, 119.2, 115.6; HPLC: tR = 9.196 min (for 8c) tR = 10.341 min (for 10b) (LUNA C8, 70% ACN-0.1% FA in water, 1 mL/min); HRMS (ESI) m/z $[M+H]^+$ calcd for C₂₇H₂₁N₂O 389.1643 found 389.1646

5-Phenoxy-1-phenyl-3-(trifluoromethyl)-1H-pyrazole (9a):

(24 mg, 80%); Yellow solid; IR (KBr, cm⁻¹): v 2929, 1730, 1595,

1556, 1490, 1454, 1399, 1245, 1139, 1091, 968, 756, 690; ¹H NMR

(400 MHz, CDCl₃): δ 7.75 (d, J = 7.2 Hz, 2H); 7.47 (t, J = 7.6 Hz,

2H); 7.43-7.35 (m, 3H); 7.25-7.21 (m, 1H); 7.18-7.15 (m, 2H); 5.96 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 155.6; 152.3; 142.2, 141.8, 137.5, 130.2, 129.2, 128.0, 125.5, 123.1, 122.2, 119.5, 118.5, 89.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.23; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₁₆H₁₂F₃N₂O 305.0896 found 305.0902.

3-Methyl-1-phenyl-1H-pyrazol-5(4H)-one (Edavarone, 6):^{5a}

(1.48 g, 85%); White solid; m.p 125-127 °C; IR (KBr, cm⁻¹): 3064, 1712, 1595, 1563, 1498, 1404, 1363, 1155, 1028, 757, 692; ¹H NMR (400 MHz,

CDCl₃): δ 7.86 (d, *J* = 8.8 Hz, 2H); 7.39 (t, *J* = 7.6 Hz, 2 H); 7.18 (t, *J* = 7.2 Hz, 2H); 3.44 (s,

2H); 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.6, 156.4, 138.1, 128.9, 125.1, 118.9,

43.1, 17.0; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₀H₁₁N₂O 175.0871 found 175.0866.

3-Methyl-1(2-ethylphenyl)-1H-pyrazol-5(4H)-one (6a):^{5b}

(1.67 g, 83%); White soild; m.p 115-117 °C; IR (KBr, cm⁻¹):

2968,1710,1607,1558,1492,1455,1397,1158,1030,757,673; ¹H NMR (300

MHz, CDCl₃): δ 7.34-7.32 (m, 2H); 7.27-7.26 (m, 2H); 3.41 (s, 2H); 2.63 (q, *J* = 7.5 Hz, 2H); 2.18 (s, 3H); 1.20 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 171.6, 156.1, 141.2,

135.1, 129.3, 129.0, 127.2, 126.7, 41.7, 24.6, 17.1, 14.3 HRMS (ESI) m/z [M+H]⁺ calcd for C₁₂H₁₅N₂O 203.1184 found 203.1179

1,3-Diphenyl-1H-pyrazol-5(4H)-one (6b):^{5c}

(1.84 g, 78%); Yellow solid; m.p 139-141 °C; IR (KBr, cm⁻¹): 3064,1718,1597,1562,1497,1396,1333,1183,1119,757,692; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 8.4 Hz, 2 H); 7.77-7.74 (m, 2H);

7.45-7.40 (m, 5H); 7.21 (t, J = 7.6 Hz, 1H); 3.80 (s, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 170.3, 154.7, 138.1, 130.9, 130.8, 129.0, 128.9, 126.0, 125.4, 119.1, 39.7. HRMS (ESI) m/z[M+H]⁺ calcd for C₁₅H₁₃N₂O 237.1028 found 237.1024

1-Phenyl-3-propyl-1H-pyrazol-5(4H)-one (6c):^{5d}

(1.65 g, 82%); White soild; m.p 110-112 °C; IR (KBr, cm⁻¹): 2962,1714,1596,1562,1498,1408,1312,1155,1005,756,692; ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.86 (m, 2H); 7.39 (t, *J* = 7.6 Hz, 2H);

7.18 (t, J = 7.2 Hz, 2H); 3.42 (s, 2H), 2.48 (t, J = 7.6 Hz, 2H); 1.74-1.65 (m, 2H); 1.03 (t, J = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 165.9, 155.2, 133.4, 124.1, 120.3, 114.2, 37.0, 28.4, 15.3, 9.1; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₁₂H₁₅N₂O 203.1184 found 203.1179

