Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Diastereoselective allylation-based asymmetric total synthesis of

1,10-seco-guaianolides

Rodney A. Fernandes,* and Ravikant S. Ranjan

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076,

Maharashtra, India

Email: rfernand@chem.iitb.ac.in

Table of Contents		Page
1	¹ H, ¹³ C NMR and HRMS spectra of all compounds	S2-S93
2	X-ray data of 7h , 8a and 12	S94-S99

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **3b**

3b: HRMS (Q-TOF) *m*/*z*: [M + H]⁺ Calcd for C₆H₈O₃Br 206.9648; Found: 206.9648.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **7a**

7a: HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₇H₁₆O₄Na 307.0941; Found: 307.0947.

¹H NMR (400 MHz, MeOH-d4) and ¹³C{¹H} NMR (100 MHz, MeOH-d4) of compound **7b**

7b: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₅O₄ 235.0966; Found: 235.0962.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound 7c

7c: HRMS (Q-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₄H₁₇O₄ 249.1127; Found: 249.1127.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound 7d

7d: HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₄H₁₆O₅Na 287.0890; Found 287.0899.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound **7e**

7e: HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₃H₁₃O₄BrNa 334.9889; Found 334.9882.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound **7f**

¹⁹F{¹H} NMR (376 MHz, CDCl₃) of compound **7f**

7f: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₄O₄F 253.0871; Found 253.0864.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **7g**

7g: HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₃H₁₄ClO₄ 269.0580; Found 269.0582.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **7h**

7h: HRMS (ESI-TOF) *m*/z: [M + Na]⁺ Calcd for C₁₁H₁₂O₄SNa 263.0349; Found 263.0349.

¹H NMR (400 MHz, MeOH-d4) and ¹³C{¹H} NMR (100 MHz, MeOH-d4) of compound 7i

7i: HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₈H₁₈O₅Na 337.1046; Found 337.1047.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound **7j**

7j: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₃₃O₄ 313.2374; Found 313.2372.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound **7**k

7k: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₀H₃₇O₄ 341.2687; Found 341.2683.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound 8a

8a: HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{16}O_4Na$ 307.0941; Found: 307.0949.

1 H NMR (500 MHz, MeOH-d4) and 13 C{ 1 H} NMR (125 MHz, MeOH-d4) of compound **8b**

8b: HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₃H₁₅O₄ 235.0966; Found 235.0963.

 1 H NMR (500 MHz, CDCl₃) and 13 C{ 1 H} NMR (125 MHz, CDCl₃) of compound 8c

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound **8d**

8d: HRMS (Q-TOF) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₇O₅ 265.1078; Found 265.1078.

Compound Spectra (Zoomed)

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound 8e

8e: HRMS (Q-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₃H₁₄BrO₄ 313.0075; Found 313.0076.

Compound Spectra (Zoomed)

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **8f**

¹⁹F{¹H} NMR (376 MHz, CDCl₃) of compound **8f**

8f: HRMS (Q-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₄O₄F 253.0871; Found 253.0892.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **8g**

8g: HRMS (Q-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₃H₁₄ClO₄ 269.0580; Found 269.0587.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **8h**

8h: HRMS (Q-TOF) m/z: $[M + H]^+$ Calcd for C₁₁H₁₃SO₄ 241.0515; Found 241.0513.

¹H NMR (400 MHz, MeOH-d4) and ¹³C{¹H} NMR (100 MHz, MeOH-d4) of compound **8i**

8i: HRMS (Q-TOF) *m*/z: [M + H]⁺ Calcd for C₁₈H₁₉O₅ 315.1231; Found 315.1231.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound 8j

8j: HRMS (Q-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₈H₃₃O₄ 313.2374; Found 313.2383.

8k: HRMS (Q-TOF) *m/z*: [M + H]⁺ Calcd for C₂₀H₃₇O₄ 341.2687; Found 341.2691.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **11**

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **12**

12: HRMS (Q-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₃H₁₉O₄ 239.1278; Found 239.1274.

