Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

A Chalcone-based ESIPT and AIE Fluorophore for β -galactosidase

imaging in living cells

Yiran Hu, Haiyan Luo, Luyao Zhao, Xudong Guo, Shuangqing Wang, Rui Hu* and Guoqiang Yang*

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.

1. Material Synthesis and Characterization

Scheme S1. Synthetic route of the probe gal-HCA

Sythesis of OAc-gal-HCA: A solution of HCA (270 mg, 1 mmol, 1 equiv.) in anhydrous CH_2Cl_2 (10 mL) was treated with Cs_2CO_3 (650 mg, 2 mmol, 2 equiv.) and stirred at room temperature for 15 min under N₂. 2,3,4,6-Tetra-O-acetyl- α -D-galactopyranosyl bromide (400 mg, 1 mmol, 1 equiv.) soluted in anhydrous CH_2Cl_2 (5 mL) was then added dropwise and the reaction was stirred for 8 h. The reaction was diluted with brine (20 mL) and extracted with CH_2Cl_2 (3 × 25 mL). The combined organic layers were dried over CaCl₂, filtered, concentrated, and purified by silica gel column chromatography to obtain yellow solid **OAc-gal-HCA** (376 mg, 63%). ¹H-NMR (300 MHz, DMSO-*d*₆), δ 7.53-7.47 (m, 3H), 7.35 (d, *J* = 7.29 Hz, 1H), 7.29-7.13 (m, 3H), 6.89 (d, *J* = 15.89Hz, 1H), 6.71 (d, *J* = 8.90 Hz, 2H), 5.50 (d, *J* = 7.60 Hz, 1H), 5.32 (s, 1H), 5.24 (m, 1H), 5.14 (m, 1H), 4.44 (t, *J* = 5.66 Hz, 1H), 4.12 (d, *J* = 5.99 Hz, 2H), 2.99 (s, 6H), 2.10 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H), 1.90 (s, 3H), 1.86 (s, 3H). ¹³C-NMR (100 MHz, DMSO-*d*₆) δ 193.54, 170.30, 170.21, 170.03, 169.21, 154.43, 151.95, 146.52, 132.52, 131.30, 130.56, 129.36, 123.70, 122.43, 117.62, 111.92, 100.88, 77.36, 77.24, 77.04, 76.72, 71.18, 70.92, 68.19, 66.94, 61.38, 40.18, 20.66, 20.63, 20.60, 20.50. ESI-MS: (m/z) [M]⁺ Calcd for C₃₁H₃₅NO₁₁ 597.221, found: 597.220

Synthesis of gal-HCA: OAc-gal-HCA (300 mg, 0.5 mmol, 1 equiv.) and sodium methoxide (56 mg, 1.1 mmol) was dissolved in methanol (5 ml) and stirred at room temperature for 5h. Then, the pH of mixture was adjusted to neutral. After purification by silica gel column (DCM/methanol, v:v = 20:1), gal-HCA was obtained as yellow solid (174 mg 0.41 mmol 82%). ¹H NMR (300 MHz, DMSO- d_6) δ 7.63(d, J = 8.12 Hz, 2H), 7.60-7.47 (m, 3H), 7.31(d, J = 8.62 Hz, 1H), 7.10(t, J = 6.63 Hz, 1H), 6.73(d, J = 8.62 Hz, 2H), 5.11(d, J = 7.62 Hz, 1H), 5.07(d, J = 5.14 Hz, 1H), 4.91(d, J = 4.97 Hz, 1H), 4.67(t, J = 4.97 Hz, 1H), 4.63(d, J = 3.45 Hz, 1H), 3.74(s, 1H), 3.64-3.45(m, 5H), 2.99(s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 191.17, 156.31, 152.29, 143.81, 133.09, 131.09, 130.69, 130.31, 122.74, 122.33, 122.05, 116.29, 112.39, 101.83, 76.30, 74.05, 71.10, 68.59, 60.90, 40.03. ESI-MS: m/z [M+Na]⁺ Calcd for C₂₃H₂₇NNaO₇⁺ 452.168, found 452.1861

2. Tables

Solvent	НСА				gal-HCA					
	λ_{abs}	λ _{emi}	Stokes	3	QY	λ_{abs}	λ _{emi}	Stokes	3	QY
	/nm	/nm	Shift	/cm ⁻¹		/nm	/nm	Shift	/cm ⁻¹	
			/nm	M-1				/nm	M-1	
DMSO	450	541	91	32500	0.008	412	540	128	20600	0.388
CH ₃ CN	435	560	125	34200	< 0.001	403	532	129	23100	0.131
EtOH	433	559	126	33800	< 0.001	410	544	134	19600	0.030
THF	435	-	-	34300	-	402	499	97	17100	0.190
EA	428	-	-	31800	-	397	500	103	20800	0.178
DCM	437	-	-	34800	-	409	519	110	22800	0.264
toluene	428	-	-	31900	-	406	479	73	18700	0.047

Table S1 Photophysical properties of HCA and gal-HCA in different solvent.

ε: molar extinction coefficient;

QY: quantem yield, calculated according to a reference of Rhodanmine B in MeOH ($\Phi_F = 0.69$).

Table S2 Comparation of photopysical and response ability to β -gal of gal-HCA and reported fluorescence probes.

