Visible-light-induced decarboxylative cascade cyclization of acryloylbenzamides with *N*-hydroxyphthalimide esters via EDA complexes

Qing Li, Zhi-Qiang Zhu,* Wen-Yi Zhang, Zhang-Gao Le, Zong-Bo Xie*

Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, China *Email:zhuzq@ecut.edu.cn; zbxie@ecut.edu.cn

Supporting Information

Contents

1. General Information	S2
2. Optimization of the Reaction Conditions	S2
3. General Procedure for Synthesis of Starting Materials	S3
4. Radical Trapping Experiments	S4
5. Characterization Data	S6
6. References	S12
7. NMR Spectra of Products	S13

1. General Information

Unless otherwise indicated, all reagents were purchased from commercial distributors and used without further purification. ¹H NMR and ¹³C NMR were recorded at 400 MHz and 500 MHz, 100 MHz and 125 MHz, respectively, using tetramethylsilane as an internal reference. High-resolution mass spectra (HRMS) were measured on a quadrupole time-of-flight (Q-TOF) mass spectrometer instrument with an electrospray ionization (ESI) source. UV-Vis spectra were obtained using a UV-5500 spectrometer. Melting points were uncorrected. Blue Led light were purchased from Ouying Lighting Co., Ltd. (18 W/5313 A/460-465 nm), The distance between the light source and the irradiation instrument is 8 cm. Flash column chromatography was performed over silica gel 200-300 mesh. Thin-layer chromatography (TLC) was carried out with silica gel GF254 plates. *N*-methacryloylbenzamides **1** and *N*-hydroxyphthalimide esters **2** were prepared according to the previous reported protocols.^[1-2]

2. Optimization of the Reaction Conditions

Table S1. Screening of solvents^a

Entry	I source	P source	Solvent	Yield $(\%)^b$
1	NaI	PPh ₃	DCM	trace
2	NaI	PPh ₃	THF	86
3	NaI	PPh ₃	Acetone	81
4	NaI	PPh ₃	MeCN	72
5	NaI	PPh ₃	Dioxane	trace
6	NaI	PPh ₃	MeOH	trace
7	NaI	PPh ₃	DMF	79
8	NaI	PPh ₃	DMSO	82

^{*a*} Reaction condition: **1a** (0.2 mmol), **2a** (0.3 mmol), NaI (0.3 mmol), PPh₃ (20 mol %), solvent (2 mL), under irradiation of 18 W blue LEDs for 17 h. ^{*b*} Isolated yields based on **1a**.

	+	0 // / N-0 / - 0 0 18 W 2a	Nal (x mol%) PPh ₃ (y mol %) THF, N ₂ , rt / 460-465 nm LEDs	O 3aa
Entry	I source	P source	Solvent	Yield $(\%)^b$
1	KI	PPh ₃	THF	trace
2	NH ₄ I	PPh ₃	THF	26
3	ⁿ Bu ₄ NI	PPh ₃	THF	74
4	NaI	PCy ₃	THF	22
5	NaI	$P(C_6F_5)_3$	THF	trace
6 ^c	NaI	PPh ₃	THF	83
7^d	NaI	PPh ₃	THF	92
$8^{d,e}$	NaI	PPh ₃	THF	79
$8^{d,f}$	NaI	PPh ₃	THF	68
$10^{d,g}$	NaI	PPh ₃	THF	89
$11^{d,h}$	NaI	PPh ₃	THF	47
12^{i}	NaI	PPh ₃	THF	42
13 ^j	NaI	PPh ₃	THF	90
14^k	NaI	PPh ₃	THF	0
15^{l}	NaI	PPh ₃	THF	0
16 ^m	NaI	PPh ₃	THF	0

Table S2. Screening of catalytic system and others^a

^{*a*} Reaction condition: **1a** (0.2 mmol), **2a** (0.3 mmol), NaI (1.5 equiv), PPh₃ (20 mol %), THF (2 mL), under irradiation of 18 W blue LEDs for 17 h. ^{*b*} Isolated yields based on **1a**. ^{*c*} NaI (1 equiv.). ^{*d*} NaI (1.2 equiv.). ^{*e*} PPh₃ (10 mol %). ^{*f*} **2a** (0.2 mmol). ^{*g*} **2a** (0.4 mmol). ^{*h*} 18 W white LEDs. ^{*i*} NaI (0.2 equiv), 17 hrs. ^{*j*} NaI (0.2 equiv), 72 hrs. ^{*k*} Without blue LEDs. ^{*l*} Without NaI. ^{*m*} Without PPh₃.

