Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information

Catalyst-free anti-Markovnikov hydroamination and hydrothiolation of

vinyl heteroarenes in aqueous medium: an improved process towards

centhaquine

Anamika Yadav,^{*a,b*} Mayur D. Ambule^{*a,b*} and Ajay Kumar Srivastava^{*a,b**}

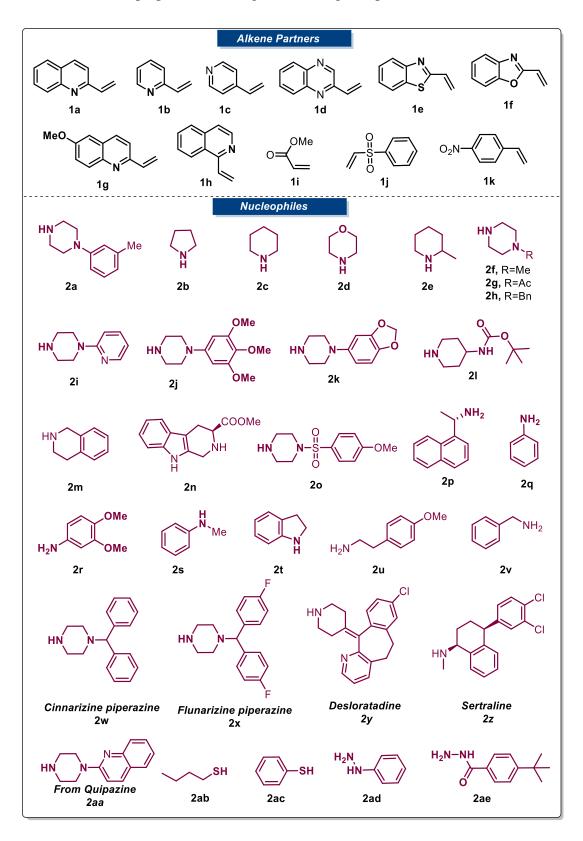
^aMedicinal and Process Chemistry Division, CSIR-Central Drug Research Institute,

Lucknow–226031, Uttar Pradesh, India

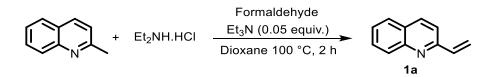
^bChemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR),

Ghaziabad–201002, Uttar Pradesh, India

*Email: <u>ajayk.srivastava@cdri.res.in</u>

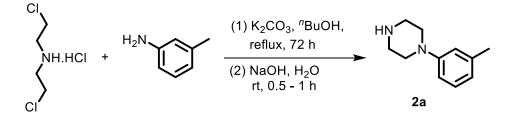

Table of Contents

Sr. No.	Content	Page No.
1.	General Information	S2
2.	List of alkenes, nucleophiles and their synthesis	S3-S5
3.	Gram scale synthesis of Centhaquine	S5-S6
4.	Green Metrics calculation	S6-S14
5.	Control experiments	S15-S20
6.	Experimental Procedures and Spectral Data	S21-S49
7.	Copies of ¹ H, ¹³ C NMR	S50-S101
8.	References	S102


1. General Information. All the reagents and solvents were used as received from commercial sources without further purification. All air and moisture sensitive reactions were conducted under inert atmosphere of nitrogen. Reactions were monitored by thin-layer chromatography carried out on silica plates (Silica gel 60 F₂₅₄, Merck) using UV-light, iodine, ninhydrin and p-anisaldehyde for visualization. Column chromatography was carried out using silica gel (100-200 and 230-400 mesh) packed in glass columns. Technical grade ethyl acetate and petroleum ether used for column chromatography were distilled prior to use. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ as solvent (300 and 75 MHz / 400 and 100 MHz, 500 and 125 MHz) at ambient temperature. The coupling constant J is given in Hz. The chemical shifts (δ) are reported in ppm on scale downfield from TMS and using the residual solvent peak in CDCl₃ (H: δ = 7.26 ppm and C: δ = 77.00 ppm) or TMS (δ = 0.00) as internal standard and signal patterns are indicated as follows: s = singlet, d = doublet, dd = doublet of doublet, ddd = doublet of doublet of doublet, dt = doublet of triplet, t = triplet, q = quartet, m= multiplet. High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific Exactive ORBITRAP spectrometer using $H_2O/MeOH$ mixed with 0.1% formic acid as mobile phase. Melting points were recorded on Stuart SMP30 melting point apparatus and are uncorrected.

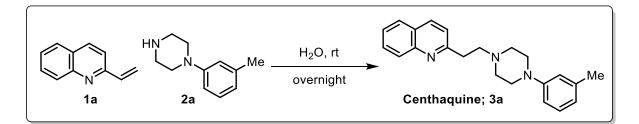
2. Figure S1: list of alkene partners and nucleophiles

All the alkenes were prepared using reported literature.¹ Compounds (2a, 2j and 2k),² (2w and 2x),³ (2aa)⁴ were prepared according to according to reported literature.



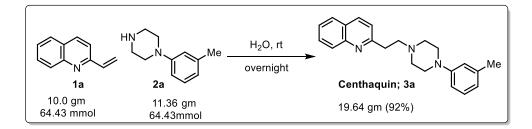
3. Procedure for the synthesis of 2-vinylquinoline (1a)

In a 500 mL round bottom flask, Quinaldine (16.98 mL, 125.71 mmol), formaldehyde solution (12.17 mL, 163.42 mmol), diethylamine hydrochloride (17.91 g, 163.42 mmol), and trimethylamine (0.878 ml, 6.29 mmol) were taken in 1,4-dioxane (200 mL). The reaction mixture was heated at 100 °C with stirring for 2 h. After completion, reaction mixture was cooled down to room temperature and dioxane was removed under reduced pressure. Water was added to the reaction mixture and organic layer was extracted with ethyl acetate. Organic layer was dried over sodium sulfate and solvent was removed under reduced pressure and the product was purified in 10% ethyl acetate/ Hexane to afford 1a as yellow oil with 75% yield (14.65 g); $\mathbf{R}_f = 0.5$ (approximately in 10% ethyl acetate/hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (dd, J = 17.4, 8.6 Hz, 2H), 7.82 – 7.74 (m, 1H), 7.69 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.60 (d, J = 8.6 Hz, 1H), 7.50 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.05 (dd, J = 17.7, 10.9 Hz, 1H), 6.28 (dd, J = 17.7, 0.8 Hz, 1H), 5.67 (dd, J = 10.9, 0.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 148.1, 138.1, 136.5, 129.8, 129.5, 127.6, 127.6, 126.5, 120.0, 118.5.


4. Procedure for the synthesis of m-tolylpiperazine (2a)

Bis(2-chloroethyl)amine (20 g, 112.06 mmol) in ^{*n*}BuOH (90 mL) was added slowly to solution of substituted *m*-toluidine (11.04 mL, 101.97 mmol) in ^{*n*}BuOH (20 mL) and heated at reflux for 24 h. K₂CO₃ (30.97 g, 224.11 mmol) was added to the reaction mixture and again refluxed

for another 48 h. The hot mixture was filtered, and deep red liquor was evaporated under reduced pressure to afford m-tolylpiperazine hydrochloride. 150 mL water was added to mtolylpiperazine hydrochloride, and the pH value was adjusted to 11–12 using aqueous solution of 40% NaOH. Compound was extracted using ethyl acetate (2 × 150 mL), and the combined extracts were washed with water (80 mL) and brine (80 mL) respectively. Organic layer was dried over anhydrous Na₂SO₄ and solvent was removed under reduced pressure. Product **2a** was purified using silica-gel column chromatography with 10% MeOH/DCM+2-3% Et₃N as off-white solid in 70% yield; **R**_f = 0.2 (approximately in 10% MeOH/DCM+2-3% Et₃N); ¹**H NMR (300 MHz, CDCl₃):** δ 7.15 (td, *J* = 7.4, 1.1 Hz, 1H), 6.80 – 6.64 (m, 3H), 3.13 (dd, *J* = 6.2, 3.4 Hz, 4H), 3.03 (dd, *J* = 6.2, 3.4 Hz, 4H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 152.0, 138.9, 129.1, 120.8, 117.2, 113.4, 50.7, 46.3, 21.9.


5. Gram-Scale Synthesis Of Centhaquine (2-(2-(4-(m-tolyl)piperazin-1-yl)ethyl)quinoline) 3a

In a 250 mL round bottom flask, 2-vinylquinoline **1a** (10.0 gm., 64.43 mmol) and *N*-(m-tolyl)piperazine **2a** (11.36 gm., 64.43 mmol) were taken in triple distilled water (25 mL). The reaction mixture was stirred at room temperature for overnight. After completion, 25 mL water was added to the reaction mixture and organic layer was extracted using ethyl acetate (40 mL X 3). Organic layer was dried over anhydrous sodium sulphate and solvent was removed under high vacuum. 100 mL hexane was added into crude reaction mixture and heated than 1.0 gm charcoal was added. Heated reaction mixture was filtered using sintered glass funnel. Filtrate was kept at room temperature for 1-2 h to afford Centhaquine **3a** as an off-white crystalline

solid. **Yield:** 19.64 gm., 92%; **m.p:** 94-95 °C (Matched with US20150250782A1, 2015). **TLC specification:** $R_f = = 0.4$ (approximately); **Solvent system:** 100% Ethyl acetate using Merck silica gel 60 F254 pre-coated plates (0.25 mm); ¹H NMR (**300 MHz, CDCl**₃): δ 8.06 (dd, J =8.1, 6.0 Hz, 2H), 7.78 (dd, J = 8.1, 1.6 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.51 – 7.12 (m, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.17 – 7.12 (m, 1H), 6.76 – 6.73 (m, 2H), 6.69 – 6.67 (m, 1H), 3.24 – 3.16 (m, 6H), 2.96 – 2.91 (m, 2H), 2.75 – 2.72 (m, 4H), 2.31 (s, 3H); ¹³C NMR (**75 MHz, CDCl**₃): δ 161.0, 151.5, 148.1, 138.9, 136.4, 129.5, 129.0, 129.0, 127.6, 126.9, 126.0, 121.8, 120.7, 117.0, 113.3, 58.3, 53.3, 49.4, 36.8, 21.9; **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₂₂H₂₆N₃, 332.2127, found 332.2121.

6. GREEN METRICS CALCUALATIONS FOR OUR METHOD

1. NO OF STEPS: 1

2. PERCENTAGE YIELD: 92% yield

3. ATOM ECONOMY:

$$= \frac{\text{Molecular weight of Product [P]}}{\text{Molecular weight of Reactant [A+B]}} \times 100$$

= (331.4630 X 100)/(155.2000 + 176.2630) = 33146.3/331.463 = 100%

4. CARBON EFFICIENCY:

No. of mole of Product X No of carbon in Product X 100 No. of mole of Reactant (A+B) X No of carbon in Reactant (A+B)

 $= \frac{59.25 \text{ X } 22}{64.4 \text{ X } 11+64.4 \text{ X } 11} \text{ X } 100 = 92.05\%$

5. REACTION MASS EFFICIENCY:

 $= \frac{\text{Mass of isolated Product}}{\text{Total mass of Reactant}} \times 100$ = 19.65/10 gm + 11.36 gm = 92%

6. E FACTOR:

 $= \frac{\text{Mass of raw material - mass of product}}{\text{Mass of product}}$ $= \frac{(10.0 \text{ g} + 11.36 \text{ g}) - 19.65 \text{ g}}{19.65 \text{ g}} = 0.08 \text{ (g/g)}$

7. ATOM EFFICIENCY FACTOR (AEF):

=

Percentage yield X Atom economy

100

= 92 X 100\100 = 92%

8. OPTIMUM EFFICIENCY (OE):

$$= \frac{\text{Reaction Mass Efficiency}}{\text{Atom Efficiency}} \times 100$$
$$= \frac{92}{100} \times 100 = 92\%$$

9. PROCESS MASS INTENSITY (PMI):

= Total mass used considering all solvents during reaction and work-up

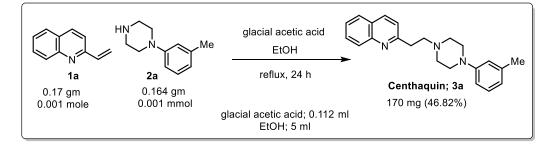
Mass of product
=
$$\frac{10.0 \text{ g} + 11.36 \text{ g} + 49.91 \text{ g} (\text{H}_2\text{O}) + 451.32 \text{ g} (\text{EtOAc})}{19.65 \text{ g}} = 26.59 (\text{g/g})$$

