Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Iodine/DMSO mediated one pot access of 1-aryl-2-(pyrazol-5-yl)ethane-1,2-diones via domino reaction from functionalized pent-2-ene-1,5-diones

Trisha Ghatak,^a Chandan Shah,^a Ismail Althagafi,^b Nand Gopal Giri,^c Mahendra Nath,^a Ramendra Pratap^{a,*}

- ^a Department of Chemistry, University of Delhi, North Campus, Delhi, India-110007.
- [Phone number: +911127666646; Email ID: ramendrapratap@gmail.com]
- ^b Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia-21955
- ^c Department of Chemistry, Shivaji College, University of Delhi, Raja Garden, New Delhi-110027, India

Table of Contents	Page no.	
X-ray Crystallographic Data for compound 3m	2-4	
¹ H NMR and ¹³ C NMR spectra of compounds	5-51	

X-ray Crystallographic Data for compound 3m

Crystallization procedure (solvent evaporation method): Slow evaporation of a saturated solution of 2m in chloroform at room temperature produced red colored cube shaped crystals suitable for X-ray analysis. Single crystal diffraction data for 2m were collected at room temperature with an Oxford XCalibur CCD diffractometer equipped with a graphite monochromatic Mo-Ka radiation ($\lambda = 0.71073$ Å).¹ Data reduction was performed with the CrysAllis-PRO.¹ The experimental data was processed and analysed using the software package Olex2.² The structure was solved with the olex,² solve program,³ and by employing the charge flipping algorithm. The refined structure was obtained using the olex 2 where refine refinement package,⁴ utilizes Gauss-Newton minimization.

The ORTEP diagram shows the compound crystallizes in a triclinic system having four molecules in the unit cell and shows one 2-methoxyphenyl ring planer with pyrazole and other is perpendicular to pyrazole. The C=O group and NH of the pyrazole ring forms an intermolecular hydrogen bonding (**Figure 1**). The hydrogen atoms were placed at the calculated positions and included in the last cycles of the refinement. Crystallographic data collection and structure solution parameters are summarized in **Table 1**.

Figure 1. ORTEP diagram of 3m; thermal ellipsoids are drawn at the 50% probability level.

Empirical formula	$C_{19}H_{16}N_2O_4$
CCDC	2278961
Formula weight	336.34
Temperature/K	298
Crystal system	triclinic
Space group	P-1
a/Å	8.3993(5)
b/Å	19.2977(9)
c/Å	11.0438(6)
α/°	90
β/°	107.107(6)
γ/°	90
Volume/Å ³	1710.86(17)
Ζ	4
$\rho_{calc}g/cm^3$	1.306
μ/mm ⁻¹	0.093
F(000)	704.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.2
Radiation	Mo K α (λ = 0.71073)
2Θ range for data collection/°	6.602 to 62.242
Index ranges	$-10 \le h \le 11, -27 \le k \le 25, -14 \le 1 \le 15$
Reflections collected	20045
Independent reflections	8249 [Rint = 0.0375, Rsigma = 0.0538]
Data/restraints/parameters	8249/0/459
Goodness-of-fit on F ²	1.039
'Final R indexes [I>=2σ (I)]	R1 = 0.0492, wR2 = 0.1181
Final R indexes [all data]	R1 = 0.0958, wR2 = 0.1348

Table 1. Crystal data and structure refinement for 3m

Largest diff. peak/hole / e Å ⁻³	0.16/-0.19

References

- 1. Oxford Diffraction Ltd. CrysAlisPro, v. 1.171.33.49b, 2009.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 3. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.
- 4. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

¹H NMR and ¹³C NMR spectra of (Z)-3-(methylthio)-1,5-diphenylpent-2-ene-1,5-dione (1a)

5

¹H NMR and ¹³C NMR spectra of (Z)-1,5-bis(4-bromophenyl)-3-(methylthio)pent-2-ene-1,5-dione (1b)

¹H NMR and ¹³C NMR spectra of (Z)-3-(methylthio)-1,5-di-p-tolylpent-2-ene-1,5-dione (1c)