3. General Procedures for Synthesis of Starting Materials

Synthesis of acryloylbenzamides 1. The acyl chloride (1 equiv.) was dissolved in CH_2Cl_2 (2 M). Amine hydrochloride (2 equiv.) and Et_3N (2 equiv.) were added and the mixture was stirred at 0 °C until consumption of acyl chloride. The corresponding amide was isolated after addition of 5 mL of saturated Na₂CO₃ solution and extraction with CH_2Cl_2 . It was used without any purification in the next step. A round bottom flask was charged with amide (1.0 equiv.), DMAP (0.1 equiv.), Et_3N (2 equiv.) in CH_2Cl_2 (0.5 M). Then, acryloyl chloride (2 equiv.) was added slowly to the reaction mixture at 0 °C. After that, the residue was stirred at room temperature for 4-6 hrs.

The reaction was completed by TLC monitoring, the organic phase was separated, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by column chromatography on silica gel affording the corresponding product.

Scheme S1. Synthesis of acryloylbenzamides 1

Synthesis of *N*-hydroxyphthalimide esters 2. The corresponding alkyl carboxylic acid (10 mmol, 1.0 equiv.), *N*-hydroxyphthalimide (11 mmol, 1.1 equiv.), and 4-dimethylaminopyridine (1.0 mmol, 10 mol %) were mixed in a flask with a magnetic stirring bar. Dry CH_2Cl_2 (40 mL) was added. Then a solution of *N*,*N'*-dicyclohexylcarbodiimide (11.0 mmol, 1.1 eq.) in CH_2Cl_2 (15 mL) was added slowly at room temperature. The reaction mixture was monitored by TLC at room temperature. After completed, the white precipitate was filtered off and the solution was concentrated under vacuum. The corresponding redox active esters were purified by column chromatography on silica gel (CH_2Cl_2 or petroleum ether/ethyl acetate as eluent).

Scheme S2. Synthesis of N-hydroxyphthalimide esters 2

4. Radical Trapping Experiments

Figure S1. HR-MS Spectra of TEMPO-adduct.

Figure S2. HR-MS Spectra of BHT-adduct.

5. Characterization Data

46.06, 33.62, 32.01, 30.73, 27.30.

2,4-Dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3aa)

Yield 92% (47.5 mg); white solid; mp 90.1-91.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, *J*=7.9, 1.5 Hz, 1H), 7.59 (td, *J*=7.6, 1.5 Hz, 1H), 7.47-7.39 (m, 2H), 3.37 (s, 3H), 2.49 (d, *J*=14.3 Hz, 1H), 2.02 (d, *J*=14.3 Hz, 1H), 1.58 (s, 3H), 0.53 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 176.83, 164.57, 144.14, 133.41, 128.98, 127.35, 126.86, 124.39, 55.48,

2,4,7-Trimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ab)

Yield 94% (51.5 mg); white solid; mp 95.3-97.6 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05-8.01 (m, 1H), 7.41-7.34 (m, 1H), 7.32 (d, *J*=8.0 Hz, 1H), 3.35 (d, *J*=1.1 Hz, 3H), 2.46 (dd, *J*=14.3, 1.0 Hz, 1H), 2.40 (s, 3H), 1.98 (dd, *J*=14.3, 0.9 Hz, 1H), 1.53 (d, *J*=1.1 Hz, 3H), 2.40 (s, 3H), 1.98 (dd, *J*=14.3, 0.9 Hz, 1H), 1.53 (d, *J*=1.1 Hz, 3H), 2.40 (s, 3H), 1.98 (dd, *J*=14.3, 0.9 Hz, 1H), 1.53 (d, *J*=1.1 Hz, 3H), 2.40 (s, 3H), 1.98 (dd, *J*=14.3, 0.9 Hz, 1H), 1.53 (d, *J*=1.1 Hz, 3H), 2.40 (s, 3H), 1.98 (dd, *J*=14.3, 0.9 Hz, 1H), 1.53 (d, *J*=1.1 Hz, 3H), 2.40 (s, 3H), 1.98 (dd, *J*=14.3, 0.9 Hz, 1H), 1.53 (d, *J*=1.1 Hz, 3H), 2.40 (s, 3H), 1.98 (dd, *J*=14.3, 0.9 Hz, 1H), 1.53 (d, *J*=1.1 Hz, 3H), 1.53 (d, *J*=1.1 Hz), 3H (dd, *J*=1.1 Hz), 3H (dd), 3H (dd),

3H), 0.52 (d, *J*=1.2 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 177.01, 164.71, 141.21, 137.16, 134.48, 128.93, 126.79, 124.11, 55.35, 45.76, 33.63, 31.97, 30.74, 27.27, 21.08.