10. MASS INTENSITY (MI):

 $= \frac{\text{Total mass used in a process or process step (excluding water)}}{\text{Mass of product}}$ $= \frac{10 \text{ g} + 11.36 \text{ g}}{19.65 \text{ g}} = 1.08 \text{ (g/g)}$

11. MASS PRODUCTIVITY (M.P):

$$= \frac{1}{Mass Intensity} X 100$$
$$= \frac{1}{1.08} X 100 = 92.59\%$$


12. WATER INTENSITY (WI):

Total mass of water used in the whole process

Mass of product

$$= \frac{49.91 \text{ g}}{19.65 \text{ g}} = 2.54 \text{ (g/g)}$$

7. GREEN METRICS CALCUALATIONS FOR PREVIOUS METHOD

1. NO OF STEPS: 1

2. PERCENTAGE YIELD: 46.82% yield (Indian J. Chem. 1989, 28B, 934-942)

3. ATOM ECONOMY:

$$= \frac{\text{Molecular weight of Product [P]}}{\text{Molecular weight of Reactant [A+B]}} \times 100$$

 $= (331.4630 \times 100)/(155.2000 + 176.2630) = 33146.3/331.463 = 100\%$

4. CARBON EFFICIENCY:

No. of mole of Product X No of carbon in Product

No. of mole of Reactant (A+B) X No of carbon in Reactant (A+B)

 $= \frac{0.512 \text{ X } 22}{1.10 \text{ X } 11+1.10 \text{ X } 11} \text{ X } 100 = 1126.4/24.2 = 46.54\%$

5. REACTION MASS EFFICIENCY:

_	Mass of isolated Product X 100	
_	Total mass of Reactant	
=	(170 mg X 100)/(170 mg + 193.07 mg) = 17000/363.07	= 46.82%

6. E FACTOR:

 $= \frac{\text{Mass of raw material - Mass of product}}{\text{Mass of product}}$ $= \frac{(0.170 \text{ g} + 0.193 \text{ g} + 0.118 \text{ g} + 3.95 \text{ g}) - 0.17 \text{ g}}{0.17 \text{ g}} = 25.06 \text{ (g/g)}$

7. ATOM EFFICIENCY FACTOR (AEF):

= Percentage yield X Atom economy 100

= 46.82 X 100\100 = 46.82%

8. OPTIMUM EFFICIENCY (OE):

Reaction Mass Efficiency Atom Efficiency X 100

= 46.82 X 100\100 = 46.82%

9. PROCESS MASS INTENSITY (PMI):

Total mass used considering all solvents during reaction and work-up Mass of product

 $0.17 \text{ g} + 0.193 \text{ g} + 0.118 \text{ g} + 3.95 \text{ g} + 0.025 \text{ g} (\text{NaOH}) + 26.43 \text{ g} (\text{EtOAc}) + 5.0 \text{ g} (\text{H}_2\text{O})$

0.17 g

= 211.09 (g/g)

10. MASS INTENSITY (MI):

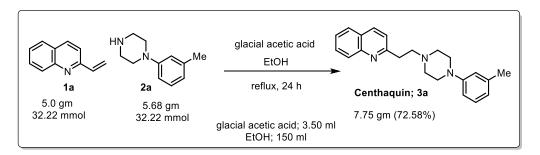
=

Total mass used in a process or process step (excluding water)

Mass of Product

= (0.17 g + 0.193 g + 0.118 g + 3.95 g)/0.17 g = 26.06 (g/g)

11. MASS PRODUCTIVITY (M.P):


$$= \frac{1}{Mass Intensity} \times 100$$
$$= \frac{1}{26.06} \times 100 = 3.83\%$$

12. WATER INTENSITY (WI):

= Total mass of water used in the whole process Mass of product

$$= \frac{5.0 \text{ g}}{0.17 \text{ g}} = 29.41 \text{ (g/g)}$$

8. GREEN METRICS CALCUALATIONS FOR PREVIOUS METHOD

1. NO OF STEPS: 1

2. PERCENTAGE YIELD: 72.58 % yield (Patent No: US20150250782A1)

3. ATOM ECONOMY:

$$= \frac{\text{Molecular weight of Product [P]}}{\text{Molecular weight of Reactant [A+B]}} X 100$$

 $= (331.4630 \times 100)/(155.2000 + 176.2630) = 33146.3/331.463 = 100\%$

4. CARBON EFFICIENCY:

= No. of mole of Product X No of carbon in Product No. of mole of Reactant (A+B) X No of carbon in Reactant (A+B) 23.38 X 22

 $= \frac{1}{32.22 \times 11 + 32.22 \times 11} \times 100 = 51436/708.84 = 72.56\%$

5. REACTION MASS EFFICIENCY:

$$= \frac{\text{Mass of isolated Product}}{\text{Total mass of Reactant}} \times 100$$
$$= (7.75 \text{ g X } 100)/(5.0 \text{ g} + 5.68 \text{ g}) = 72.56\%$$

6. E FACTOR:

$$= \frac{(5.0 \text{ g} + 5.68 \text{ g} + 3.68 \text{ g} + 118.35 \text{ g}) - 7.75 \text{ g}}{7.75 \text{ g}} = 16.12 \text{ (g/g)}$$

7. ATOM EFFICIENCY FACTOR (AEF):

 $=\frac{\text{Percentage yield X Atom economy}}{100}$

= 72.5 X 100\100 = 72.5%

8. OPTIMUM EFFICIENCY (OE):

 $= \frac{\text{Reaction Mass Efficiency}}{\text{Atom Efficiency}} \times 100$ $= \frac{72.56}{100} \times 100 = 72.56\%$

9. PROCESS MASS INTENSITY (PMI):

Total mass used considering all solvents during reaction and work-up

Mass of product

 $5.0 \text{ g} + 5.68 \text{ g} + 3.68 \text{ g} + 118.35 \text{ g} + 0.6 \text{ g} (\text{NaOH}) + 451 \text{ g} (\text{EtOAc}) + 118 \text{ g} (\text{H}_2\text{O})$

7.75 g

= 90.62 (g/g)

10. MASS INTENSITY (MI):

=

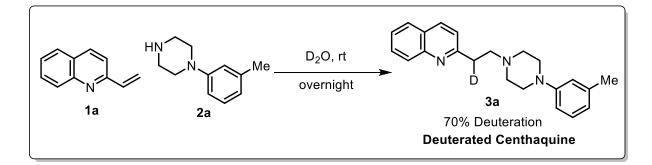
Total mass used in a process or process step (excluding water)

Mass of Product

= (5.0 g + 5.68 g + 3.68 g + 118.35 g) / 7.75 g = 17.12 (g/g)

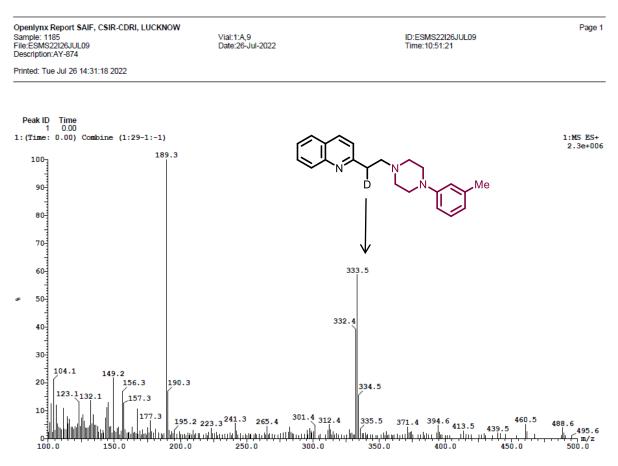
11. MASS PRODUCTIVITY (M.P):

$$= \frac{1}{Mass Intensity} \times 100$$
$$= \frac{1}{17.12} \times 100 = 5.84\%$$

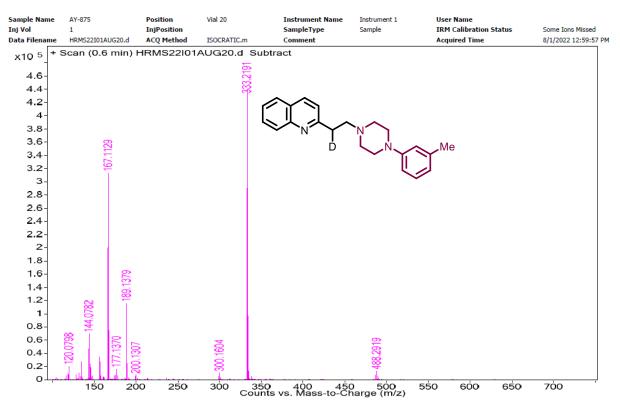

12. WATER INTENSITY (WI):

= Total mass of water used in the whole process

Mass of product


$$= \frac{150.32 \text{ g}}{7.75 \text{ g}} = 19.39 \text{ (g/g)}$$

9. Control experiments


(a) Synthesis of Centhaquine (2-(2-(4-(m-tolyl)piperazin-1-yl)ethyl)quinoline) in D₂O

In a 10 mL round bottom flask, 2-vinylquinoline **1a** (100 mg, 0.644 mmol) and *N*-(m-tolyl)piperazine (113 mg, 0.644 mmol) were taken in D₂O (1.0 mL). The reaction mixture was stirred at room temperature for overnight. After completion, 10 mL ethyl acetate was added to the reaction mixture and dried over anhydrous sodium sulphate and solvent was removed under high vacuum. Product was purified *via* basic alumina column chromatography in 20% ethyl acetate/hexane (193 mg, 90%). **TLC specification:** $R_f = 0.4$ (approximately); **Solvent system:** 100% Ethyl acetate using Merck silica gel 60 F254 pre-coated plates (0.25 mm); ¹H **NMR (400 MHz, CDCl₃):** δ 8.06 (dd, J = 11.6, 8.4 Hz, 2H), 7.78 (d, J = 8.0 Hz, 1H), 7.71 – 7.67 (m, 1H), 7.51 – 7.48 (m, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.15 (t, J = 8.0 Hz, 1H), 6.76 – 6.74 (m, 2H), 6.71 (d, J = 7.2 Hz, 1H), 3.23 – 3.21 (m, 5.3H), 2.94 – 2.92 (m, 2H), 2.75 – 2.73 (m, 4H), 2.32 (s, 3H); ¹³C **NMR (125 MHz, CDCl₃):** δ 161.0, 151.5, 148.1, 138.9, 136.4, 129.6, 129.1, 129.0, 127.7, 126.9, 126.0, 121.8, 120.8, 117.1, 113.3, 58.3, 58.2, 53.3, 49.4, 36.8, 21.9; ²H **NMR (61 MHz, CDCl₃):** δ 3.22 (s, 0.7D); **HRMS (ESI)** *m/z*: [M+H]⁺ calcd. for C₂₂H₂₅DN₃, 333.2189, found 333.2191.

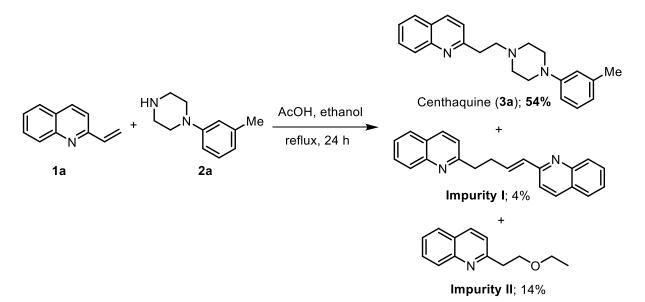


Figure S2: ESI-MS spectra of deuterated Centhaquine D₁-3a

Figure S3: HRMS spectra of deuterated Centhaquine D₁-3a

(b) Synthesis of Centhaquine via known process (Gulati's method)

In a 50 mL round bottom flask, 2-vinylquinoline **1a** (1.0 g, 6.44 mmol) and *N*-(m-tolyl)piperazine (1.13 g, 6.44 mmol) and acetic acid (12.88 mmol) were taken in 15.0 ml ethanol and reaction mixture was refluxed for 24 hour. After that, the solvent was removed under high vacuum and ethyl acetate (20 ml) was added to the reaction mixture and basified using 1N NaOH solution. Organic layer was extracted using ethyl acetate and dried over anhydrous sodium sulphate. Solvent was removed under reduced pressure and **impurity I** was purified via silica-gel column chromatography in 25-30% ethyl acetate/hexane (60 mg, 3%); **TLC specification:** $R_f = 0.25$ approximately in 10% ethyl acetate/hexane; **Impurity I:** ¹**H NMR (300 MHz, CDCl₃): \delta 8.11-8.03 (m, Hz, 4H), 7.79-7.74 (m, 2H), 7.71-7.65 (m, 3H), 7.52-7.45 (m, 2H), 7.37 (d, J = 9.0 Hz, 1H), 5.86 (d, J = 1.0 Hz, 1H), 5.51 (d, J = 1.0 Hz, 1H), 3.38 – 3.26 (m, 4H); ¹³C NMR (75 MHz, CDCl₃):** δ 162.6, 158.2, 148.3, 148.0, 147.9, 136.3, 136.1, 129.9, 129.5, 129.4, 129.0, 127.6, 127.5, 127.3, 126.9, 126.3, 125.8, 121.8, 118.9, 117.1, 38.4, 34.0; **HRMS (ESI)** *m/z*: [M+H]⁺ calcd. for C₂₂H₁₉N₂, 311.1548, found 311.1549.