¹H NMR and ¹³C NMR spectra of (Z)-1,5-bis(4-flurophenyl)-3-(methylthio)pent-2-ene-1,5-dione (1d)

¹H NMR and ¹³C NMR spectra of (Z)-1,5-bis(4-methoxyphenyl)-3-(methylthio)pent-2ene-1,5-dione (1e)

¹H NMR and ¹³C NMR spectra of (Z)-1,5-bis(4-chlorophenyl)-3-(methylthio)pent-2-ene-1,5-dione (1f)

¹H NMR and ¹³C NMR spectra of (Z)-3-(methylthio)-1,5-di(naphthalene-2-yl)-pent-2ene-1,5-dione (1g)

¹H NMR and ¹³C NMR spectra of (Z)-1,5-di(furan-3-yl)-3-(methylthio)pent-2-ene-1,5-dione (1h)

¹H NMR and ¹³C NMR spectra of (Z)-1,5-di([1,1'-biphenyl]-4-yl)-3-(methylthio)- pent-2ene-1,5-dione (1i)

¹H NMR and ¹³C NMR spectra of (Z)-1,5-bis(2-chlorophenyl)-3-(methylthio)pent-2-ene-1,5-dione (1j)

¹H NMR and ¹³C NMR spectra of (Z)-3-(methylthio)-1,5-di(naphthalene-1-yl)-pent-2ene-1,5-dione (1k)

¹H NMR and ¹³C NMR spectra of (Z)-1,5-bis(3-bromophenyl)-3-(methylthio)pent-2-ene-1,5-dione (11)

¹H NMR and ¹³C NMR spectra of (Z)-1,5-bis(2-methoxyphenyl)-3-(methylthio)pent-2-ene-1,5-dione (1m)

¹H NMR and ¹³C NMR spectra of Z-5-(4-methoxyphenyl)-3-(methylthio)-1-phenylpent-2-ene-1,5-dione (1n)

¹H NMR and ¹³C NMR spectra of 1-(phenyl)-2-(3-(phenyl-1*H*-pyrazol-5-yl) ethan-1-one (2a)

¹H NMR and ¹³C NMR spectra of 1-(4-bromophenyl)-2-(3-4-bromophenyl)-1*H*-pyrazol-5-yl) ethan-1-one (2b)

¹H NMR and ¹³C NMR spectra of 1-(*p*-tolyl)-2-(3-(*p*-tolyl)-1*H*-pyrazol-5-yl) ethan-1-one (2c)

¹H NMR and ¹³C NMR spectra of 1-(4-flurophenyl)-2-(3-4-flurophenyl)-1*H*-pyrazol-5yl) ethan-1-one (2d)

¹H NMR and ¹³C NMR spectra of 1-(4-methoxyhenyl)-2-(3-4-methoxyphenyl)-1*H*pyrazol-5-yl) ethan-1-one (2e)

¹H NMR and ¹³C NMR spectra of 1-(4-chlorohenyl)-2-(3-4-chlorophenyl)-1*H*-pyrazol-5yl) ethan-1-one (2f)

¹H NMR and ¹³C NMR spectra of 1-(2-methoxyhenyl)-2-(3-2-methoxyphenyl)-1*H*pyrazol-5-yl) ethan-1-one (2h)

¹H NMR and ¹³C NMR spectra of 1-phenyl-2-(3-phenyl-1*H*-pyrazol-5-yl)ethane-1,2dione (3a)

¹H NMR and ¹³C NMR spectra of 1-(4-bromophenyl)-2-(3-(4-bromophenyl)-1*H*-pyrazol-5-yl)ethane-1,2-dione (3b)

¹H NMR and ¹³C NMR spectra of 1-(*p*-tolyl)-2-(3-(*p*-tolyl)-1*H*-pyrazol-5-yl)ethane-1,2dione (3c)

¹H NMR and ¹³C NMR spectra of 1-(4-flurophenyl)-2-(3-(4-flurophenyl)-1*H*-pyrazol-5-yl)ethane-1,2-dione (3d)

¹H NMR and ¹³C NMR spectra of 1-(4-methoxyphenyl)-2-(3-(4-methoxyphenyl)-1*H*pyrazol-5-yl) ethane-1,2-dione (3e)