2,4,8-Trimethyl-4-neopentylisoquinoline-1,3(2*H*,4*H*)-dione (3ac)

Yield 85% (46.6 mg); white solid; mp 86.6-89.0 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.42 (td, *J*=7.7, 1.2 Hz, 1H), 7.33 (d, *J*=7.9 Hz, 1H), 7.22-7.18 (m, 1H), 3.34 (d, *J*=1.4 Hz, 3H), 2.79 (s, 3H), 2.48 (dd, *J*=14.3, 1.3 Hz, 1H), 1.99 (dd, *J*=14.3, 1.2 Hz, 1H), 1.57 (d, *J*=1.4 Hz, Hz, Hz), 1.57 (d, *J*=1.4 Hz), 1.57 (d, J=1.4 Hz), 1.57 (d, J

3H), 0.54 (d, *J*=1.5 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 176.55, 165.10, 145.54, 142.56, 132.22, 131.30, 125.24, 122.79, 55.90, 45.99, 34.05, 32.03, 30.74, 27.27, 24.34.

2,4,6-Trimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ad)

Yield 65% (35.4 mg); white solid; mp 124.1-126.1 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.12 (d, *J*=7.8 Hz, 1H), 7.21 (d, *J*=8.4 Hz, 2H), 3.35 (d, *J*=1.4 Hz, 3H), 2.50-2.46 (m, 1H), 2.43 (s, 3H), 2.00 (dd, *J*=14.2, 1.1 Hz, 1H), 1.56 (d, *J*=1.3 Hz, 3H), 0.53 (d,

J=1.4 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 177.00, 164.59, 144.16, 144.09, 129.01, 128.45, 127.25, 121.93, 55.43, 45.98, 33.59, 32.03, 30.74, 27.21, 22.04.

7-Chloro-2,4-dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ae)

Yield 75% (44.0 mg); white solid; mp 105.2-107.1 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.21 (dd, *J*=2.4, 1.2 Hz, 1H), 7.54 (ddd, *J*=8.6, 2.4, 1.1 Hz, 1H), 7.39 (d, *J*=8.4 Hz, 1H), 3.36 (d, *J*=1.2 Hz, 3H), 2.49 (dd, *J*=14.3, 1.1 Hz, 1H), 1.98 (d, *J*=14.4 Hz,

1H), 1.57-1.56 (m, 0H), 1.55 (d, *J*=1.1 Hz, 3H), 1.23 (s, 0H), 0.57 (d, *J*=1.1 Hz, 1H), 0.54 (d, *J*=1.2 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 176.51, 163.64, 142.77, 133.85, 133.81, 128.87, 128.78, 126.18, 55.65, 46.14, 33.84, 32.28, 31.06, 27.72.

6-(tert-Butyl)-2,4-dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3af)

Yield 74% (46.5 mg); white solid; mp 138.7-141.6 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.17-8.14 (m, 1H), 7.43 (d, *J*=8.0 Hz, 2H), 3.35 (d, *J*=1.4 Hz, 3H), 2.51 (d, *J*=14.3 Hz, 1H), 2.02 (d, *J*=14.3 Hz, 1H), 1.57 (s, 3H), 1.33 (d, *J*=1.4 Hz, 9H), 0.51 (d,

J=1.5 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 177.43, 164.74, 157.12, 143.76, 129.08, 124.90, 124.00, 122.10, 55.54, 46.49, 35.60, 33.99, 32.20, 31.35, 30.98, 27.43.