Impurity II was purified via silica-gel column chromatography in 35% ethyl acetate/hexane (182 mg, 14%); **TLC specification:** $R_f = 0.2$ approximately in 10% ethyl acetate/hexane;

Impurity II: ¹H NMR (400 MHz, CDCl₃): δ 8.08-8.03 (m, 2H), 7.78 (dd, J = 8.4, 1.2, 1H), 7.70-7.66 (m, 1 H), 7.50-7.46 (m, 1 H), 7.38 (d, J = 8.4, 1H), 3.89 (t, J = 6.8, 1H), 3.53 (q, J = 6.8, 1H), 3.26 (t, J = 6.8, 1H), 1.86 (t, J = 7.2, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 160.2, 148.0, 136.3, 129.5, 128.9, 127.6, 127.0, 126.0, 122.1, 70.0, 66.4, 39.67, 15.3; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₃H₁₆NO, 202.1232, found 202.2489.

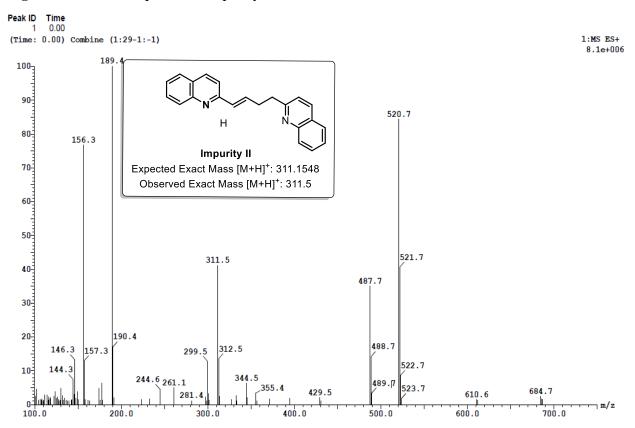


Figure S4: ESI-MS spectra of impurity I

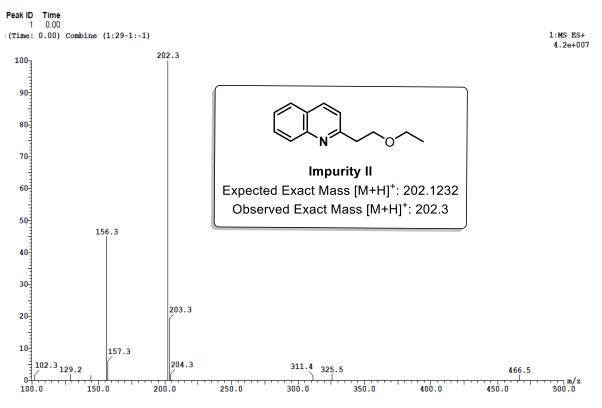
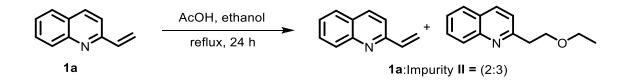
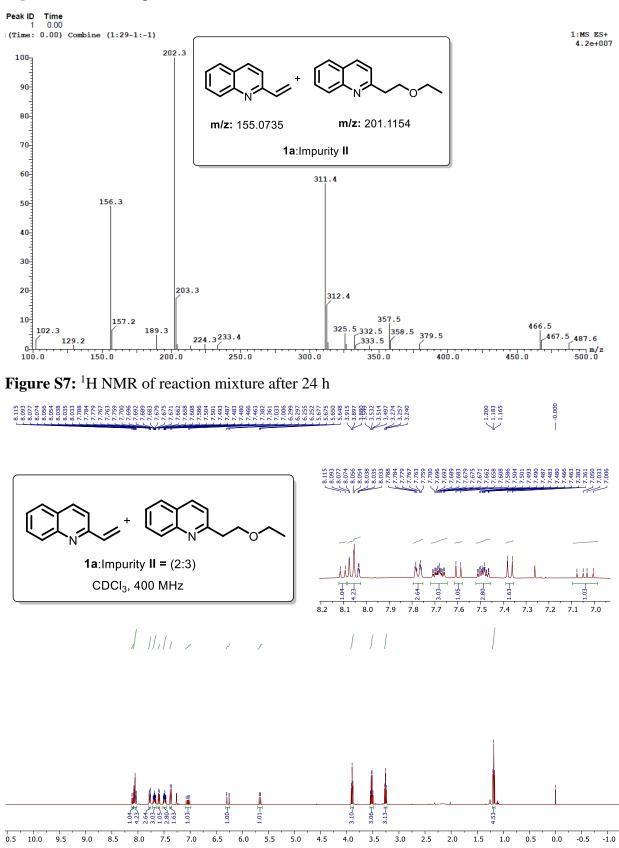
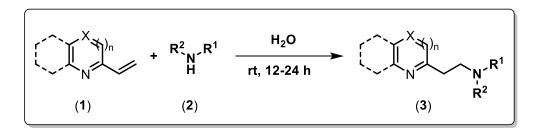




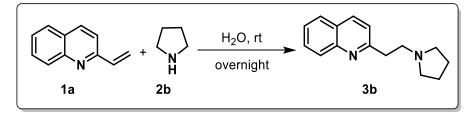
Figure S5: ESI-MS spectra of impurity II

(c) Reaction in absence of m-tolylpiperazine

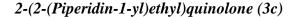


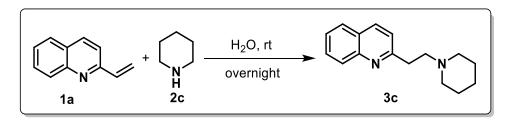
In a 50 mL round bottom flask, 2-vinylquinoline 1a (1.0 g, 6.44 mmol) and *N*-(m-tolyl)piperazine (1.13 g, 6.44 mmol) and acetic acid (12.88 mmol) were taken in 15.0 ml ethanol and reaction mixture was refluxed for 24 hour. After that, the solvent was removed under high vacuum and ethyl acetate (20 ml) was added to the reaction mixture and basified using 1N NaOH solution. Organic layer was extracted using ethyl acetate and dried over anhydrous sodium sulphate. Solvent was removed under reduced pressure to afford the mixture of 2-vinylquinoline (**1a**) and Impurity **II** in 2:3 ratio.

Figure S6: ESI-MS spectra of crude reaction mixture after 24 h

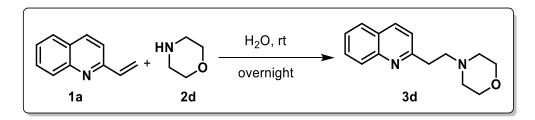

10. <u>Experimental procedures and spectral data</u>10a: General procedure for aza-michael-type addition

Vinyl *N*-heterocycles (**1**) (100 mg, 0.628 mmol) and alkyl/aryl amine (**2**) (0.628 mmol) was taken in 10 mL round bottom flask in 1.0 mL triple distilled water and stirred at room temperature. On completion of the reaction (based on TLC), the reaction mixture was diluted with 20 mL water and organic layer was extracted using ethyl acetate (15 mL X 2), and the combined organic layer was dried over anhydrous sodium sulfate, followed by evaporation of the solvent *in vacuo*. The crude was purified by silica gel and basic alumina column chromatography to afford the desired product **3**.

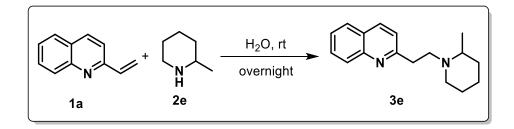

Spectral data


2-(2-(Pyrrolidin-1-yl)ethyl)quinoline (3b)

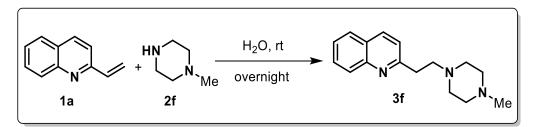
According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), pyrrolidine **2b** 26 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (20% MeOH/DCM) to yield **3b** as light yellow oil (136 mg, 93%); $R_f = 0.1$ (5% MeOH/EtOAc); ¹H NMR (**300 MHz, CDCl₃**): δ 8.06 (t, J = 8.1 Hz, 2H), 7.78 (dd, J = 8.1, 0.9 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.51 – 7.46 (m, 1H), 7.35 (d, J = 8.4 Hz, 1H), 3.25 – 3.19 (m, 2H), 3.00 – 2.95 (m, 2H), 2.65 – 2.61 (m, 4H), 1.83 – 1.79 (m, 4H); ¹³C NMR (**75**


MHz, CDCl₃): *δ* 159.4, 147.9, 136.7, 129.6, 128.9, 127.7, 127.0, 126.1, 121.9, 54.9, 53.7, 36.7, 23.5; **HRMS (ESI) m/z:** [M+H]+ calcd. for C₁₅H₁₉N₂ 227.1548, found 227.1548.

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), piperidine **2c** (54.8 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (20% EtOAc in hexane) to yield **3c** as light brown oil (135 mg, 87%); $R_f = 0.1$ (10% MeOH/EtOAc); ¹H NMR (**300 MHz, CDCl3**): δ 8.05 (dd, J = 8.4, 2.7 Hz, 2H), 7.76 (dd, J = 8.1, 1.2 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.50 – 7.45 (m, 1H), 7.33 (d, J = 8.4 Hz, 1H), 3.21 – 3.16 (m, 2H), 2.85 – 2.80 (m, 2H), 2.53 – 2.49 (m, 4H), 1.62 (dt, J = 10.9, 5.6 Hz, 4H), 1.49 – 1.41 (m, 2H); ¹³C NMR (**75 MHz, CDCl3**): δ 161.4, 148.0, 136.3, 129.4, 129.0, 127.6, 126.9, 125.7, 121.8, 59.1, 54.6, 36.8, 26.1, 24.5; HRMS (ESI) m/z: [M+H]+ calcd. for C₁₆H₂₁N₂ 241.1705, found 241.1704.


4-(2-(Quinolin-2-yl)ethyl)morpholine (3d)

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), morpholine **2d** (56 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (5% MeOH/EtOAc) to yield **3d** as dark brown oil (144 mg, 92%); $\mathbf{R}_f = 0.1$

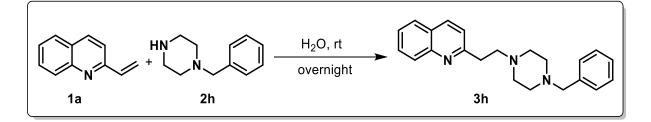

(100% EtOAc); ¹**H** NMR (300 MHz, CDCl₃): δ 8.08 (d, J = 8.7 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.79 (dd, J = 8.1, 0.9 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.53 – 7.47 (m, 1H), 7.34 (d, J = 8.4 Hz, 1H), 3.78 – 3.75 (m, 4H), 3.25 – 3.20 (m, 2H), 2.99 – 2.94 (m, 2H), 2.67 – 2.64 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 160.4, 148.0, 136.6, 129.6, 128.9, 127.7, 127.0, 126.1, 121.8, 66.7, 58.3, 53.6, 36.0; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₅H₁₉N₂O 243.1497, found 243.1491.