 ^1H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of compound 13

RAF-RSR-164-1H Current Data Parameters NAME RAF-RSR-164-1H EXPRO 10 PROCNO 1 NOT 20226 (PULPROG 2030 SUTUPENT CDCI3 NS <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"<="" colspan="2" th=""><th>7.285</th><th></th><th>H H H H H H H H H H H H H H H H H H H</th><th>3.620</th><th>3.007</th><th>2.992</th><th>2.345</th><th>L 2.346</th><th></th><th></th></th>	<th>7.285</th> <th></th> <th>H H H H H H H H H H H H H H H H H H H</th> <th>3.620</th> <th>3.007</th> <th>2.992</th> <th>2.345</th> <th>L 2.346</th> <th></th> <th></th>		7.285		H H H H H H H H H H H H H H H H H H H	3.620	3.007	2.992	2.345	L 2.346		
10 9 8	7	9 0.03 1.03 9	5 10.1	4	1.09 5	2.19 1.01	3.01	1	 0	ppm		
ID ID RAF-RSR-164-13C Current Data Parameters NAME RAF-RSR-164-13C EXDNO 12 PROCNO 1 F2 - Acquisition Parameters 22.57 h INSTRUM Avance Neo 400 h PROCNO PROCNO 2020027 INSTRUM Avance Neo 400 h PROFED 2163739_0226 (PULPROG z023027 SWB 27777.77 Hz SWH 2767 K D1 1.00000000 sec D1 0.0000000 sec D1 1.00000000 sec D2 90.00 usec			ОН	777.35 777.35	76.77 7285 7285				 			

13: HRMS (Q-TOF) m/z: $[M + Na]^+$ Calcd for C₁₃H₁₈O₄Na 261.1098; Found 261.1090.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound 14

14: HRMS (Q-TOF) m/z: $[M + H]^+$ Calcd for C₁₃H₂₁O₄ 241.1433; Found 241.1419.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **16**

COSY (400 MHz, CDCl₃) and NOESY (400 MHz, CDCl₃) of compound 16

16: HRMS (Q-TOF) m/z: $[M + H]^+$ Calcd for C₁₅H₂₁O₃ 249.1486; Found 249.1472.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound 17

COSY (400 MHz, CDCl₃) and NOESY (400 MHz, CDCl₃) of compound 17

17: HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{22}O_3Na$ 273.1461; Found 273.1455.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound *ent-*2a

COSY (400 MHz, CDCl₃) and NOESY (400 MHz, CDCl₃) of compound ent-2a

ent-2a: HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₅H₂₁O₄ 265.1435; Found 265.1431.

 1 H NMR (500 MHz, CDCl₃) and 13 C{ 1 H} NMR (125 MHz, CDCl₃) of compound **18**

COSY (400 MHz, CDCl₃) and NOESY (400 MHz, CDCl₃) of compound 18

18: HRMS (Q-TOF) m/z: $[M + H]^+$ Calcd for C₁₅H₂₁O₄ 265.1435; Found 265.1429.

Compound Spectra (Zoomed)

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **20**

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound *ent-***3b**

*ent-***3b:** HRMS (Q-TOF) m/z: $[M + H]^+$ Calcd for C₆H₈O₃Br 206.9648; Found 206.9642.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound *ent*-12

ent-12: HRMS (Q-TOF) *m*/z: [M + Na]⁺ Calcd for C₁₃H₁₈O₄Na 261.1098; Found 261.1094.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound *ent*-13

*ent***-13:** HRMS (Q-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₃H₁₉O₄ 239.1278; Found 239.1293.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound *ent*-14

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound *ent*-16

ent-16: HRMS (Q-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{21}O_3$ 249.1486; Found 249.1473.