3-Cyclopropyl-1-phenyl-1H-pyrazol-5(4H)-one (6d):5e

(1.32 g, 66%); Light yellow solid; m.p 99-101 °C; IR (KBr, cm⁻¹): 3011, 1710, 1597, 1565, 1499, 1420, 1346, 1058, 1025, 756, 693; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.4 Hz, 2H); 7.38 (t, J = 7.6 Hz, 2H); 7.17 (t, I = 7.2 Hz, 1H): 3.30 (s, 2H): 1.91-1.84 (m, 1H): 1.05-1.00 (m, 2H):

HRMS (ESI) m/z [M+H]⁺ calcd for C₁₂H₁₃N₂O 201.1028 found 201.1020.

1-Phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol (6e):^{5g}

(1.50 g, 66%); Light yellow solid; m.p 195-197 °C; IR (KBr, cm⁻¹): 2920, 1598, 1569, 1507, 1410, 1339, 1263, 1157, 1123, 985, 761, 691; ¹H NMR (400 MHz, CDCl₃): δ 11.75 (s, 1H); 7.75 (d, *J* = 8.0 Hz, 2H); 7.45 (t, *J* =

8.0 Hz, 2 H); 7.32 (t, J = 7.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃ + DMSO-d₆): δ 153.7, 141.5, 141.1, 138.3, 129.0, 127.0, 122.8, 122.4, 120.1, 86.1; ¹⁹F NMR (376 MHz, DMSO-d₆): δ -57.07; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₁₀H₈F₃N₂O 229.0589 found 229.0583

References:

- (a) F. Lehmann, M. Holm, S. Laufer J. Comb. Chem. 2008, 10, 364. (b) C. Yan, D. Theodorescu, B. Miller, A. Kumar, V. Kumar, D. Ross, M. F. Wempe Bioorg. Med. Chem. Lett. 2016, 26, 5815. (c) X. Zheng, Z. Jiang, X. Li, C. Zhang, Z. Li, Y. Wu, X. Wang, C. Zhang, H. B. Luo, J. Xu, D. Wu Bioorg. Med. Chem. 2018, 26, 5934. (d) J. Liu, D. Ba, W. Lv, Y. Chen, Z. Zhao, G. Cheng Adv. Synth. Catal. 2020, 362, 213.
- 2. H. Jia, Z. Guo, H. Liu, B. Mao, X. Shi, H. Guo Chem Commun, 2018, 54, 7050.
- 3. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 4. G. M. Sheldrick, Crystal Structure Refinement With SHELXL. Acta Crystallogr. 2015, C71, 3-8
- (a) L. Li, P. Luo, Y. Deng, Z. Shao, Angew. Chem. Int. Ed. 2019, 58, 4710. (b) M. A. MacLean, E. Diez-Cecilia, C. B. Lavery, M. A. Reed, Y. Wang, D. F. Weaver, M. Stradiotto *Bioorg. Med. Chem. Lett.* 2016, 26, 100. (c) C. Yan, D. Theodorescu, B. Miller, A. Kumar, V. Kumar, D. Ross, M. F. Wempe, *Bioorg. Med. Chem. Lett.* 2016, 26, 5815. (d) F. Lehmann, M. Holm, S. Laufer, *J. Comb. Chem.* 2008, 10, 364. (e) M. Desroses, M.-C. Jacques-Cordonnier, S. Llona-Minguez, S. Jacques, T. Koolmeister, T. Helleday, M. Scobie, *Eur. J. Org. Chem.* 2013, 5879. (f) S. Bhavanarushi, Z.-B. Luo, G. Bharath, J. Rani, I. Khan, Y. Xu, B. Liu, J. Xie *J. Heterocyclic Chem.* 2020, 57, 751. (g) J. Zhang, S. Yang, K. Zhang, J. Chen, H. Deng, M. Shao, H. Zhang, W. Cao, *Tetrahedron*, 2012, 9, 2121.