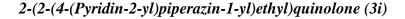
2-(2-(2-Methylpiperidin-1-yl)ethyl)quinolone (3e)

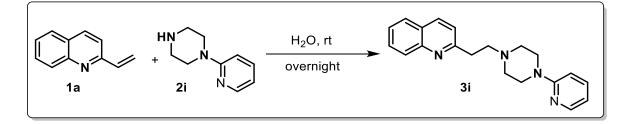

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), 2methylpiperidine **2e** (64 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (10% EtOAc in hexane) to yield **3e** as light yellow oil (144 mg, 88%); $R_f = 0.2$ (5% MeOH/EtOAc); **¹H NMR (300 MHz, CDCl₃):** δ 8.06 (d, J = 4.8 Hz, 1H), 8.03 (d, J = 4.8 Hz, 1H), 7.77 (dd, J = 8.1, 1.2 Hz, 1H), 7.70 – 7.65 (m, 1H), 7.50 – 7.45 (m, 1H), 7.31 (d, J = 8.4 Hz, 1H), 3.16 – 311 (m, 3H), 3.05 – 2.96 (m, 2H), 2.45 – 2.34 (m, 2H), 1.70 – 1.56 (m, 3H), 1.35 – 1.26 (m, 3H), 1.14 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 161.7, 148.1, 136.3, 129.47, 129.0, 127.6, 126.9, 125.9, 121.8, 55.5, 54.1, 52.5, 34.9, 34.8, 26.4, 24.3, 19.5; HRMS (ESI) m/z: [M+H]+ calcd. for C₁₇H₂₃N₂ 255.1861, found 255.1860.

2-(2-(4-Methylpiperazin-1-yl)ethyl)quinolone (3f)

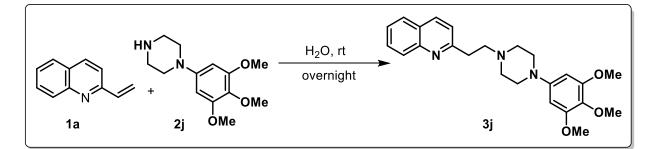
According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), *N*-methylpiperazine **2f** (64 mg, 0.644 mmol) were taken in H₂O (1.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (5% MeOH/EtOAc) to yield **3f** as light brown oil (153 mg, 93%); $R_f = 0.1$ (100% EtOAc); ¹H NMR (**300 MHz, CDCl₃**): δ 8.05 (t, J = 8.4 Hz, 2H), 7.78 (dd, J = 8.1, 1.2 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.51 – 7.46 (m, 1H), 7.33 (d, J = 8.4 Hz, 1H), 3.21 – 3.16 m, 2H), 2.91 – 2.86 (m, 2H), 2.63 (m, 4H), 2.49 (m, 4H), 2.30 (s, 3H); ¹³C NMR (**75 MHz, CDCl₃**): δ 161.1, 148.1, 136.4, 129.5, 129.0, 127.4, 126.9, 126.0, 121.8, 58.2, 55.2, 53.1, 46.1, 36.8; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₆H₂₂N₃ 256.1814, found 256.1814.

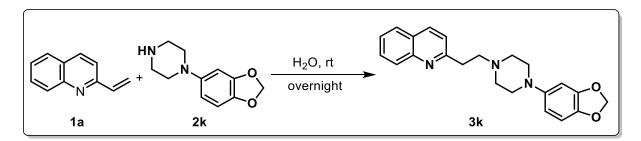

1-(4-(2-(Quinolin-2-yl)ethyl)piperazin-1-yl)ethan-1-one (3g)


According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), *N*-(piperazin-1-yl)ethan-1-one **2g** (82.6 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (25% EtOAc in hexane) to yield **3g** as light yellow oil (132 mg, 72%); $\mathbf{R}_f = 0.1$ (100% EtOAc in hexane); ¹H NMR (**300** MHz, CDCl₃): δ 8.07 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.78 (dd, J = 8.1, 1.2 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.52 –


7.47 (m, 1H), 7.32 (d, J = 8.4 Hz, 1H), 3.63 (t, J = 5.1 Hz, 2H), 3.46 (t, J = 5.1 Hz, 2H), 3.20 - 3.15 (m, 2H), 2.92 - 2.87 (m, 2H), 2.54 (dd, J = 10.2, 6.0 Hz, 4H), 2.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 169.0, 160.7, 148.0, 136.4, 129.5, 128.9, 127.6, 126.9, 126.0, 121.7, 58.0, 53.3, 52.8, 46.4, 41.5, 36.6, 21.4; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₂₂N₃O 284.1763, found 284.1760.

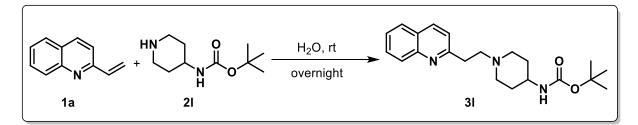
2-(2-(4-Benzylpiperazin-1-yl)ethyl)quinolone (3h)


According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), N-benzylpiperazine **2h** (113.6 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (15% EtOAc in hexane) to yield **3h** as light yellow oil (170 mg, 79%); $R_f = 0.2$ (100% EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (t, J = 8.4 Hz, 2H), 7.77 (dd, J = 8.0, 1.2 Hz, 1H), 7.70 – 7.65 (m, 1H), 7.50 – 7.46 (m, 1H), 7.33 – 7.29 (m, 5H), 7.28 – 7.23 (m, 1H), 3.52 (s, 2H), 3.19 – 3.15 (m, 2H), 2.89 – 2.85 (m, 2H), 2.61 (m, 4H), 2.52 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 161.1, 148.0, 138.2, 136.39, 129.5, 129.4, 128.9, 128.3, 127.6, 127.2, 126.9, 125.9, 121.8, 63.2, 58.3, 53.2, 36.8; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₂H₂₆N₃ 332.2127, found 332.2112.


According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), 1-(pyridin-2-yl)piperazine **2i** (105.2 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (pure EtOAc) to yield **3i** as light brown oil (187 mg, 91%); $\mathbf{R}_f = 0.4$ (100% EtOAc); ¹H NMR (**300 MHz, CDCl₃**): δ 8.20 – 8.81 (m, 1H), 8.07 – 8.03 (m, 2H), 7.77 (dd, J = 8.1, 0.9 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.50 – 7.43 (m, 2H), 7.34 (d, J = 8.4 Hz, 1H), 6.64 – 6.59 (m, 2H), 3.57 (t, J = 5.1 Hz, 4H), 3.245 – 3.21 (m, 2H), 2.98 – 2.92 (m, 2H), 2.70 (t, J = 5.4 Hz, 4H); ¹³C NMR (**75 MHz, CDCl₃**): δ 160.8, 159.6, 148.0, 148.0, 137.5, 136.4, 129.5, 128.9, 127.6, 126.9, 125.9, 121.7, 113.4, 107.1, 58.2, 53.0, 45.2, 36.6; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₀H₂₃N₄ 319.1923, found 319.1823.

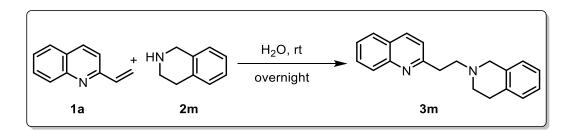
2-(2-(4-(3,4,5-Trimethoxyphenyl)piperazin-1-yl)ethyl)quinolone (3j)

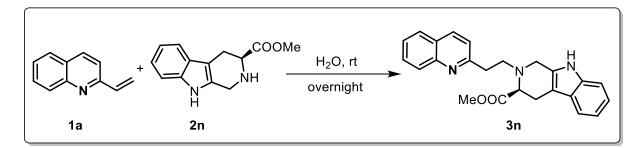
According to general procedure by using 4-vinylquinoline **1a** (100 mg, 0.644 mmol), 1-(3,4,5-trimethoxyphenyl)piperazine **2j** (162.6 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (40% EtOAc in hexane) to yield **3j** as light yellow oil (206 mg, 78%); $\mathbf{R}_f = 0.6$ (100% EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.53 – 7.49 (m, 1H), 7.37 (d, J = 8.4 Hz, 1H), 6.18 (s, 2H), 3.85 (s, 6H), 3.80 (s, 3H), 3.28 – 3.24 (m, 2H), 3.22 – 3.19 (m, 4H), 3.03 – 3.00 (m, 2H), 2.81 (t, J = 4.8 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 160.6, 153.7, 148.3, 148.0, 136.6, 132.4, 129.7, 128.9, 127.7, 127.0, 126.1, 121.8, 94.9, 61.1,


57.9, 56.2, 53.1, 50.0, 36.2; **HRMS (ESI) m/z:** [M+H^{]+} calcd. for C₂₄H₃₀N₃O₃ 408.2287, found 408.2279.

2-(2-(4-(Benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)ethyl)quinolone (3k)

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), 1-(benzo[d][1,3]dioxol-5-yl)piperazine **2k** (132.8 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (15% EtOAc in hexane) to yield **3k** as off-white solid (192 mg, 82%); **m.p:** 96-98 °C; $R_f = 0.6$ (100% EtOAc); ¹**H NMR (400 MHz, CDCl₃)**: δ 8.08 – 8.04 (m, 2H), 7.78 (dd, J = 8.0, 0.8 Hz, 1H), 7.71 – 7.67 (m, 1H), 7.51 – 7.47 (m, 1H), 7.35 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 6.57 (d, J = 2.4 Hz, 1H), 6.37 (dd, J = 8.4, 2.4Hz, 1H), 5.89 (s, 2H), 3.24 – 3.20 (m, 2H), 3.12 – 3.09 (m, 4H), 2.96 – 2.92 (m, 2H), 2.74 – 2.72 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 161.0, 148.3, 148.1, 147.6, 141.7, 136.4, 129.6, 129.0, 127.7, 126.9, 126.0, 121.8, 109.1, 108.3, 101.0, 100.0, 58.2, 53.3, 51.0, 36.8; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₂H₂₄N₃O₂ 362.1869, found 362.1860.


Tert-butyl (1-(2-(quinolin-2-yl)ethyl)piperidin-4-yl)carbamate (3l)

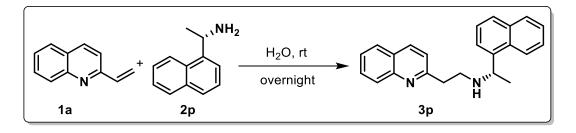

According to general procedure by using 2-vinylquinoline 1a (100 mg, 0.644 mmol), *tert*-butyl piperidin-4-ylcarbamate 2l (129 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at

room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (20% EtOAc in hexane) to yield **3l** as white solid (150 mg, 65%); **m.p:** 98-100 °C; $R_f = 0.2$ (100% EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 8.06 – 8.02 (m, 2H), 7.77 (d, J = 8.0 Hz, 1H), 7.69 – 7.66 (m, 1H), 7.50 – 7.47 (m, 1H), 7.31 (d, J = 8.5 Hz, 1H), 4.45 (s, 1H), 3.48 (d, J = 1.5 Hz, 1H), 3.17 – 3.14 (m, 2H), 2.94 (d, J = 11.7 Hz, 2H), 2.87 – 2.84 (m, 2H), 2.23 – 2.19 (m, 2H), 1.95 (d, J = 11.5 Hz, 2H), 1.45 (s, 11H). ¹³C NMR (125 MHz, CDCl₃): δ 161.1, 148.1, 136.3, 129.5, 129.0, 127.6, 126.9, 125.9, 121.8, 79.4, 58.3, 52.4, 37.0, 32.8, 28.5; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₁H₃₀N₃O₂ 356.2338, found 356.2332.