Compound Spectra (Zoomed)

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound *ent*-17

Compound Spectra (Zoomed)

4.4811 4.725 2.5589 2.5589 2.5589 2.2589 2.2589 2.2487 2.24977 2.24977 2.24977 2.24977 2.24977 2.249777 2.249777 2 7.260 RAF-RSR-C-1H Data Parameters RAF-RSR-C-1H-2a 20 O 1 Curr NAM EXPI PBO 0 Date_ Timestrate_ TiNSTR PROB PULPF TD SOLVE NS SOLVE NS SWH FIDRE AQ BS SWH FIDRE AQ DE TE D1 TD0 SF01 NUC1 P0 P1 PLW1 15.30 h -0 spe Z119470 2g30 65536 CDCl3 VENT 16 000 sec 1.0 0 500.1330885 MH Grease peak 4.45 usec 13.35 usec 16.0000000 W F2 - Pro SI SF WDW SSB LB GB PC ocessing parameter 65536 500.1300134 MHz EM 0.30 Hz 0.30 Hz 0 1.00 12 11 . 10 9 8 ż 5 6 4 2 0 ppm 3 1 3201 1.00 2.20 4.88
4.88
4.88
4.88
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.84
4.8 Value Paramet CDCl3 298.1 1 Solvent 2 Temperature 3 Spectrometer Frequency 400, 13 Winssinger, Org. Lett. 2021, 23, 969 4.4 1999 V. T 2522225 1020 12.0 11.5 11.0 10.5 10.0 9.5 6.0 5.5 ft (ppm) 2.5 2.0 9.0 8,5 8.0 7.5 7.0 6.5 5.0 4.5 1.5 1.0 0.5 0.0 -0.5 4.0 3.5 3.0

¹H NMR (500 MHz, CDCl₃) of compound 2a and reported spectra of (±)-2a

¹³C{¹H} NMR (125 MHz, CDCl₃) of compound **2a** and reported spectra of (±)-**2a**

COSY (400 MHz, CDCl₃) of compound 2a and reported spectra of (±)-2a

NOESY (400 MHz, CDCl₃) of compound 2a and reported spectra of (±)-2a

2a: HRMS (Q-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₅H₂₁O₄ 265.1435; Found 265.1429.

Compound Spectra (Zoomed)

6,6,019 2,2,667 2,2,667 2,2,667 2,2,667 2,2,667 2,2,667 2,2,667 2,2,667 2,2,667 2,2,664 2,2,664 2,2,664 2,2,664 2,2,664 2,2,664 2,2,664 2,2,2,480 1,1,777 1,1,799 1,1,779 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,777 1,1,799 1,1,999 1,1, 7.260 RAFR-RSR-BF-1H Data Parameters RAFR-RSR-BF-1H-ent18 10 D 1 NA EXI PB 0 Date_ Time INSTRUM PROBHD PPULPROG SOLVENT NS SOLVENT NS SWH FIDRES AQ DS SWH FIDRES AQ DW DE DI 1. TD0 1. TD0 SF01 4 NUC1 PI PLW1 2023032 15.50 0: Avance Z163739 51724 . DCI3 0.33 5.2162 Grease peak 1.0000 С 400.1324708 MH 1H 67 US 60 US 6500 US 6536 400.1300099 MHz EM 0 0.30 Hz 0 0 1.00 F2 - P SI SF WDW SSB LB GB PC т .т 9 Т 12 11 . 10 6 5 8 4 0 ppm 3 2 1 八 [6] 3.08 1.33 2.29 0.91 1.18 3.19 3.29 18 9934872855555566 Parameter Value 1 Solvent CDCI3 2 Temperature 3 Spectrometer Freque 298.1 cy 400.13 Winssinger, Org. Lett. 2021, 23, 969 8 ą 59 1 6.0 5.5 f1 (ppm) 12.0 11.5 11.0 10.5 10.0 6.5 5.0 4.5 2.0 0.0 -0.5 9.5 9.0 8.5 8.0 7.5 7.0 4.0 3.5 3.0 2.5 1.5 1.0 0.5

¹H NMR (400 MHz, CDCl₃) of compound *ent*-18 and reported spectra of (\pm) -18

 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) of compound *ent*-18 and reported spectra of (±)-18

COSY (400 MHz, CDCl₃) and NOESY (400 MHz, CDCl₃) of compound $\mathit{ent-18}$

*ent***-18:** HRMS (Q-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₅H₂₁O₄ 265.1435; Found 265.1430.