О

Ortep diagram of 3-methyl-1, 4, 4-triphenyl-1H-pyrazol-5(4H)-one (8a) with 30% probability ellipsoid

$C_{22}H_{18}N_2O$
326.38
Monoclinic
$P 2_1/c$
9.12630(10)
10.1687(2)
19.2429(3)
90
98.9070(5)
90
1764.26 (5)
4
1.229
4453
3018
0.0491
0.1301
2175625

Ortep diagram of 5-phenoxy-1-phenyl-3-(trifluoromethyl)-1H-pyrazole (9a) with 30% probability ellipsoid

Empirical Formula	$C_{16}H_{11}F_{3}N_{2}O$
Formula weight	304.27
Crystal system	Monoclinic
Sapce group	P 2 ₁
a (Å)	6.2516(2)
b (Å)	12.1242(4)
c (Å)	19.5002(7)
α	90
β	91.0124(9)
γ	90
$V(Å^3)$	1477.80(9)
Z	4
$\rho_{calcd}(g/cm^3)$	1.368
Reflections measured	7270
Unique reflections	3290
R1	0.0743
wR2	0.1574
CCDC No	2175627

Ortep diagram of 3-methyl-5-phenoxy-1, 4-diphenyl-1H-pyrazole (10a) with 30% probability ellipsoid

Empirical Formula	C22H10N2O
Formula weight	326.38
Crystal system	Monoclinic
Space group	$P 2_1/c$
a (Å)	13.9291(3)
b (Å)	8.5789(2)
c (Å)	15.4251(3)
α	90
β	108.4620(8)
γ	90
V (Å ³)	1748.38 (7)
Z	4
$\rho_{calcd}(g/cm^3)$	1.240
Reflections measured	5395
Unique reflections	2877
R1	0.0598
wR2	0.1561
CCDC No	2175626

NMR Spectra

¹H NMR (400 MHz, CDCl₃) of 3-methyl-1, 4, 4-triphenyl-1*H*-pyrazol-5(4H)-one (**8a**):

¹³C NMR (101 MHz, CDCl₃) of 3-methyl-1, 4, 4-triphenyl-1*H*-pyrazol-5(4H)-one (8a):

¹H NMR (500 MHz, CDCl₃) of 1-(2-ethylphenyl)-3methyl-4, 4-diphenyl-1*H*-pyrazol-5(4H)-one (**8b**):

¹³C NMR (101 MHz, CDCl₃) of 1-(2-ethylphenyl)-3methyl-4, 4-diphenyl-1*H*-pyrazol-5(4H)-one (**8b**)

T

¹H NMR (400 MHz, CDCl₃) of 1, 3, 4, 4-tetraphenyl-1*H*-pyrazol-5(4H)-one (**8c**):

¹³C NMR (101 MHz, CDCl₃) of 1, 3, 4, 4-tetraphenyl-1*H*-pyrazol-5(4H)-one (8c):

2.42 2.41 2.39 1.68 1.64 1.64 0.93 0.93 0.93 O N-N 1.87¹ 7.84H 5.02H 2.00H 3.00H 2.04I 5.5 9.5 8.0 5.0 f1 (ppm) 2.5 1.5 9.0 8.5 7.5 7.0 6.5 6.0 4.5 4.0 3.5 3.0 2.0 1.0 0.5

¹H NMR (400 MHz, CDCl₃) of 1, 4, 4-triphenyl-3-propyl-1*H*-pyrazol-5(4H)-one (**8d**):

¹³C NMR (101 MHz, CDCl₃) of 1, 4, 4-triphenyl-3-propyl-1*H*-pyrazol-5(4H)-one (**8d**):

¹H NMR(500 MHz, CDCl₃) of 3-cyclopropyl-4, 4-diphenyl-1*H*-pyrazol-5(4H)-one (8e)

¹³C NMR(101 MHz, CDCl₃) of 3-cyclopropyl-4, 4-diphenyl-1*H*-pyrazol-5(4H)-one (8e)

¹H NMR (500 MHz, CDCl₃) of 4,4-bis(3,4-difluorophenyl)-1-phenyl-3-propyl-1*H*-pyrazol-5(4H)-one (**8f**):

¹³C NMR (101 MHz, CDCl₃) *of* 4,4-bis(3,4-difluorophenyl)-1-phenyl-3-propyl-1*H*-pyrazol-5(4H)-one (**8f**):

¹H NMR (500 MHz, CDCl₃) *of* 4,4-bis(3,4-dimethylphenyl)-1, 3-diphenyl-1*H*-pyrazol-5(4H)-one (**8**g):

¹³C NMR (101 MHz, CDCl₃) of 4,4-bis(3,4-dimethylphenyl)-1, 3-diphenyl-1*H*-pyrazol-5(4H)-one (**8g**):