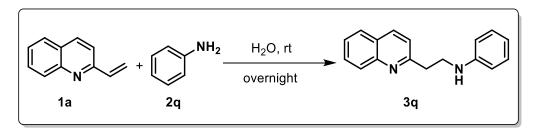
2-(2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethyl)quinoline (3m)

According to general procedure by using 4-vinylquinoline **1a** (100 mg, 0.644 mmol), 1,2,3,4tetrahydroisoquinoline **2m** (85.8 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (20% EtOAc in hexane) to yield **3m** as light yellow crystalline solid (130 mg, 70%); **m.p:** 77-79 °C; R_f = 0.5 (100% EtOAc); ¹**H NMR (300 MHz, CDCl₃):** δ 8.05 (dd, J = 9.0, 6.0 Hz, 2H), 7.75 (dd, J = 8.0, 1.2 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.49 – 7.44 (m, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.13 – 7.08 (m, 3H), 7.06 – 7.01 (m, 1H), 3.76 (s, 2H), 3.31 – 3.26 (m, 2H), 3.06 – 3.01 (m, 2H), 2.93 – 2.90 (m, 2H), 2.86 – 2.82 (m, 2H); ¹³C **NMR (75 MHz, CDCl₃):** δ 161.0, 148.0, 136.4, 134.8, 134.4, 129.5, 128.9, 128.7, 127.6, 126.9, 126.7, 126.2, 125.9, 125.7, 121.8, 58.5, 56.1, 51.0, 37.1, 29.2; **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₂₀H₂₁N₂ 289.1705, found 289.1702. carboxylate (3n)

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), methyl (S)-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-b]indole-3-carboxylate **2n** (148.4 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (80% EtOAc in hexane) to yield **3n** as light yellow solid (190 mg, 76%); **m.p:** 155-157 °C; R_f = 0.6 (100% EtOAc); ¹H NMR (**300 MHz, CDCl3**): δ 8.08 – 8.02 (m, 3H), 7.77 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.70 – 7.65 (m, 1H), 7.51 – 7.43 (m, 2H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.27 – 7.25 (m, 1H), 7.13 – 7.06 (m, 2H), 4.25 (d, *J* = 15.0 Hz, 1H), 4.04 – 3.95 (m, 2H), 3.59 (s, 3H), 3.35 – 3.19 (m, 4H), 3.15 – 3.04 (m, 2H); ¹³C NMR (**75 MHz, CDCl3**): δ 173.5, 160.8, 147.9, 136.5, 136.3, 131.7, 129.6, 128.8, 127.7, 127.2, 127.0, 126.0, 121.9, 121.5, 119.4, 117.9, 110.9, 106.2, 60.4, 54.6, 51.6, 46.4, 38.0, 24.1; **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₂₄H₂₄N₃O₂ 386.1869, found 386.1878. **2-(2-(4-((4-Methoxyphenyl))sulfonyl)piperazin-1-yl)ethyl)quinoline (30)**

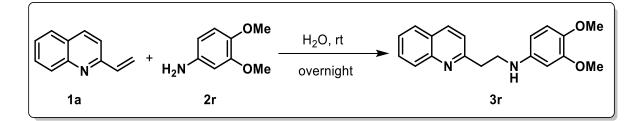


According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), 1-((4-methoxyphenyl)sulfonyl)piperazine **2o** (165 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by

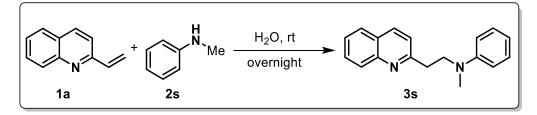

Methyl

silica-gel column chromatography (5% MeOH/DCM) to yield **30** as light brown solid (234 mg, 88%); **m.p:** 159-161 °C; $R_f = 0.2$ (100% EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.76 (dd, J = 8.0, 0.8 Hz, 1H), 7.70 – 7.66 (m, 3H), 7.50 – 7.46 (m, 1H), 7.27 (d, J = 8.4, 1H), 6.99 – 6.97 (m, 2H), 3.86 (s, 3H), 3.12 – 3.08 (m, 2H), 3.03 (m, 4H), 2.89 – 2.85 (m, 2H), 2.68 – 2.63 (t, J = 4.8 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 160.5, 148.0, 136.5, 130.0, 129.6, 128.9, 127.6, 127.2, 126.9, 126.0, 121.6, 114.3, 57.7, 55.7, 52.3, 46.2, 36.6; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₂H₂₆N₃O₃S 412.1695, found 412.1692.

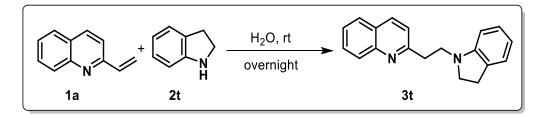
(S)-1-(naphthalen-1-yl)-N-(2-(quinolin-2-yl)ethyl)ethan-1-amine (3p)



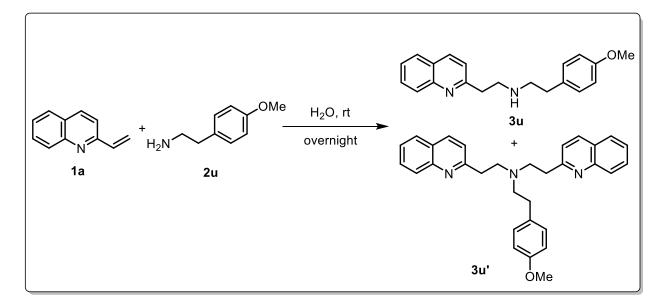
According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), (S)-1-(naphthalen-1-yl)ethan-1-amine **2p** (110.4 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (5% EtOAc in hexane) to yield **3p** as yellow oil (108 mg, 51%); $R_f = 0.4$ (100% EtOAc); ¹H NMR (**300 MHz, CDCl₃**): δ 8.16 – 8.12 (m, 1H), 8.04 – 8.00 (m, 2H), 7.85 – 7.82 (m, 1H), 7.77 – 7.63 (m, 4H), 7.50 – 7.38 (m, 4H), 7.26 – 7.22 (m, 1H), 4.69 (q, J = 6.6 Hz, 1H), 3.21 – 3.16 (m, 2H), 3.11 – 3.06 (m, 2H), 1.49 (d, J = 6.6 Hz, 3H); ¹³C NMR (**75 MHz, CDCl₃**): δ 161.1, 148.0, 141.2, 136.3, 134.1, 131.5, 129.5, 129.0, 127.6, 127.2, 126.9, 125.9, 125.8, 125.3, 123.1, 122.9, 121.9, 53.8, 47.2, 39.3, 23.7; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₃H₂₃N₂ 327.1861, found 327.1864.


According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), aniline **2q** (66 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (12% EtOAc in hexane) to yield **3q** as off-white solid (116 mg, 72%); **m.p:** 70-72 °C; $R_f = 0.3$ (10% EtOAc in hexane); ¹**H NMR (300 MHz, CDCl₃):** δ 8.07 (d, J = 8.4 Hz, 2H), 7.78 (dd, J = 8.1, 1.5 Hz, 1H), 7.73 – 7.67 (m, 1H), 7.53 – 7.47 (m, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.19 – 7.14 (m, 2H), 6.72 – 6.63 (m, 3H), 3.64 (t, J = 6.6 Hz, 2H), 3.27 (t, J = 6.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 160.4, 148.3, 148.0, 136.6, 129.7, 129.4, 129.0, 127.7, 127.0, 126.1, 121.8, 117.5, 113.2, 43.4, 38.1; **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₇H₁₇N₂ 249.1392, found 249.1390.

3,4-Dimethoxy-N-(2-(quinolin-2-yl)ethyl)aniline (3r)


According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), 3,4dimethoxyaniline **2r** (98.8 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (50% EtOAc in hexane) to yield **3r** as dark brown oil (142 mg, 71%); $\mathbf{R}_f = 0.7$ (100% EtOAc); ¹H NMR (**300 MHz, CDCl3**): δ 8.08 (dd, J = 8.1, 2.4 Hz, 2H), 7.79 (dd, J = 8.1, 1.2 Hz, 1H), 7.77 – 7.68 (m, 1H), 7.53 – 7.48 (m, 1H), 7.30 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.27 (d, J = 2.7, Hz, 2H), 6.20 (dd, J = 8.4, 2.4 Hz, 2H), 3.81 (s, 3H), 3.79 (s, 3H), 3.61 (t, J = 6.0 Hz, 2H), 3.27 (t, J = 6.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 160.5, 150.2, 148.0, 143.3, 141.78, 136.7, 129.7, 129.0, 127.7, 127.0, 126.1, 121.8, 113.5, 104.1, 99.5, 56.9, 55.8, 44.4, 38.2; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₉H₂₁N₂O₂ 309.1603, found 309.1600.

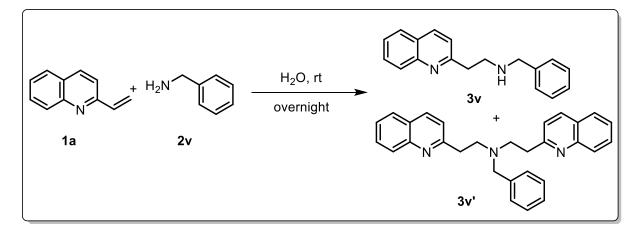
N-methyl-N-(2-(quinolin-2-yl)ethyl)aniline (3s)


According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), *N*-methylaniline **2s** (69 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (10% EtOAc in hexane) to yield **3s** as light yellow oil (128 mg, 75%); $R_f = 0.4$ (10% EtOAc in hexane); **1H NMR (300 MHz, CDCl_3):** δ 8.06 (t, J = 8.4 Hz, 2H), 7.77 (dd, J = 8.1, 0.9 Hz, 1H), 7.73 – 7.67 (m, 1H), 7.52 – 7.46 (m, 1H), 7.27 – 7.22 (m, 3H), 6.80 – 6.76 (m, 2H), 6.73 – 6.68 (m, 1H), 3.91 – 3.80 (m, 2H), 3.25 – 3.20 (m, 2H), 2.90 (s, 3H); **1³C NMR (75 MHz, CDCl_3):** δ 160.65, 149.01, 148.20, 136.45, 129.60, 129.38, 128.99, 127.69, 126.94, 126.02, 122.07, 116.44, 112.47, 77.58, 77.16, 76.74, 52.96, 38.59, 36.19; **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₁₉N₂ 263.1548, found 263.1552.

2-(2-(Indolin-1-yl)ethyl)quinolone (3t)

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), indoline **2t** (76.8 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (10% EtOAc in hexane) to yield **3t** as light orange oil (134 mg, 76%); R_f = 0.5 (20% EtOAc in hexane); ¹H NMR (**300 MHz, CDCl₃**): δ 8.08 – 8.05 (m, 2H), 7.7 (dd, J = 8.1, 1.2 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.51 – 7.46 (m, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.07 – 7.03 (m, 2H), 6.66 – 6.60 (m, 1H), 6.54 (d, J = 7.8 Hz, 1H), 3.64 – 3.59 (m, 2H), 3.42 (t, J = 8.4 Hz, 2H), 3.28 – 3.23 (m, 2H), 2.95 (t, J = 8.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 160.7, 152.3, 148.1, 136.5, 130.1, 129.6, 129.0, 127.7, 127.4, 127.0, 126.0, 124.5, 121.8, 117.6, 107.1, 53.2, 49.1, 36.7, 28.7; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₉H₁₉N₂ 275.1548, found 275.1544.

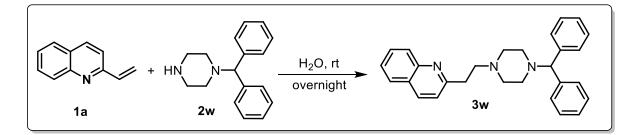
N-(4-methoxyphenethyl)-2-(quinolin-2-yl)ethan-1-amine (3u)

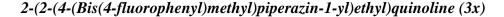


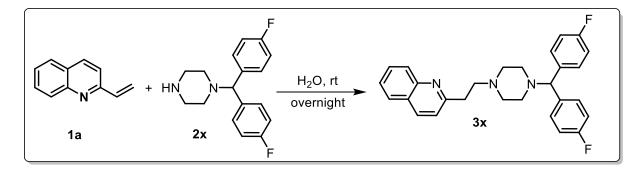
According to general procedure by using 4-vinylquinoline **1a** (100 mg, 0.644 mmol), 2-(4methoxyphenyl)ethan-1-amine **2u** (97.4 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (30% EtOAc in hexane) to yield **3u** as light yellow oil (60 mg, 30%); $\mathbf{R}_f = 0.3$ (100% EtOAc); ¹H NMR (**300** MHz, CDCl₃): δ 8.04 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 9.0 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.68 – 7.65 (m, 1H), 7.51 – 7.46 (m,

1H), 7.30 – 7.23 (m, 1H), 7.11 – 7.04 (m, 2H), 6.80 – 6.71 (m, 2H), 3.75 (s, 3H), 3.13 (t, J = 6.0 Hz, 4H), 2.90 (t, J = 6.0 Hz, 2H), 2.74 (t, J = 6.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 160.9, 158.1, 148.0, 136.4, 132.2, 129.7, 129.5, 129.1, 127.6, 126.9, 126.0, 121.8, 114.0, 55.4, 51.3, 49.2, 39.2, 35.4; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₀H₂₃N₃O 307.1810, found 307.1808.

N-(*4*-*methoxyphenethyl*)-2-(*quinolin*-2-*yl*)-*N*-(2-(*quinolin*-2-*yl*)*ethyl*)*ethan*-1-*amine* (3*u*'): The title compound was prepared and purified by basic alumina column chromatography (30% EtOAc in hexane) to yield **3u**' as brown oil (150 mg, 50%); $R_f = 0.4$ (100% EtOAc); ¹H NMR (**300 MHz, CDCl3**): δ 8.05 (d, J = 9.0 Hz, 2H), 7.89 (d, J = 9.0 Hz, 2H), 7.74 (d, J = 9.0 Hz, 2H), 7.69 – 7.64 (m, 2H), 7.50 – 7.45 (m, 2H), 7.11 (d, J = 8.4 Hz, 2H), 7.02 – 6.97 (m, 2H), 6.75 – 6.70 (m, 2H), 3.75 (s, 3H), 3.12 (s, 8H), 2.86 – 2.81 (m, 2H), 2.71 – 2.66 (m, 2H); ¹³C NMR (75 MHz, CDCl3): δ 161.5, 157.9, 148.0, 136.1, 132.8, 129.8, 129.4, 129.0, 127.6, 126.9, 125.8, 122.1, 113.7, 56.2, 55.3, 53.8, 36.9, 33.0; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₃₁H₃₂N₃O 462.2545, found 462.2558.