¹H NMR (400 MHz, CDCl₃) of compound **2b** and reported spectra of (\pm) -**2b**

 $^{13}C\{^1H\}$ NMR (125 MHz, CDCl_3) of $\mathbf{2b}$ and reported spectra of (±)- $\mathbf{2b}$

2b: HRMS (Q-TOF) *m*/z: [M]⁺ Calcd for C₁₅H₁₈O₅ 278.1150; Found 278.1152.

X-Ray Data of 7h

Sample preparation: A solution of compound **7h** (10 mg) in CDCl_3 (0.5 mL) was placed in a vial (10 mL). The vial was closed with cap and kept at room temperature for 24 h. Then, colourless prisms were observed.

Crystal measurement: X-ray crystal structures were determined with a Bruker Single Crystal Kappa Apex II diffractometer. Thermal ellipsoids are drawn at 50% probability level.

CCDC	2267170
Empirical formula	$C_{11}H_{12}O_4S$
Formula weight	240.27
Temperature/K	150.00(10)
Crystal system	orthorhombic
Space group	$P2_i2_i2_i$
a/&	8.5447(4)
b/&	10.2606(5)
c/&	12.5052(5)
n/°	90
§/°	90
y/°	90
Volume/& ³	1096.38(9)
Ζ	4
Pcalc C	1.456
Jt ¹	0.290
F(000)	504.0
Crystal size/mm3	0.205 0.15 0.096
Radiation	MoKo (X = 0.71073)
2O- range for data collection/°	5.136 to 66.826
Index ranges	-12 ñ h ñ 13, -14 ñ k ñ 12, -19 ñ 1 ñ 14
Reflections collected	12004
Independent reflections	$3579 [R_{int'} 0.05509 R_{sigma'} 0.0616]$
Data/restraints/parameters	3579/0/147
Goodness-of-fit on F^2	0.966
Final R indexes [I>=20 (I)]	R _i 0.0405, wR ₂ ' 0.0874
Final R indexes[all data]	$R_{i'} = 0.0552, WR_{2'} = 0.0998$

Table S1. Crystallographic Information for Compound 7h

Largest diff. peak/hole / e Å ⁻³	0.27/-0.33
Flack parameter	0.06(5)

Atom Atom	Length/Å	Atom Atom	Length/ Å
S1C8	1.727(2)	C3 C2	1.479(3)
S1C11	1.712(2)	C8 C9	1.368(3)
O3C6	1.432(3)	C4 C2	1.508(3)
O2C3	1.355(3)	C4 C5	1.539(3)
O2C5	1.462(2)	C2 C1	1.329(3)
O4C7	1.438(2)	C5 C6	1.512(3)
O1C3	1.209(3)	C9 C10	1.420(3)
C7C8	1.499(3)	C11 C10	1.354 (3)
C7C4	1.542(3)		

Table S2. Bond lengths for 7h

Table S3. Bond Angles for 7h

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C11	S 1	C8	92.35(11)	C2	C4	C5	102.15(17)
C3	O2	C5	110.66(16)	C5	C4	C7	112.49(17)
O4	C7	C8	111.97(17)	C3	C2	C4	107.35(18)
O4	C7	C4	106.33(16)	C1	C2	C3	122.0(2)
C8	C7	C4	113.28(16)	C1	C2	C4	130.7(2)
O2	C3	C2	109.66(18)	O2	C5	C4	106.31(15)
01	C3	O2	121.1(2)	O2	C5	C6	109.92(17)
01	C3	C2	129.2(2)	C6	C5	C4	112.06(17)
C7	C8	S 1	122.21(16)	03	C6	C5	109.07(17)
C9	C8	S 1	110.38(16)	C8	C9	C10	112.9(2)
C9	C8	C7	127.40(19)	C10	C11	S 1	111.41(17)
C2	C4	C7	111.12(16)	C11	C10	C9	113.0(2)

Sample preparation: A solution of compound **8a** (10 mg) in $CDCl_3$ (0.5 mL) was placed in a vial (10 mL). The vial was closed with cap and kept at room temperature for 24 h. Then, colourless prisms were observed.