6-Fluoro-2,4-dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ag)

Yield 90% (49.8 mg); white solid; mp 170.6-172.0 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.27 (ddd, *J*=9.6, 5.8, 1.2 Hz, 1H), 7.14-7.08 (m, 2H), 3.35 (d, *J*=1.3 Hz, 3H), 2.50 (dd, *J*=14.3, 1.3 Hz, 1H), 1.95 (dd, *J*=14.4, 1.2 Hz, 1H), 1.57 (d, *J*=1.4 Hz, 3H),

0.55 (d, *J*=1.4 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 176.26, 167.11, 165.08, 163.58, 147.28, 132.02, 120.92, 55.60, 46.28, 33.58, 32.05, 30.71, 27.31.

6-Chloro-2,4-dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ah)

Yield 58% (34.1 mg); white solid; mp 184.2-185.0 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.18 (dd, *J*=8.5, 1.2 Hz, 1H), 7.44-7.37 (m, 2H), 3.35 (d, *J*=1.3 Hz, 3H), 2.50 (dd, *J*=14.4, 1.2 Hz, 1H), 1.97 (dd, *J*=14.4, 1.0 Hz, 1H), 1.57 (d, *J*=1.2 Hz, 3H),

0.55 (d, *J*=1.3 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 175.85, 163.43, 145.63, 139.87, 130.38, 127.75, 126.76, 122.66, 55.24, 45.87, 33.26, 31.79, 30.50, 27.11.

6-Bromo-2,4-dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ai)

Yield 67% (44.9 mg); white solid; mp 167.2-168.6 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 (dd, J = 8.4, 1.0 Hz, 1H), 7.60 – 7.53 (m, 2H), 3.35 (d, J = 1.0 Hz, 3H), 2.50 (dd, J = 14.5, 1.0 Hz, 1H), 1.99 – 1.95 (m, 1H), 1.57 (d, J = 1.0 Hz, 3H), 0.55 (d, J =

1.1 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 176.30, 164.08, 146.21, 131.17, 130.90, 130.30, 129.05, 123.56, 55.73, 46.34, 33.78, 32.31, 31.02, 27.64.

Methyl 2,4-dimethyl-4-neopentyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinoline-6-carboxylate (3aj)

Yield 95% (60.1 mg); white solid; mp 121.1-123.0 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.32 (dd, *J*=8.2, 1.4 Hz, 1H), 8.13 (d, *J*=1.6 Hz, 1H), 8.04 (dd, *J*=8.2, 1.6 Hz, 1H), 3.96 (d, *J*=1.4 Hz, 3H), 3.38 (d, *J*=1.4 Hz, 3H), 2.52 (dd, *J*=14.4,

1.4 Hz, 1H), 2.09 (dd, *J*=14.4, 1.3 Hz, 1H), 1.61 (d, *J*=1.4 Hz, 3H), 0.52 (d, *J*=1.5 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 176.10, 165.91, 163.57, 144.07, 134.08, 129.04, 128.10, 127.72, 127.43, 55.16, 52.56, 45.93, 33.29, 31.77, 30.52, 27.22.

2,4-Dimethyl-4-neopentyl-6-phenylisoquinoline-1,3(2H,4H)-dione (3ak)

Yield 93% (62.4 mg); white solid; mp 90.9-92.5 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.32 (d, J = 8.6 Hz, 1H), 7.65 – 7.59 (m, 4H), 7.49 (t, J = 7.6 Hz, 2H), 7.45 – 7.40 (m, 1H), 3.40 (s, 3H), 2.56 (d, J = 14.4 Hz, 1H), 2.11 (d, J = 14.4 Hz, 1H), 1.63 (s,

3H), 0.58 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 177.09, 164.64, 146.38, 144.71, 140.17, 129.83, 129.40, 128.85, 127.65, 126.60, 125.76, 123.42, 55.68, 46.47, 33.94, 32.29, 31.07, 27.55.

2-(4-Methyl-4-neopentyl-1,3-dioxo-3,4-dihydroisoquinolin-2(1*H*)-yl)acetonitrile (3al)

Yield 80% (45.5 mg); white solid; mp 165.1-167.3 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.27 (dd, *J*=7.9, 1.5 Hz, 1H), 7.66 (td, *J*=7.7, 1.5 Hz, 1H), 7.51-7.44 (m, 2H), 4.94-4.84 (m, 2H), 2.54 (d, *J*=14.4 Hz, 1H), 2.08 (d, *J*=14.5 Hz, 1H), 1.62 (s, 3H),

0.55 (d, *J*=1.1 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 175.82, 163.30, 144.12, 134.66, 129.66, 128.09, 127.48, 123.50, 114.60, 55.44, 46.97, 34.00, 32.31, 31.11, 27.91.