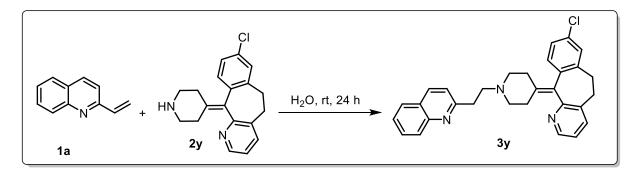

N-benzyl-2-(quinolin-2-yl)ethan-1-amine (3v)

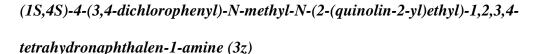

According to general procedure by using 4-vinylquinoline 1a (10 mg, 0.644 mmol), benzylamine 2v (69 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina chromatography (35% EtOAc in hexane) to yield 3v as brown oil (40 mg, 23%); $R_f = 0.2$ (100% EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (t, J = 8.0 Hz, 2H), 7.77 (dd, J = 8.1 Hz, 1H), 7.68 – 7.66 (m, 1H), 7.50 – 7.46 (m, 1H), 7.33 – 7.27 (m, 5H), 7.26 – 7.21 (m, 1H), 3.85 (s, 2H), 3.22 – 3.19 (m, 2H), 3.16 – 3.13 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.9, 148.0, 140.2, 136.4, 129.5, 129.0, 128.5, 128.3, 127.6, 127.1, 126.9, 126.0, 121.8, 53.9, 48.7, 39.1; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₀H₁₆N₃O₂ 263.1548, found 263.1539.

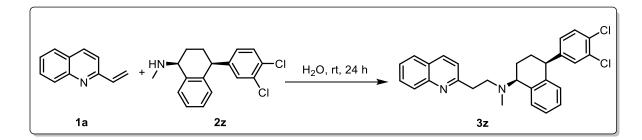

N-benzyl-2-(quinolin-2-yl)-N-(2-(quinolin-2-yl)ethyl)ethan-1-amine (3v'): The title compound was prepared and purified by basic alumina column chromatography (30% EtOAc in hexane) to yield 3v' as brown oil (130 mg, 48%); $R_f = 0.4$ (100% EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 7.72 (dd, J = 8.0, Hz, 2H), 7.68 – 7.64 (m, 2H), 7.49 – 7.45 (m, 2H), 7.25 – 7.12 (m, 5H), 7.07 (d, J = 8.0 Hz, 2H), 3.75 (s, 2H), 3.16 – 3.12 (m, 4H), 3.08 – 3.04 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 161.4, 147.9, 139.6, 135.9, 129.4, 128.9, 129.0, 128.1, 127.6, 126.8, 126.8, 125.8, 122.0, 58.6, 53.7, 37.0; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₉H₂₈N₃ 418.2283, found 418.2284.

2-(2-(4-Benzhydrylpiperazin-1-yl)ethyl)quinoline (3w)

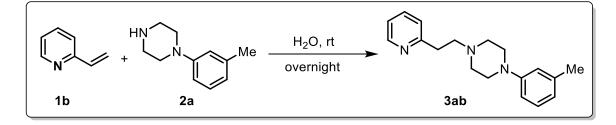
According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), 1benzhydrylpiperazine **2w** (162 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica-gel column chromatography (3% MeOH/DCM) to yield **3w** as off-white solid (211 mg, 80%); **m.p:** 124-126 °C; R_f = 0.3 (100% EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (t, *J* = 8.0 Hz, 2H), 7.76 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.50 – 7.46 (m, 1H), 7.43 – 7.41 (m, 4H), 7.31 (d, *J* = 8.4 Hz, 1H), 7.28 – 7.24 (m, 4H), 7.19 – 7.14 (m, 2H), 4.22 (s, 1H), 3.18 – 3.15 (m, 2H), 2.89 – 2.85 (m, 2H), 2.60 (m, 4H), 2.45 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): *δ* 161.2, 148.0, 142.9, 136.4, 129.5, 129.0, 128.6, 128.1, 127.6, 127.0, 126.9, 125.9, 121.8, 76.5, 58.3, 53.5, 52.1, 36.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₈H₃₀N₃ 408.2440, found 408.2436.



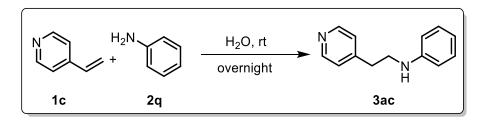

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), 1-(bis(4-fluorophenyl)methyl)piperazine **2x** (185 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (3% MeOH/DCM) to yield **3x** as yellow oil (203 mg, 71%); $\mathbf{R}_f = 0.3$ (100% EtOAc); **¹H NMR (400 MHz, CDCl₃)**: δ 8.04 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.70 – 7.66 (m, 1H), 7.51 – 7.48 (m, 1H), 7.37 – 7.31 (m, 5H), 6.99 – 6.95 (m, 4H), 4.22 (s, 1H), 3.20 – 3.16 (m, 2H), 2.92 – 2.88 (m, 2H), 2.62 (m, 4H), 2.43 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 162.0 (d, J = 244 Hz), 160.9, 138.4, 136.5, 129.6, 129.4, 129.0, 127.7, 126.9, 126.0, 121.8, 115.6 (d, J = 21 Hz), 74.7, 58.1, 53.5, 51.8, 36.7; ¹⁹F NMR (377 MHz, CDCl₃): δ -115.68 (s); HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₈H₃₈F₂N₃ 444.2251, found 444.2248.


8-chloro-11-(1-(2-(quinolin-2-yl)ethyl)piperidin-4-ylidene)-6,11-dihydro-5H-


According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), Desloratadine **2y** (200 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for 24 h, the title compound was prepared and purified by silica-gel column chromatography (80% ethyl acetate/Hexane) to yield **3y** as yellow oil (170 mg, 56%); R_f = 0.4 (5% MeOH/Ethyl acetate); ¹H NMR (**300** MHz, CDCl₃): δ 8.40 (dd, J = 4.8, 1.5 Hz, 1H), 8.08 – 8.01 (m, 2H), 7.77 (d, J = 8.1 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.51 – 7.45 (m, 1H), 7.45 – 7.42 (m, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.15 – 7.07 (m, 4H), 3.47 – 3.32 (m, 2H), 3.23 – 3.17 (m, 2H), 2.94 – 2.87 (m, 3H), 2.85 – 2.76 (m, 2H), 2.71 (m, 2H), 2.63 – 2.53 (m, 1H), 2.49 – 2.38 (m, 2H), 2.35 – 2.27 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 175.8, 159.5, 156.8, 147.8, 146.5, 139.6, 137.9, 137.5, 136.9, 136.4, 133.8, 133.7, 133.2, 130.6, 129.7, 129.1, 128.7, 127.7, 127.0, 126.3, 126.2, 122.6, 121.9, 56.6, 53.8, 34.8, 31.7, 31.5, 29.8, 22.1; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₃₀H₂₉ClN₃ 466.2050, found 466.2046.

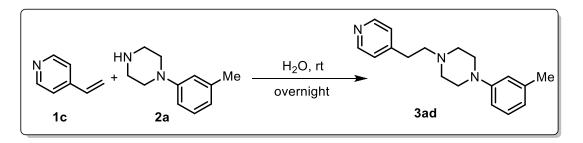

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), Sertraline **2z** (196 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for 24 h, the title compound was prepared and purified by silica-gel column chromatography (70% ethyl acetate/Hexane) to yield **3z** as yellow oil (212 mg, 71%); R_f = 0.4 (100% DCM); ¹H NMR (**300 MHz, CDCl₃**): δ 8.06 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.81 – 7.78 (m, 1H), 7.71 – 7.66 (m, 1H), 7.52 – 7.46 (m, 2H), 7.34 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.10 – 6.99 (m, 3H), 6.85 – 6.77 (m, 2H), 4.13 – 4.07 (m, 1H), 3.95 – 3.89 (m, 1H), 3.21 (t, J = 7.2 Hz, 2H), 3.04 – 2.92 (m, 2H), 2.34 (s, 3H), 2.18 – 2.07 (m, 1H), 1.99 – 1.98 (m, 1H), 1.72 – 1.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 148.0, 147.7, 139.5, 138.1, 136.1, 132.2, 130.8, 130.2, 130.0, 129.9, 129.4, 128.9, 128.6, 128.3, 127.6, 126.9, 126.8, 125.8, 122.0, 62.5, 53.8, 43.7, 38.3, 37.3, 30.1, 15.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₈H₂₇Cl_{2N2} 461.1551, found 461.1544.

2-(4-(2-(Quinolin-2-yl)ethyl)piperazin-1-yl)quinoline (3aa)

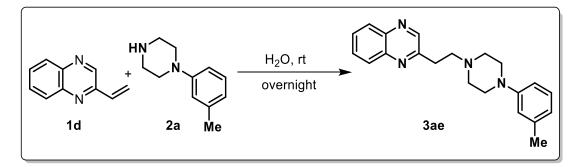

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol) Quipazine **2aa** (137 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica-gel column chromatography (5% MeOH/DCM) to yield **3aa** as off-white solid (188 mg, 79%); **m.p:** 119-121 °C; $R_f = 0.1$ (100% EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.06 (dd, J = 8.8 Hz, 2H), 7.88 (d, J = 9.2 Hz, 1H), 7.79 – 7.77 (m, 1H), 7.72 – 7.67 (m, 2H), 7.59 (dd, J = 8.0, 1.2 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.35 (d, J = 8.4 Hz, 1H), 7.26 – 7.20 (m, 1H), 6.97 (d, J = 9.2 Hz, 1H), 3.79 (t, J = 5.2Hz, 4H), 3.27 – 3.23 (m, 2H), 2.99 – 2.95 (m, 2H), 2.73 (t, J = 5.2 Hz 4H); ¹³C NMR (100 MHz, CDCl₃): δ 160.8, 157.5, 148.0, 148.0, 137.6, 136.4, 129.6, 129.6, 129.0, 127.7, 127.3, 126.9, 126.8, 126.0, 123.2, 122.5, 121.8, 109.7, 58.2, 53.2, 45.2, 36.7; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₄H₂₅N₄ 369.2079, found 369.2072.

1-(2-(Pyridin-2-yl)ethyl)-4-(m-tolyl)piperazine (3ab)

According to general procedure by using 2-vinylpyridine **1b** (100 mg, 0.951 mmol), N-(m-tolyl)piperazine **2a** (167.7 mg, 0.951 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (7% MeOH/EtOAc) to yield **3ab** as light yellow oil (220 mg, 82%); R_f = 0.4 (5% MeOH/EtOAc); ¹H NMR (**300 MHz, CDCl₃**): δ 8.54 – 8.52 (m, 1H), 7.60 (td, J = 7.7, 1.8 Hz, 1H), 7.22 (d, J = 9.0 Hz, 1H), 7.20 – 7.10 (m, 2 H) 6.76 – 6.73 (m, 2H), 6.69 (d, J = 9.0 Hz, 1H), 3.24 – 3.21 (m, 4H), 3.08 – 3.03 (m, 2H), 2.90 – 2.84 (m, 2H), 2.76 – 2.73 (m, 4H), 2.31 (s, 3H); ¹H NMR (**100 MHz, CDCl₃**): δ 160.1, 151.4, 149.3, 138.9, 136.6, 136.6, 129.1, 123.4, 121.4, 120.8, 117.1, 113.4, 58.3, 53.2, 49.2, 35.5, 21.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₈H₂₄N₃ 282.1970, found 282.1996.