Crystal measurement: X-ray crystal structures were determined with a Bruker Single Crystal Kappa Apex II diffractometer. Thermal ellipsoids are drawn at 50% probability level.

CCDC	2270886
Empirical formula	$C_{17}H_{16}O_{4}$
Formula weight	284.30
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	5.1299(4)
b/Å	14.7848(10)
c/Å	9.1241(6)
α/°	90
β/°	90.366(7)
γ/°	90
Volume/Å ³	692.00(8)
Z	2
$\rho_{calc}g/cm^3$	1.364
µ/mm ⁻¹	0.097
F(000)	300.0
Crystal size/mm ³	0.16 imes 0.15 imes 0.11
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.246 to 49.978
Index ranges	$-6 \le h \le 6, -17 \le k \le 17, -10 \le l \le 10$
Reflections collected	7550
Independent reflections	2381 [$R_{int} = 0.0684$, $R_{sigma} = 0.0611$]
Data/restraints/parameters	2381/1/192
Goodness-of-fit on F ²	1.054
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0436, wR_2 = 0.1038$
Final R indexes [all data]	$R_1 = 0.0482, wR_2 = 0.1073$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.17
Flack parameter	0.6(10)

Table S4. Crystallographic Information for Compound 8a

Length/Å Length/Å Atom Atom Atom Atom O001 C00A 1.433(4) C009 C00B 1.553(5) 1.341(4) C009 1.493(5) O002 C008 C00H C00B 1.462(4) C00C 1.432(5) O002 C00G 1.429(4) C00C 1.417(6) C005 C00I O003 1.216(4) C00C 1.420(6) **O**004 C008 C00L 1.531(5) C00D C009 C00H 1.326(5) C005 C00A 1.522(5) COOE C00F 1.376(5) C005 C007 1.365(5) COOE C00K 1.412(6) C006 1.514(5) C00F 1.415(5) C006 C00B C00G C00G C006 1.435(5) C00I C00K 1.353(6) C00J 1.422(5) C00J C007 C00L 1.352(6) C008 C00H 1.481(5)

Table S5. Bond lengths for 8a

Table S6. Bond Angles for 8a

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C008	O002	C00B	110.8(3)	C006	C00B	C009	113.4(3)
O003	C005	C009	106.1(3)	C00I	C00C	C00G	119.0(4)
O003	C005	C00A	109.3(3)	C00I	C00C	C00L	122.0(4)
C00A	C005	C009	114.5(3)	C00L	C00C	C00G	119.0(4)
C007	C006	C00B	122.2(3)	C00F	C00E	C00K	120.3(4)
C007	C006	C00G	119.5(3)	C00E	C00F	C00G	121.3(3)
C00G	C006	C00B	118.2(3)	C00C	C00G	C006	119.1(3)
C006	C007	C00J	121.0(4)	C00F	C00G	C006	123.0(3)
O002	C008	C00H	109.7(3)	C00F	C00G	C00C	117.9(3)
O004	C008	O002	120.5(3)	C008	C00H	C009	107.0(3)
O004	C008	C00H	129.8(3)	C00D	C00H	C008	122.6(3)
C005	C009	C00B	111.2(3)	C00D	C00H	C009	130.3(3)
C00H	C009	C005	111.9(3)	C00K	C00I	C00C	121.6(4)
C00H	C009	C00B	101.5(3)	C00L	C00J	C007	120.8(4)
O001	C00A	C005	109.0(3)	C00I	C00K	C00E	119.9(4)
O002	C00B	C006	110.3(3)	C00J	C00L	C00C	120.6(4)
O002	C00B	C009	105.5(2)				

Sample preparation: A solution of compound **12** (20 mg) in the mixture of petroleum ether and CH_2Cl_2 (5:1) was placed in a vial (10 mL). The vial was closed with cap and kept at room temperature for 24 h. Then, colourless prisms were observed.