2-Cyclobutyl-4-methyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3am)

Yield 76% (45.3 mg); white solid; mp 92.7-94.2 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.20 (dd, J = 7.8, 1.5 Hz, 1H), 7.55 (td, J = 7.7, 1.5 Hz, 1H), 7.42 – 7.36 (m, 2H), 5.19 (p, J = 8.9 Hz, 1H), 2.79 (dp, J = 12.0, 9.5 Hz, 2H), 2.48 (d, J = 14.3 Hz, 1H), 2.35 –

2.26 (m, 2H), 1.99 – 1.87 (m, 2H), 1.82 – 1.71 (m, 1H), 1.55 (s, 3H), 0.53 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 176.71, 164.63, 143.71, 132.88, 128.61, 127.01, 126.52, 124.82, 54.89, 47.88, 46.11, 33.48, 31.79, 30.65, 27.85, 27.80, 15.40.

2-Cyclohexyl-4-methyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3an)

Yield 75% (48.8 mg); white solid; mp 96.2-98.3 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.21 (dt, *J* = 7.9, 1.3 Hz, 1H), 7.54 (tt, *J*=8.2, 1.3 Hz, 1H), 7.42-7.36 (m, 2H), 4.81 (tt, *J*=12.2, 3.8 Hz, 1H), 2.54-2.48 (m, 1H), 2.39 (qd, *J*=12.5, 3.7 Hz, 2H), 1.98

(d, J=14.3 Hz, 1H), 1.86-1.78 (m, 2H), 1.68-1.62 (m, 2H), 1.62-1.56 (m, 1H), 1.54-1.52 (m, 3H), 1.36 (qq, J=13.4, 3.8, 3.3 Hz, 2H), 1.29-1.18 (m, 1H), 0.54 (d, J=1.1 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 176.61, 164.43, 143.69, 132.76, 128.76, 126.98, 126.57, 124.75, 54.41, 53.64, 46.13, 33.98, 31.77, 30.78, 28.61, 28.47, 26.35, 26.30, 25.30.

4-Methyl-4-neopentyl-2-phenylisoquinoline-1,3(2H,4H)-dione (3ao)

Yield 82% (52.7 mg); white solid; mp 159.2-160.3 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.29 (dd, *J*=7.9, 1.5 Hz, 1H), 7.65 (td, *J*=7.6, 1.5 Hz, 1H), 7.56-7.41 (m, 5H), 7.18 (dd, *J*=8.2, 1.3 Hz, 2H), 2.59 (d, *J*=14.4 Hz, 1H), 2.11 (d, *J*=14.4 Hz, 1H), 1.69 (s, 3H), 0.68

(s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 176.35, 164.28, 143.93, 135.47, 134.54, 133.45, 129.17, 129.10, 128.40, 128.04, 127.25, 126.94, 124.13, 123.72, 54.53, 46.59, 34.02, 31.2, 30.83.

4-Isobutyl-2,4-dimethylisoquinoline-1,3(2*H*,4*H*)-dione (3ba)

Yield 70% (34.5 mg); yellow oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.24 (dt, *J*=8.0, 1.4 Hz, 1H), 7.65-7.59 (m, 1H), 7.44-7.38 (m, 2H), 3.37 (d, *J*=1.3 Hz, 3H), 2.31 (ddd, *J*=13.9, 8.1, 1.2 Hz, 1H), 1.92 (ddd, *J*=14.0, 5.1, 1.2 Hz, 1H), 1.56 (d, *J*=1.4 Hz, 3H), 1.18 (dtdd, *J*=8.2,

6.6, 5.1, 1.4 Hz, 1H), 0.61 (dd, *J*=6.7, 1.3 Hz, 3H), 0.57 (dd, *J*=6.7, 1.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.99, 164.59, 143.91, 133.88, 128.96, 127.29, 125.90, 124.72, 51.04, 46.99, 31.71, 27.28, 25.65, 24.04, 22.42.