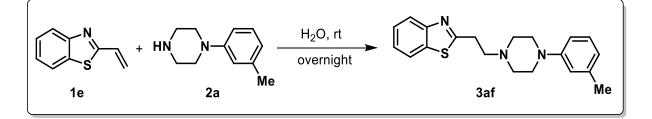

N-(2-(*pyridin-4-yl*)*ethyl*)*aniline* (3*ac*)

According to general procedure by using 4-vinylpyridine 1c (100 mg, 0.951 mmol), aniline 2q (88 mg, 0.951 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (60%)


EtOAc/Hexane) to yield **3ac** as light yellow oil (144 mg, 76%); $R_f = 0.4$ (50% EtOAc/Hexane); ¹H NMR (**300 MHz, CDCl₃**): δ 8.53 (dd, J = 4.2, 1.5 Hz, 2H), 7.23 – 7.14 (m, 4H), 6.76 – 6.70 (m, 1H), 6.63 – 6.60 (m, 2H), 3.45 (t, J = 6.9 Hz, 2H), 2.92 (t, J = 6.9 Hz, 2H); ¹H NMR (**125 MHz, CDCl₃**): δ 150.0, 148.6, 147.7, 129.5, 124.3, 118.0, 113.1, 44.2, 35.1; HRMS (**ESI**) m/z: [M+H]⁺ calcd. for C₁₃H₁₅N₂ 199.1235, found 199.1232.

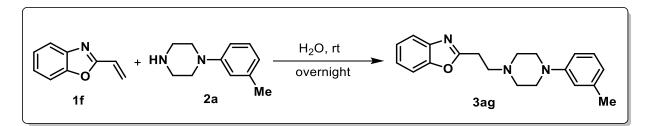
1-(2-(Pyridin-4-yl)ethyl)-4-(m-tolyl)piperazine (3ad)

According to general procedure by using 4-vinylpyridine **1c** (100 mg, 0.951 mmol), N-(m-tolyl)piperazine **2a** (167.7 mg, 0.951 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (pure EtOAc) to yield **3ad** as light yellow solid (199 mg, 74%); **m.p:** 52-54 °C; $R_f = 0.3$ (100% EtOAc); ¹H NMR (**300 MHz, CDCl₃**): δ 8.50 (dd, J = 4.5, 1.5 Hz, 2H), 7.18 – 7.13 (m, 3H), 6.76 – 6.73 (m, 2H), 6.69 (d, J = 7.2 Hz, 1H), 3.19 (t, J = 4.8 Hz, 4H), 2.86 – 2.81 (m, 2H), 2.70 – 2.64 (m, 6H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 151.4, 149.8, 149.5, 138.9, 129.1, 124.3, 120.8, 117.1, 113.3, 59.1, 53.3, 49.3, 33.0, 21.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₈H₂₄N₃ 282.1970, found 282.1958.

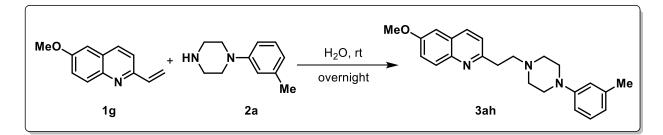

2-(2-(4-(m-tolyl)piperazin-1-yl)ethyl)quinoxaline (3ae)

S40

According to general procedure by using 2-vinylquinoxaline 1d (100 mg, 0.64 mmol), N-(m-tolyl)piperazine 2a (112.8 mg, 0.64 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel basic alumina (15% EtOAc in hexane) to yield 3ae as light yellow oil (168 mg, 79%); m.p: 107-109 °C; R_f = 0.5 (100% EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.80 (s, 1H), 8.10 – 8.03 (m, 2H), 7.77 – 7.69 (m, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.75 – 6.72 (m, 2H), 6.68 (d, *J* = 7.2 Hz, 1 H), 3.25 (t, *J* = 7.2 Hz, 2H), 3.22 – 3.18 (m, 4H), 2.97 – 2.94 (m, 2H), 2.74 – 2.71 (m, 4H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 151.4, 146.1, 142.3, 141.4, 138.9, 130.1, 129.3, 129.2, 129.0, 129.0, 120.8, 117.1, 113.3, 57.6, 53.3, 49.4, 34.0, 21.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₁H₂₅N₄ 333.2079, found 333.2072.

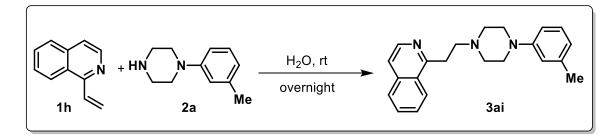

2-(2-(4-(m-tolyl)piperazin-1-yl)ethyl)benzo[d]thiazole (3af)

According to general procedure by using 2-vinylbenzo[d]thiazole **1e** (100 mg, 0.62 mmol), N-(m-tolyl)piperazine **2a** (109.2 mg, 0.62 mmol) were taken in H₂O (1.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (40% EtOAc in hexane) to yield **3af** as white solid (176 mg, 84%); **m.p:** 90-92 °C; $\mathbf{R}_f = 0.3$ (20% EtOAc in hexane); ¹H NMR (**500** MHz, CDCl₃): δ 7.97 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 7.15 (t, J = 7.5 Hz, 1H), 6.76 – 6.74 (m, 2H), 6.68 (d, J = 7.5 Hz, 1H), 3.35 – 3.32 (m, 2H), 3.23 (t, J = 5.0 Hz, 4H), 2.94 – 2. 91 (m, 2H), 2.73 (t, J = 5.0 Hz, 4H), 2.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.1, 153.0, 151.5, 138.9, 135.6, 129.1, 126.0, 124.8, 122.6, 121.6, 120.8, 117.1, 113.4,

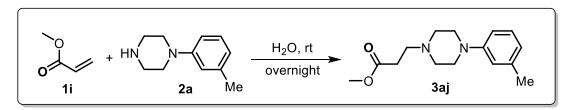

57.0, 53.2, 49.4, 32.1, 21.9; **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₂₀H₂₄N₃S 338.1691, found 338.1641.

2-(2-(4-(m-tolyl)piperazin-1-yl)ethyl)benzo[d]oxazole (3ag)

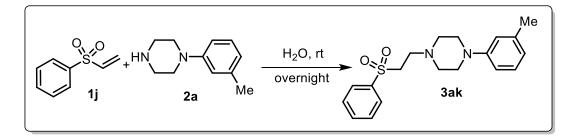
According to general procedure by using 2-vinylbenzo[d]oxazole **1f** (100 mg, 0.688 mmol), N-(m-tolyl)piperazine **2a** (121.4 mg, 0.688 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (15% EtOAc in hexane) to yield **3ag** as light yellow oil (180 mg, 81%); **m.p:** 107-109 °C; $R_f = 0.4$ (50% EtOAc in hexane); ¹H NMR (**400 MHz, CDCl3**): δ 7.69 – 7.67 (m, 1H), 7.50 – 7.47 (m, 1H), 7.33 – 7.29 (m, 2H), 7.14 (t, J = 7.6 Hz, 1H), 6.74 – 6.72 (m, 2H), 6.68 (d, J = 7.6 Hz, 1 H), 3.21 – 3.17 (m, 6H), 3.03 – 3.00 (m, 2H), 2.71 (t, J =4.8 Hz, 4H), 2.31 (s, 3H); ¹³C NMR (**100 MHz, CDCl3**): δ 165.7, 151.4, 150.9, 138.9, 129.1, 124.7, 124.3, 120.8, 119.7, 117.1, 113.34, 110.5, 55.2, 53.1, 49.3, 26.8, 21.89; HRMS (ESI) **m/z:** [M+H]⁺ calcd. for C₂₀H₂₄N₃O 322.1919, found 322.1903.


6-Methoxy-2-(2-(4-(m-tolyl)piperazin-1-yl)ethyl)quinolone (3ah)

According to general procedure by using 6-methoxy-2-vinylquinoline 1g (100 mg, 0.538 mmol), N-(m-tolyl)piperazine 2a (95.2 mg, 0.538 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by

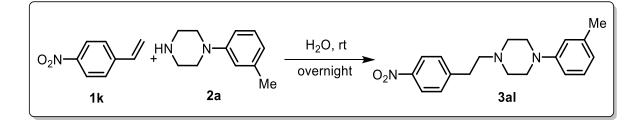

basic alumina column chromatography (15% EtOAc in hexane) to yield **3ah** as white solid (168 mg, 86%); **m.p:** 109-111 °C; $R_f = 0.4$ (50% EtOAc in hexane); ¹H NMR (400 MHz, **CDCl₃):** δ 7.95 (dd, J = 10.4, 1.6 Hz, 2H), 7.34 (dd, J = 9.2, 2.8 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 2.8 Hz, 1H), 6.76 – 6.74 (m, 2H), 6.68 (d, J = 7.6, Hz, 1H), 3.92 (s, 3H), 3.23 – 3.16 (m, 6H), 2.93 – 2.89 (m, 2H), 2.736 – 2.70 (t, J = 4.8 Hz, 1H), 2.31 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃): δ 158.4, 157.4, 151.5, 144.1, 138.9, 135.3, 130.4, 129.1, 127.8, 122.1, 120.7, 117.0, 113.3, 105.3, 58.4, 55.6, 53.3, 49.4, 36.5, 21.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₃H₂₈N₃O 362.2232, found 362.2213.

1-(2-(4-(m-tolyl)piperazin-1-yl)ethyl)isoquinoline (3ai)

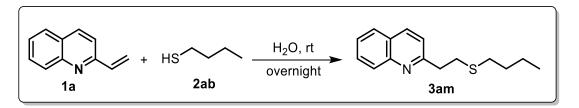

According to general procedure by using N-vinylisoquinoline **1h** (100 mg, 0.644 mmol), N-(m-tolyl)piperazine **2a** (113.6 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (15% EtOAc in hexane) to yield **3ai** as brown oil (162 mg, 76%); R_f = 0.6 (100% EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 8.44 (d, J = 5.5 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 7.0 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.52 (d, J = 5.5 Hz, 1H), 7.16 (t, J = 8.0 Hz, 1H), 6.77 – 6.75 (m, 2H), 6.69 (d, J = 7.0 Hz, 1H), 3.60 – 3.55 (m, 2H), 3.25 (t, J = 4.5 Hz, 4H), 3.02 – 2.99 (m, 2H), 2.80 – 2.78 (m, 4H), 2.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 160.2, 151.5, 142.0, 138.9, 136.4, 130.0, 129.1, 127.6, 127.3, 127.3, 125.3, 120.8, 119.6, 117.1, 113.3, 57.9, 53.5, 49.4, 32.8, 21.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₂H₂₆N₃ 332.2127, 332.2125.

Methyl 3-(4-(m-tolyl)piperazin-1-yl)propanoate (3aj)

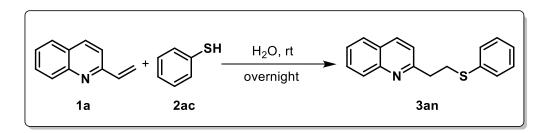
According to general procedure by using methyl acrylate **1i** (100 mg, 1.16 mmol), *N*-(m-tolyl)piperazine **2a** (204 mg, 1.16 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica-gel column chromatography (60% EtOAc in hexane) to yield **3aj** as light yellow oil (214 mg, 70%); R_f = 0.3 (60% EtOAc/Hexane); ¹H NMR (400 MHz, CDCl₃): δ 7.14 (t, *J* = 7.6 Hz, 1H), 6.74 – 6.71 (m, 2H), 6.68 (d, *J* = 7.2 Hz, 1H), 3.69 (s, 3H), 3.19 – 3.16 (m, 4H), 2.76 (t, *J* = 7.2 Hz, 2H), 2.62 (t, *J* = 4.8 Hz, 4H) 2.55 (t, *J* = 7.6 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 151.4, 138.9, 129.0, 120.8, 117.1, 113.3, 53.7, 53.1, 51.8, 49.3, 32.2, 21.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₅H₂₃N₂O₂ 263.1760, found 263.1742.


1-(2-(Phenylsulfonyl)ethyl)-4-(m-tolyl)piperazine (3ak)

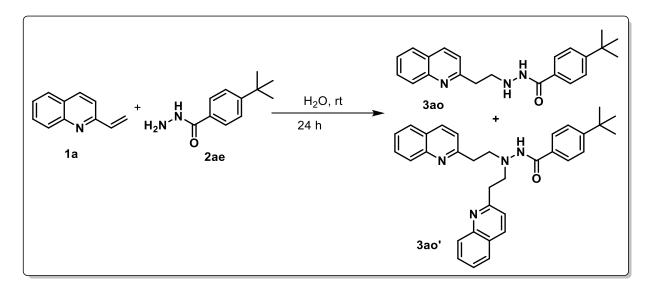
According to general procedure by using (vinylsulfonyl)benzene **1j** (100 mg, 0.594 mmol), *N*-(m-tolyl)piperazine **2a** (104 mg, 0.594 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica-gel column chromatography (45% EtOAc in hexane) to yield **3ak** as white solid (181 mg, 88%); **m.p:** 88-90 °C; $R_f = 0.2$ (50% EtOAc/Hexane); ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 7.6 Hz, 2H), 7.66 – 7.63 (m, 1H), 7.58 – 7.54 (m, 2H), 7.13 (t, J = 7.6 Hz, 1H), 6.68 – 6.66 (m, 3H), 3.34 (t, J = 7.2 Hz, 2H), 3.02 (m, 4H), 2.83 (t, J = 7.2 Hz, 2H), 2.51 (m, 4H), 2.30 (s, 3H); ¹³C


NMR (100 MHz, CDCl₃): δ 151.2, 139.9, 138.9, 133.8, 129.3, 129.1, 128.2, 120.9, 117.1, 113.3, 53.7, 52.9, 51.5, 49.1, 21.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₉H₂₅N₂O₂S 345.1637, found 345.1624.