Doi	Sturcture of the	Solvent	Excitaion	LOD/	Km/	Imaging	Imagin
	probe	enviroment	wavelength/	U/L	μM	in	g in
			Emission			senescen	ovarian
			wavelength/			t cells	cancer
			Stokes shift				cells
10.1039/	но , , , он	PBS:DMSO	360nm/	30	27	no	no
d3qo006	HO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO	(v:v 7:3)	560nm/				
05k			200nm				
10.1016/	но Сн	PBS:CH ₃ CN	596nm/	2.9	2.93	no	yes
j.aca.20	HO	(v:v 7:3)	738nm/				
23.3414			142nm				
82							
10.1016/		PBS:DMSO	490nm/	19.7	-	no	yes
j.dyepig.		(v:v 95:5)	640nm/				
2022.11			150nm				
1004	ſŇŴ						
10.1021/		PBS:DMSO	651nm/	14	34.6	yes	no
acs.anal		(v:v 7:3)	727nm/				
chem.0c			76nm				
02670	Ŷ						

10.1021/	Ô	PBS:DMSO	690nm/	22	-	no	yes
acs.anal		(v:v 8:2)	725nm/				
chem.9b			45nm				
05121							
10.1016/	он	PBS:DMSO	550nm/	3.2	13.87	no	yes
j.talanta.	но	(v:v 6:4)	675nm/				
2020.12	\rightarrow		125nm				
1307							
10.1020/		DDC	207mm/	14			
5(1.010	но, , он	PD5	545	14	-	yes	по
c5tb019			545nm/				
38a	N-N-N-		158nm				
This	но, Сн, он	PBS	460nm/	12.5	14.92	yes	yes
work	HO		615nm/				
			155nm				

3. Figures

Figure S1. The Normalized fluorescence spectrum of gal-HCA (10 μ M) in different organic solvent.

Figure S2. The absorption spectra of **gal-HCA** ($0 \sim 100 \mu$ M) in PBS buffer (pH = 7.4). Inset: liner fitting curve of the absorption at 422nm to concentration of **gal-HCA**.

Figure S3. Dynamic light scatting of HCA (40 μ M) in PBS buffer containing 4% THF, pH = 7.4.

Figure S4. Time dependent fluorescence (I_{615nm}/I_{532nm}) responses of gal-HCA towards 0~4 U/ml β -gal in PBS (pH=7.4) in 1 h , λ_{ex} = 450 nm.

Figure S5. Nonlinear Michaelis-Menten curve fitting of gal-HCA towards $1U/mL \beta$ -gal in PBS. Error bar: standard deviation of 3 parallel experiments.

Figure S6. Fluorescence (I_{615nm}/I_{532nm}) responses of **gal-HCA** (40 μ M) towards β -gal (3 U/ml, in pH = 7.4 PBS buffer for 1 h) at different temperatures, λ_{ex} = 450 nm.

Figure S7 (A) Absorbance of **gal-HCA** (40 μ M) at 422 nm in PBS buffer (pH = 4.5~8.5) in 12h. (B) Fluorescence ratio (I_{615nm}/I_{532nm}) of **HCA** (40 μ M) and **gal-HCA** (40 μ M) in PBS buffer (pH = 4.5~8.5).

Figure S8. Fluorescence (I_{615nm}/I_{532nm}) responses of **gal-HCA**(40 µM) towards *E. coli* β-gal (2 U/ml) at different pH conditions for 1 h, $\lambda_{ex} = 450$ nm.

Figure S9. Fluorescence Spectra of **gal-HCA** (40 μ M) with *E. coli* β -gal or *A. oryzae* β -gal for 60 min at different pH conditions. (A) pH = 7.4; (B) pH = 4.5, $\lambda_{ex} = 450$ nm.

Figure S10. Gal-HCA–dose dependent cell viability of (A) A549 cells, (B) MCF-7 cells and (C) OVCAR-3 cells. Error bar: standard deviation of 6 parallel experiment.

Figure S11. Confocal fluorescence images of A549 and MCF-7 cells stained with HCA (20 μ M) and gal-HCA (20 μ M) respectively for 60 min. $\lambda_{ex} = 450$ nm. Green channel = 460~560 nm, red channel = 580~680 nm.

Figure S12. CLSM images of X-gal stained none-senescent and senescent A549 and MCF-7 cells, respectively.

Figure S13. The relative expression level of β -gal mRNA by RT-qPCR in none-senescent and senescent A549 and MCF-7 cells, $n \ge 4$.

Figure S14. Confocal fluorescence images of (A) A549 cells, (B) MCF-7 cells, (C) OVCAR3 cells and (D) OVCAR3 cells pretreated by D-gal incubated with **gal-HCA** (20 μ M) for 1 h, λ_{ex} = 450 nm, Red Channel = 580~680 nm. (D) Mean fluorescence intensities in the red channels, *** p<0.01. Error bar: standard devition of mean fluorescence intensities of cells in sight.

Figure S15. ¹H-NMR spectrum of OAcgal-HCA (300 MHz, DMSO-*d*₆).

Figure S16. ¹³C-NMR spectrum of OAcgal-HCA (100 MHz, CDCl₃).

Figure S17. ¹H-NMR spectrum of gal-HCA (300 MHz, DMSO-*d*₆).

Figure S18. ¹³C-NMR spectrum of gal-HCA (100 MHz, DMSO-*d*₆).

Figure S19. HR-ESI mass spectrum of gal-HCA.