2,4-Dimethyl-4-(2-methylhexyl)isoquinoline-1,3(2H,4H)-dione (3ca)

Yield 71% (41.0 mg); yellow oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.24 (ddd, *J*=8.1, 3.1, 1.3 Hz, 1H), 7.65-7.57 (m, 1H), 7.44-7.36 (m, 2H), 3.37 (s, 3H), 2.35 (dd, *J*=14.0, 5.8 Hz, 1H), 2.22 (dd, *J*=14.0, 8.4 Hz, 0H), 2.00 (dd, *J*=14.0, 3.0 Hz, 0H), 1.79 (dd, *J*=13.9,

6.1 Hz, 1H), 1.58 (d, *J*=5.5 Hz, 3H), 1.14-0.87 (m, 3H), 0.76 (dt, *J*=8.7, 6.9 Hz, 3H), 0.55 (d, *J*=6.1 Hz, 1H), 0.40 (d, *J*=6.6 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 176.86, 176.63, 164.37, 164.32, 143.89, 143.54, 133.60, 133.53, 128.64, 127.03, 127.01, 125.73, 125.61, 124.57, 124.46, 50.24, 49.02, 46.91, 46.56, 37.52, 36.53, 31.22, 30.51, 30.07, 29.75, 28.56, 28.42, 27.04, 26.96, 22.54, 22.51, 20.57, 19.39, 13.83, 13.81.

4-(Cyclohexylmethyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3da)

Yield 80% (45.7 mg); yellow oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.25 (dd, *J*=7.9, 1.5 Hz, 1H), 7.62 (td, *J*=7.6, 1.4 Hz, 1H), 7.45-7.38 (m, 2H), 3.38 (t, *J*=1.2 Hz, 3H), 2.32 (ddd, *J*=14.2, 7.5, 1.5 Hz, 1H), 1.89 (ddd, *J*=14.1, 4.7, 1.4 Hz, 1H), 1.55 (d, *J*=1.5 Hz, 3H), 1.51-1.42 (m, 3H), 1.26-1.21 (m, 1H), 1.17-1.10 (m, 1H), 1.00-0.68 (m, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 177.03, 164.67, 144.03, 133.89, 128.98, 127.28, 125.87, 124.62, 49.67, 46.76, 34.98, 34.39, 33.07, 31.87, 27.33, 26.15, 26.12, 26.07.

4-(Cyclopentylmethyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ea)

Yield 71% (38.6 mg); yellow oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.26-8.21 (m, 1H), 7.61 (td, *J*=7.6, 1.5 Hz, 1H), 7.41 (t, *J*=7.5 Hz, 2H), 3.37 (s, 3H), 2.37 (dd, *J*=13.8, 7.3 Hz, 1H), 2.03 (dd, *J*=13.8, 5.1 Hz, 1H), 1.60 (s, 3H), 1.49-1.33 (m, 3H), 1.30-1.14 (m, 4H), 0.93 (dq, *J*=12.0, 8.7 Hz, 1H), 0.73 (ddt, *J*=12.1, 9.0, 4.9 Hz, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 177.00, 164.64, 144.09, 133.84, 128.84, 127.29, 125.86, 124.81, 49.59, 47.48, 37.49, 33.69, 32.40, 30.38, 27.29, 25.01, 24.73.

4-(Cyclobutylmethyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3fa)

Yield 43% (22.0 mg); yellow oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (dd, *J*=7.9, 1.4 Hz, 1H), 7.64-7.59 (m, 1H), 7.44-7.38 (m, 2H), 3.35 (d, *J*=1.0 Hz, 3H), 2.34 (dd, *J*=13.5, 7.9 Hz, 1H), 1.95 (dd, *J*=13.5, 6.3 Hz, 1H), 1.77 (dt, *J*=15.0, 7.7 Hz, 1H), 1.67 (qd, *J*=6.7,

6.2, 4.2 Hz, 1H), 1.63-1.49 (m, 6H), 1.48-1.40 (m, 1H), 1.26 (t, *J*=10.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 176.76, 164.65, 143.79, 133.84, 128.75, 127.32, 125.75, 124.88, 51.45, 46.96, 32.99, 29.03, 28.60, 28.50, 27.30, 18.80.