Crystal measurement: X-ray crystal structures were determined with a Bruker Single Crystal Kappa Apex II diffractometer. Thermal ellipsoids are drawn at 50% probability level.

CCDC	2235974				
Empirical formula	C ₁₃ H ₁₈ O ₄				
Formula weight	238.285				
Temperature/K	150.15				
Crystal system	monoclinic				
Space group	P2 _i				
a/&	7.5355(3)				
b/&	7.5626(2)				
c/&	11.2958(3)				
n/°	90				
§/°	103.257(3)				
y/°	90				
Volume/& ³	626.57(4)				
Ζ	2				
Pcalc ^C	1.263				
Jt ¹	0.093				
F(000)	256.2				
Crystal size/mm3	0.2 • 0.106 0.089				
Radiation	Mo Ko (Z = 0.71073)				
20- range for data collection/°	3.7 to 49.98				
Index ranges	-11 ñ h ñ 10, -12 S k ñ 11, -18 ñ 1 ñ 17				
Reflections collected	17844				
Independent reflections	2191 [R _{int} ' 0•14879 R _{sigma} ' 0•0978]				
Data/restraints/parameters	2191/1/157				
Goodness-of-fit on F ²	1.048				
Final R indexes[I>=2o (I)]	R _i 0.0493, wR ₂ ' 0.1294				
Final R indexes[all data]	R _i ' 0.0525, wR ₂ ' 0.1341				

 Table S7. Crystallographic Information for Compound 12

Largest diff. peak/hole / e Å ⁻³	0.21/-0.23
Flack parameter	0.3(9)

Atom Atom	Length/&	Atom Atom	Length/&
0001 COOC	1.434(3)	C007 C009	1.321(3)
O002C00D	1.447(3)	COO8 COOD	1.539(3)
O003C005	1.451(3)	COOACOOB	1.336(3)
0003 C006	1.347(3)	COOACOOD	1.493(3)
O004C006	1.203(3)	COOACOOE	1.5064)
C00JC008	1.544(3)	COOBCOOF	1.4974)
C005 COOC	1.504(3)	COOBCOOG	1.5004)
C006 C007	1.487(3)	COOECOOH	1.5254)
C007 C008	1.498(3)	COOGCOOH	1.5235)

Table S8. Bond lengths for 12

Table S9. Bond Angles for 12

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C006	O003	C005	111.52 (17)	C00D	C00A	COOB	126.8 (2)
C008	C005	0003	106.25 (17)	COOE	C00A	C00B	111.9 (2)
C00C	C005	0003	108.97 (18)	COOE	C00A	C00D	121.3 (2)
C00C	C005	C008	113.35 (17)	COOF	C00B	C00A	127.9 (2)
0004	C006	C003	121.5 (2)	C00G	C00B	C00A	111.7 (2)
C007	C006	C003	109.5 (2)	C00G	COOB	COOF	120.4 (2)
C007	C006	C004	129.0 (2)	C005	C00C	C001	111.11 (18)
C008	C007	C006	107.58 (19)	C008	C00D	C002	104.85 (15)
C009	C007	C006	121.4 (2)	C00A	C00D	C002	111.11 (18)
C009	C007	C008	131.0 (2)	C00A	C00D	C008	114.01 (19)
C007	C008	C005	103.00 (18)	C00H	C00E	C00A	104.1 (2)
C00D	C008	C005	113.67 (17)	C00H	C00G	COOB	104.6 (2)
C00D	C008	C007	113.14 (18)	C00G	C00H	C00E	107.1 (2)