Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

# **Electronic Supplementary Information**

# Electro-oxidative coupling of Bunte salts with aryldiazonium tetrafluoroborates: A benign access to unsymmetrical sulfoxides

Saurabh Kumar, Shiv Chand, and Krishna Nand Singh\*

Department of Chemistry, Institute of Science, Banaras Hindu University,

Varanasi 221005, India

\*E-mail: knsingh@bhu.ac.in; knsinghbhu@yahoo.co.in

#### **Table of Contents**

| 1. Electrochemical Apparatus / Electrode Materials                                                     | <b>S2</b>    |
|--------------------------------------------------------------------------------------------------------|--------------|
| 2. Cyclic Voltammetry Study                                                                            | <b>S2-S3</b> |
| 3. Copies of <sup>1</sup> H, <sup>19</sup> F, and <sup>13</sup> C Spectra of the Products 3a-3t and 6a | S4-S26       |
| 4. HRMS Data of the TEMPO Adducts 4 and 5                                                              | S27          |
| 5. Crystallographic Data                                                                               | S28-S29      |

### 1. Electrochemical Apparatus / Electrode Materials:

All the reactions and cyclic voltametric (CV) investigations were performed using an IKA ElectraSyn 2.0 system [Figure S1]. The graphite (SK-50) electrode (8 x 52.5 x 2 mm), platinum electrode (8 x 52.5 x 2 mm), glassy carbon electrode, and Ag/AgCl reference electrode were used as furnished in the Electrochemistry Kit by the IKA India Private Limited.



Figure S1. IKA ElectraSyn 2.0 System

### 2. Cyclic Voltammetry Study:

The cyclic voltammetry was recorded at room temperature using glassy carbon as working electrode, Pt as counter electrode, and Ag/AgCl as reference electrode with  $^{n}Bu_{4}NBF_{4}$  (0.1M) as supporting electrolyte in DMF: H<sub>2</sub>O (9:1 v/v) at a scan rate of 100 mV s<sup>-1</sup> by the IKA ElectraSyn 2.0. The concentration of both the benzyl thiosulfate salt (1a) and 4-fluorobenzenediazonium tetrafluoroborate (2d) was maintained to be 10 mM for the cyclic voltammetry investigations.



**Figure S2:** (a) CV of <sup>*n*</sup>Bu<sub>4</sub>NBF<sub>4</sub> (0.1M) in DMF: H<sub>2</sub>O at a scan rate of 100 mVs<sup>-1</sup> vs Ag/AgCl. (b) CV of benzyl thiosulfate salt (**1a**) using 0.1M <sup>*n*</sup>Bu<sub>4</sub>NBF<sub>4</sub> / DMF: H<sub>2</sub>O at a scan rate of 100 mVs<sup>-1</sup> vs Ag/AgCl. (c) CV of 4-fluorobenzenediazonium tetrafluoroborate (**2d**) in 0.1M <sup>*n*</sup>Bu<sub>4</sub>NBF<sub>4</sub> / DMF: H<sub>2</sub>O at a scan rate of 100 mVs<sup>-1</sup> vs Ag/AgCl. (d) CV of the mixture of **1a** with **2d** in 0.1M <sup>*n*</sup>Bu<sub>4</sub>NBF<sub>4</sub> / DMF: H<sub>2</sub>O at a scan rate of 100 mVs<sup>-1</sup> vs Ag/AgCl.

# 3. Copies of <sup>1</sup>H, <sup>19</sup>F, and <sup>13</sup>C Spectra of the Products 3







<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)





<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)





<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)









<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)



Z 7.499 Z 7.483 Z 7.310 Z 7.294









 $\begin{array}{c} 4.136\\ 4.1122\\ 4.1033\\ 4.1033\\ 4.1033\\ 2.857\\ 2.2837\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2.2833\\ 2$ 



<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)





S13







<sup>&</sup>lt;sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)







<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)



∠ 4.146 ∠ 4.120 ∑ 4.027 ₹ 4.003





# <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)





30 20 -50 -60 f1 (ppm) 10 0 -10 -20 -30 -140 -40 -70 -80 -90 -100 -110 -120 -130













S19





#### 7.639 7.632 7.632 7.588 7.588 7.588 7.572 7.478 7.478 7.468 7.478 7.456 7.456 7.438





<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)





130 120 110 100 90 f1 (ppm) 200 150 140 80 20 190 160 70 60 40 30 10 . 180 170 50 0



<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)



#### 7.627 7.616 7.616 7.608 7.559 7.559 7.555 7.437 7.437 7.437 7.437 7.437 7.147















## 4. HRMS Data of TEMPO Adduct 4 and 5:





# 5. Crystallographic Data.

Crystal of compound **3d** was grown by slow evaporation of a solution of the compound in CHCl<sub>3</sub>. All the measurements were obtained on Oxford Xcalibar Diffractometer system (model of the instrument – Xcalibar<sup>TM</sup> E).





Figure S3. View of the molecular structure of 3d.

•

 Table T1. Crystallographic data for compound 3d.

| Crystallized from                           | CHCl <sub>3</sub>                                              |
|---------------------------------------------|----------------------------------------------------------------|
| Empirical formula                           | C <sub>14</sub> H <sub>12</sub> Cl <sub>2</sub> OS             |
| Formula weight [g mol <sup>-1</sup> ]       | 299.20                                                         |
| Crystal colour, habit                       | White, block                                                   |
| Crystal dimensions (mm)                     | 0.41 	imes 0.38 	imes 0.36                                     |
| Temperature [K]                             | 293(2)                                                         |
| Crystal system                              | Monoclinic                                                     |
| Space group                                 | $P2_{1}/n$                                                     |
| a/Å                                         | 5.7326(5)                                                      |
| b/Å                                         | 16.7916(19)                                                    |
| c/Å                                         | 14.3441(12)                                                    |
| α/°                                         | 90                                                             |
| β/°                                         | 92.205(9)                                                      |
| γ/°                                         | 90                                                             |
| V[Å <sup>3</sup> ]                          | 1379.7(2)                                                      |
| Ζ                                           | 4                                                              |
| $Dx[g/cm^3]$                                | 1.4404                                                         |
| μ (MoKα ) [mm <sup>-1</sup> ]               | 5.515                                                          |
| F(000)                                      | 621.6                                                          |
| Radiation                                   | Cu Ka ( $\lambda = 1.54184$ )                                  |
| $2\Theta$ range for data collection/°       | 8.12 to 144.66                                                 |
| Index ranges                                | $-6 \le h \le 7,$<br>-18 $\le k \le 20,$<br>-17 $\le 1 \le 14$ |
| Reflections collected                       | 5008                                                           |
| Independent reflections                     | 2644 [ $R_{int} = 0.0538$ , $R_{sigma} = 0.0769$ ]             |
| Data/restraints/parameters                  | 2644/0/164                                                     |
| Goodness-of-fit on F <sup>2</sup>           | 1.017                                                          |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.0749, wR_2 = 0.1869$                                  |
| Final R indexes [all data]                  | $R_1 = 0.1063, wR_2 = 0.2285$                                  |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.74/-0.46                                                     |