4-(Cyclopent-3-en-1-ylmethyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ga)

Yield 70% (37.6 mg); yellow oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.24 (dd, *J*=8.1, 1.6 Hz, 1H), 7.65-7.60 (m, 1H), 7.42 (ddd, *J*=7.1, 6.1, 1.2 Hz, 2H), 5.50-5.40 (m, 2H), 3.38 (s, 3H), 2.51 (dd, *J*=13.7, 7.6 Hz, 1H), 2.15-2.04 (m, 2H), 1.90-1.79 (m, 2H), 1.77-1.67 (m, 1H), 1.64 (s,

3H), 1.59-1.51 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) & 176.90, 164.56, 143.83,

133.91, 129.90, 129.89, 128.89, 127.42, 125.86, 124.87, 49.92, 47.54, 39.48, 38.50, 35.81, 29.93, 27.31.

tert-Butyl-2-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)pyrrolidine-1-carboxylate (3ha)

Yield 69% (51.0 mg); white solid; mp 106.7.1-108.8 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.25-8.21 (m, 1H), 7.61 (t, *J*=7.6 Hz, 1H), 7.42 (t, *J*=7.5 Hz, 2H), 3.35 (s, 3H), 3.05 (dt, *J*=11.7, 6.1 Hz, 1H), 2.11-1.72 (m, 1H), 1.60 (s, 4H), 1.45 (t, *J*=14.3 Hz, 4H), 1.34 (s, 11H); ¹³C NMR (126 MHz, CDCl₃) δ

168.04, 164.30, 154.41, 143.55, 134.04, 133.52, 132.57, 128.90, 127.15, 124.96, 123.32, 45.76, 28.30, 27.07.

Methyl4-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)bicyclo[2.2.2]octane-1-carboxylate (3ia)

144.13, 133.53, 129.08, 127.47, 126.61, 124.12, 53.48, 51.67, 45.51, 38.16, 33.99, 32.00, 31.25, 28.39, 27.36.

6. References

[1] Kong, W.; Casimiro, M.; Fuentes, N.; Merino, E.; Nevado, C., Angew. Chem. Int.
Ed. 2013, 52, 13086-13090.

[2] Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y., Science 2019, 363, 1429-1434.

7. NMR Spectra of Products

2,4-Dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3aa)

2,4,7-Trimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ab)

2,4,8-Trimethyl-4-neopentylisoquinoline-1,3(2*H*,4*H*)-dione (3ac)

2,4,6-Trimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ad)

7-Chloro-2,4-dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ae)

6-(*tert*-Butyl)-2,4-dimethyl-4-neopentylisoquinoline-1,3(2*H*,4*H*)-dione (3af)

6-Fluoro-2,4-dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ag)

6-Chloro-2,4-dimethyl-4-neopentylisoquinoline-1,3(2*H*,4*H*)-dione (3ah)

6-Bromo-2,4-dimethyl-4-neopentylisoquinoline-1,3(2H,4H)-dione (3ai)

Methyl 2,4-dimethyl-4-neopentyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinoline-6-carboxylate (3aj)

2,4-Dimethyl-4-neopentyl-6-phenylisoquinoline-1,3(2*H*,4*H*)-dione (3ak)

2-(4-Methyl-4-neopentyl-1,3-dioxo-3,4-dihydroisoquinolin-2(1*H*)-yl)acetonitrile (3al)

S26

2-Cyclohexyl-4-methyl-4-neopentylisoquinoline-1,3(2*H*,4*H*)-dione (3an)

4-Methyl-4-neopentyl-2-phenylisoquinoline-1,3(2H,4H)-dione (3ao)

80 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

2,4-dimethyl-4-(pent-4-en-1-yl)isoquinoline-1,3(2H,4H)-dione (3ba)

4-heptyl-2,4-dimethylisoquinoline-1,3(2*H*,4*H*)-dione (3ca)

4-Isobutyl-2,4-dimethylisoquinoline-1,3(2*H*,4*H*)-dione (3da)

2,4-Dimethyl-4-(2-methylhexyl)isoquinoline-1,3(2H,4H)-dione (3ea)

4-(Cyclohexylmethyl)-2,4-dimethylisoquinoline-1,3(2*H*,4*H*)-dione (3fa)

4-(Cyclopentylmethyl)-2,4-dimethylisoquinoline-1,3(2*H*,4*H*)-dione (3ga)

4-(Cyclobutylmethyl)-2,4-dimethylisoquinoline-1,3(2*H*,4*H*)-dione (3ha)

4-(Cyclopent-3-en-1-ylmethyl)-2,4-dimethylisoquinoline-1,3(2*H*,4*H*)-dione (3ia)

tert-Butyl-2-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)pyrrolidine-1-carboxylate (3ja)

Methyl4-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)bicyclo[2.2.2]octane-1-carboxylate (3ka)

S38