1 190.72

X : parts per Million : 13C

160.13

77.32 77.00 76.68

55.65 55.36

¹H NMR and ¹³C NMR spectra of 1-(4-chlorophenyl)-2-(3-(4-chlorophenyl)-1*H*-pyrazol-5-yl)ethane-1,2-dione (3f)

¹H NMR and ¹³C NMR spectra of 1-(naphthalene-2-yl)-2-(3-(napthalen-2-yl)-1*H*-pyrazol-5-yl)ethane-1,2-dione (3g)

¹H NMR and ¹³C NMR spectra of 1-(furan-2-yl)-2-(3-(furan-2-yl)-1H-pyrazol-5-yl) ethane-1,2-dione (3h)

¹H NMR and ¹³C NMR spectra of 1-([1,1-biphenyl]-4-yl)-2-(3-([1,1-biphenyl]-4-yl)-1*H*-pyrazol-5-yl)ethane-1,2-dione (3i)

X : parts per Million : Carbon13

¹H NMR and ¹³C NMR spectra of 1-(naphthalene-1-yl)-2-(3-(napthalen-1-yl)-1*H*-pyrazol-5-yl)ethane-1,2-dione (3k)

¹H NMR and ¹³C NMR spectra of 1-(3-bromophenyl)-2-(3-(3-bromophenyl)-1*H*-pyrazol-5-yl)ethane-1,2-dione (3l)

¹H NMR and ¹³C NMR spectra of 1-(2-methoxyphenyl)-2-(3-(2-methoxyphenyl)-1*H*-pyrazol-5-yl)ethane-1,2-dione (3m)

¹H NMR and ¹³C NMR spectra of 1-(1-phenyl-3-(*p*-tolyl)-1*H*-pyrazol-5-yl)-2-(*p*-tolyl)ethane-1,2-dione (4a)

¹H NMR and ¹³C NMR spectra of 1-(1-phenyl-3-(*p*-chlorophenyl)-1*H*-pyrazol-5-yl)-2-(*p*-chlorophenyl)ethane-1,2-dione (4b)

¹H NMR and ¹³C NMR spectra of 1-(napthalen-2-yl)-2-(3-napthalen-2-yl)-1-phenyl-1*H*-pyrazol-5-yl)ethane-1,2-dione(4c)

¹H NMR and ¹³C NMR spectra of 1-([1,1-biphenyl]-4-yl)-2-(3-([1,1-biphenyl]-4-yl)-1-phenyl-1*H*-pyrazol-5-yl)ethane-1,2-dione (4d)

¹H NMR and ¹³C NMR spectra of 1-(4-chlorophenyl)-2-(3-(4-chlorophenyl)-1-methyl-1*H*-pyrazol-5-yl)ethane-1,2-dione (4e)

¹H NMR and ¹³C NMR spectra of 1-(1-methyl-3-(napthalen-2-yl)-1*H*-pyrazol-5yl)-2-(napthalen-2-yl)ethane-1,2-dione (4f)

¹H NMR and ¹³C NMR spectra of 2-phenyl-3-(3-phenyl-1*H*-pyrazol-5-yl) quinoxaline (5a)

¹H NMR and ¹³C NMR spectra of 2-(4-bromophenyl)-3-(3-(4-bromophenyl)-1*H*pyrazol-5-yl)quinoxaline (5b)

¹H NMR and ¹³C NMR spectra of 2-(p-tolyl)-3-(3-(p-tolyl)-1*H*-pyrazol-5-yl)quinoxaline (5c)

¹H NMR and ¹³C NMR spectra of 2-(4-chlorophenyl)-3-(3-(4-chlorophenyl)-1*H*-pyrazol-5-yl)quinoxaline (5d)

¹H NMR and ¹³C NMR spectra of 2-(furan-2-yl)-3-(3-(furan-2-yl)-1*H*-pyrazol-5-yl)quinoxaline (5e)

¹H NMR and ¹³C NMR spectra of 2-(3-bromophenyl)-3-(3-(3-bromophenyl)-1*H*pyrazol-5-yl)quinoxaline (5f)