¹³C NMR(101 MHz, CDCl₃) of 4,4-bis(3,4-dimethylphenyl)- 3-methyl-1-phenyl-1*H*-pyrazol-5(4H)-one (8h) :

¹H NMR(500 MHz, CDCl₃) of 3-cyclopropyl-4,4-bis(3,4-difluorophenyl)-1-phenyl-1*H*-pyrazol-5(4H)-one (8i)

¹³C NMR(101 MHz, CDCl₃) of 3-cyclopropyl-4,4-bis(3,4-difluorophenyl)-1-phenyl-1*H*-pyrazol-5(4H)-one (8i)

¹³C NMR (101 MHz, CDCl₃) of 4,4-bis(3,4-dimethylphenyl)- 3-propyl-1-phenyl-1*H*-pyrazol-5(4H)-one (**8j**):

¹H NMR (500 MHz, CDCl₃) of 3-cyclopropyl-4,4-bis(3,4-dimethylphenyl)-1-phenyl-1*H*-pyrazol-5(4H)-one (**8**k)

¹³C NMR (101 MHz, CDCl₃) of 3-cyclopropyl-4,4-bis(3,4-dimethylphenyl)-1-phenyl-1*H*-pyrazol-5(4H)-one (**8K**):

¹H NMR (400 MHz, CDCl₃) of 5-phenoxy-1-phenyl-3-(trifluoromethyl)-1H-pyrazole (9a):

¹³C NMR (101 MHz, CDCl₃) of 5-phenoxy-1-phenyl-3-(trifluoromethyl)-1H-pyrazole (9a):

¹H NMR (300 MHz, CDCl₃) of 3-methyl-5-phenoxy-1, 4-diphenyl-1H-pyrazole (**10a**):

¹³C NMR (101 MHz, CDCl₃) of 3-methyl-5-phenoxy-1, 4-diphenyl-1H-pyrazole (**10a**):

¹H NMR (400 MHz, CDCl₃) of 5-phenoxy-1, 3, 4-triphenyl-1H-pyrazole (**10b**):

¹³C NMR (400 MHz, CDCl₃) of 5-phenoxy-1, 3, 4-triphenyl-1H-pyrazole (**10b**):

¹H NMR (400 MHz, CDCl₃) of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (6)

¹³C NMR (101 MHz, CDCl₃) of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (6)

¹H NMR (300 MHz, CDCl₃) of 3-methyl-1(2-ethylphenyl)-1H-pyrazol-5(4H)-one (6a)

¹³C NMR (101 MHz, CDCl₃) of 3-methyl-1(2-ethylphenyl)-1H-pyrazol-5(4H)-one (6a)

¹H NMR (500 MHz, CDCl₃) of 1,3-diphenyl-1H-pyrazol-5(4H)-one (**6b**)

¹³C NMR (101 MHz, CDCl₃) of 1,3-diphenyl-1H-pyrazol-5(4H)-one (6b)

¹³C NMR (101 MHz, CDCl₃) of 1-phenyl-3-propyl--1H-pyrazol-5(4H)-one (**6c**)

¹H NMR (400 MHz, CDCl₃) of 3-cyclopropyl-1-phenyl-1H-pyrazol-5(4H)-one (6d)

¹³C NMR (101 MHz, CDCl₃) of 3-cyclopropyl-1-phenyl-1H-pyrazol-5(4H)-one (6d)

¹H NMR (400 MHz, CDCl₃) of 1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol (**6e**):

¹³C NMR (101 MHz, CDCl₃ + DMSO-d₆) of 1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol (**6e**):

¹⁹F NMR (376 MHz, CDCl₃) of 4,4-bis(3,4-difluorophenyl)-1-phenyl-3-propyl-1*H*-pyrazol-5(4H)-one (**8f**):

¹⁹F NMR (376 MHz, CDCl₃) of 3-cyclopropyl-4,4-bis(3,4-difluorophenyl)-1-phenyl-1*H*-pyrazol-5(4H)-one (8i):

¹⁹F NMR (376 MHz, CDCl₃) of 5-phenoxy-1-phenyl-3-(trifluoromethyl)-1H-pyrazole (9a):

¹⁹F NMR (376 MHz, DMSO-d₆) of 1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol (**6e**):

1	1	1	1 1								1 1									1 1		1 1	1 1		Г
	10		0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	
													f1 (ppm)											