1-(4-Nitrophenethyl)-4-(m-tolyl)piperazine (3al)


According to general procedure by using 1-nitro-4-vinylbenzene **1k** (100 mg, 0.670 mmol), *N*-(m-tolyl)piperazine **2a** (118 mg, 0.670 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica-gel column chromatography (45% EtOAc in hexane) to yield **3al** as yellow solid (138 mg, 63%); **m.p:** 109-111 °C; **R**_{*f*} = 0.2 (50% EtOAc/Hexane); ¹**H NMR** (**400 MHz**, **CDCl₃):** δ 8.15 (d, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.15 (t, *J* = 7.2 Hz, 1H), 6.75 – 7.73 (m, 2H), 6.69 (d, *J* = 6.8 Hz, 1H), 3.21 (m, 4H), 2.96 – 2.93 (m, 2H), 2.68 (m, 6H), 2.32 (s, 3H); ¹³**C NMR** (**100 MHz**, **CDCl₃):** δ 151.4, 148.4, 146.7, 138.9, 129.7, 129.1, 123.8, 120.9, 117.1, 113.4, 59.5, 53.3, 49.4, 33.6, 21.9; **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₉H₂₄N₃O₂ 326.1869, found 326.1859.

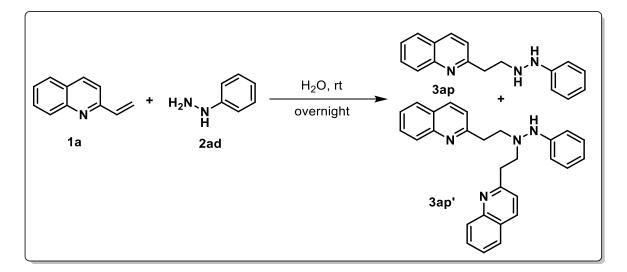
2-(2-(Butylthio)ethyl)quinoline (3am)



According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), butane-1-thiol **2ab** (58 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica-gel column chromatography (15% EtOAc in hexane) to yield **3am** as light yellow oil (108 mg, 68%); R_f = 0.3 (10% EtOAc/Hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 9.2 Hz, 1H), 7.79 (dd, J = 8.0, 1.2 Hz, 1H), 7.71 – 7.67 (m, 1H), 7.52 – 7.48 (m, 1H), 7.33 (d, J = 8.4 Hz, 1H), 3.28 – 3.24 (m, 2H), 3.05 – 3.01 (m, 2H), 2.57 (t, J = 7.2 Hz, 2H), 1.62 – 1.54 (m, 2H), 1.44 – 1.34 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.9, 148.1, 136.5, 129.6, 129.0, 127.7, 126.1, 121.7, 39.5, 32.2, 31.9, 31.8, 22.1, 13.8; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₅H₂₀NS 246.1316, found 246.1312.

2-(2-(Phenylthio)ethyl)quinolone (3an)

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), benzenethiol **2ac** (71 mg, 0.644 mmol) were taken in H₂O (1.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by silica gel column chromatography (5% EtOAc in hexane) to yield **3an** as light yellow oil (144 mg, 84%); R_f = 0.5 (10% EtOAc in hexane); ¹H NMR (**300** MHz, CDCl₃): δ 8.04 (dd, J = 8.1, 2.1 Hz, 2H), 7.77 (dd, J = 8.1, 1.2 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.51 – 7.46 (m, 1H), 7.40 – 7.37 (m, 2H), 7.29 – 7.25 (m, 3H), 7.19 – 7.16 (m, 1H), 3.48 – 3.43 (m, 2H), 3.32 – 3.26 (m, 2H); ¹³C NMR (**75** MHz, CDCl₃): δ 160.3, 148.1, 136.4, 136.4, 129.6, 129.6, 129.0, 127.6, 127.0, 126.2, 126.1, 121.7, 38.7, 33.2; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₁₆NS 266.1003, found 266.0997.


According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), *tert*-butyl piperidin-4-ylcarbamate **2ae** (124 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for 24 h, the title compound was prepared and purified by basic alumina column chromatography (30% EtOAc in hexane) to yield **3ao** as light yellow oil (34 mg, 30%); $R_f = 0.7$ (100% EtOAc); **¹H NMR (400 MHz, CDCl₃):** δ 8.10 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.79 – 7.77 (m, 1H), 7.71 – 7.65 (m, 3H), 7.52 – 7.50 (m, 1H), 7.42 – 7.35 (m, 3H), 3.47 (t, J = 7.8 Hz, 2H), 3.25 (t, J = 6.4 Hz, 2H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 161.1, 154.9, 147.8, 136.3, 130.6, 129.4, 128.7, 127.6, 126.9, 125.8, 125.3, 122.0, 56.4, 36.9, 34.9, 31.2; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₂H₂₆N₃O 348.2076, found 348.2077 (50% conversion).

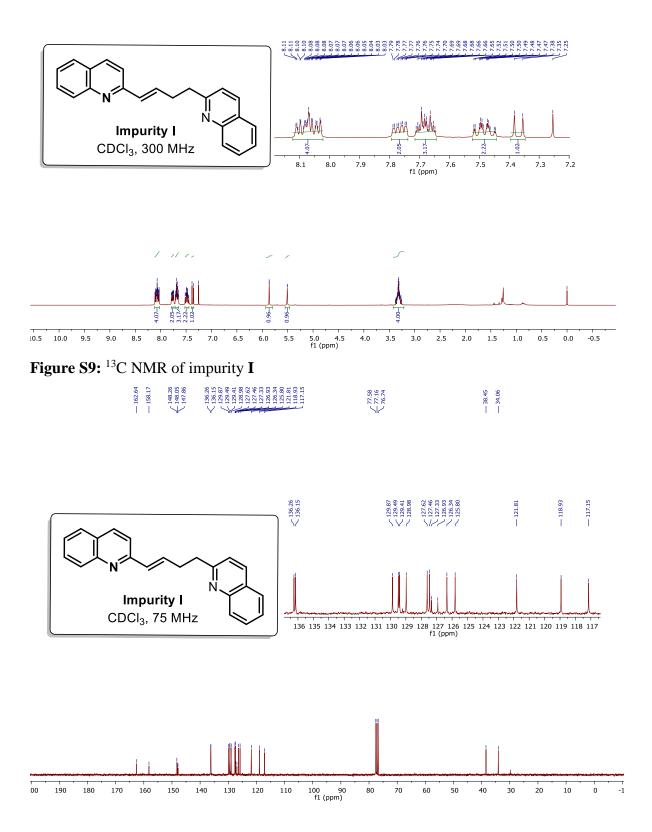
4-(Tert-butyl)-N',N'-bis(2-(quinolin-2-yl)ethyl)benzohydrazide (3ao')

the title compound was prepared and purified by basic alumina column chromatography (70% EtOAc in hexane) to yield **3ao'** as lignt yellow oil (67 mg, 41%); $R_f = 0.4$ (100% EtOAc);¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.69 – 7.63 (m, 4H), 7.52 – 7.44 (m, 4H), 7.26 – 7.22 (m, 4H), 3.56 (t, J = 6.8 Hz, 4H), 3.24 (t, J = 6.8 Hz, 4H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 160.6, 155.3, 147.9, 136.7, 130.1,

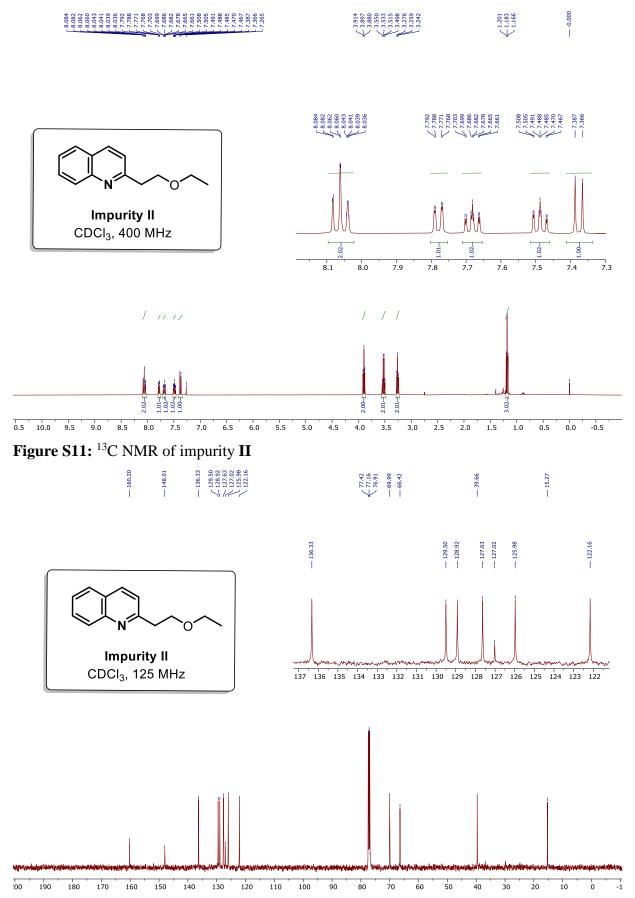
129.6, 128.9, 127.7, 126.8, 126.1, 125.6, 121.7, 51.1, 37.6, 35.0, 31.2; **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₃₃H₃₅N₄O 503.2811, found 503.2806.

2-(2-(2-Phenylhydrazineyl)ethyl)quinolone (3ap)

According to general procedure by using 2-vinylquinoline **1a** (100 mg, 0.644 mmol), *tert*-butyl piperidin-4-ylcarbamate **2ad** (70 mg, 0.644 mmol) were taken in H₂O (2.0 mL) and stirred at room temperature for overnight, the title compound was prepared and purified by basic alumina column chromatography (60% EtOAc in hexane) to yield **3ap** as light yellow oil (26 mg, 31%); $R_f = 0.7$ (70% EtOAc/hexane); **1H NMR (400 MHz, CDCl₃):** δ 8.10 – 8.06 (m, 2H), 7.79 (dd, J = 8.0, 1.2 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.66 – 7.63 (m, 2H), 7.52 – 7.50 (m, 1H), 7.48 – 7.41 (m, 3H), 7.37 (d, J = 8.4 Hz, 1H), 4.61 (t, J = 7.2 Hz, 2H), 3.61 (t, J = 7.2 Hz, 2H); ¹³C NMR (**125 MHz, CDCl₃):** δ 160.2, 152.2, 136.6, 130.6, 129.7, 129.1, 129.0, 127.7, 126.2, 122.3, 122.1, 68.7, 37.2; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₁₈N₃ 264.1501, found 264.1496 (**50% conversion**).


2,2'-((2-Phenylhydrazine-1,1-diyl)bis(ethane-2,1-diyl))diquinoline (3ap')

The title compound was prepared and purified by basic alumina column chromatography (100% EtOAc) to yield **3ap'** as light yellow oil (64 mg, 48%); $R_f = 0.4$ (70% EtOAc/hexane); **1H NMR (400 MHz, CDCl₃):** δ 8.01 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.74 (d, J


= 8.0 Hz, 2H), 7.70 – 7.66 (m, 2H), 7.51 – 7.47 (m, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.02 – 6.98 (m, 2H), 6.69 – 6.65 (m, 1H), 6.61 (dd, J = 8.8, 1.2 Hz, 2H), 3.30 – 3.27 (m, 4H), 3.21 – 3.18 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 161.1, 149.0, 148.0, 136.0, 129.5, 129.0, 128.9, 127.6, 126.9, 125.9, 122.3, 118.7, 113.1, , 58.2, 36.9; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₈H₂₇N₄ 419.2236, found 419.2229.

7. Copies of ¹H, ¹³C NMR

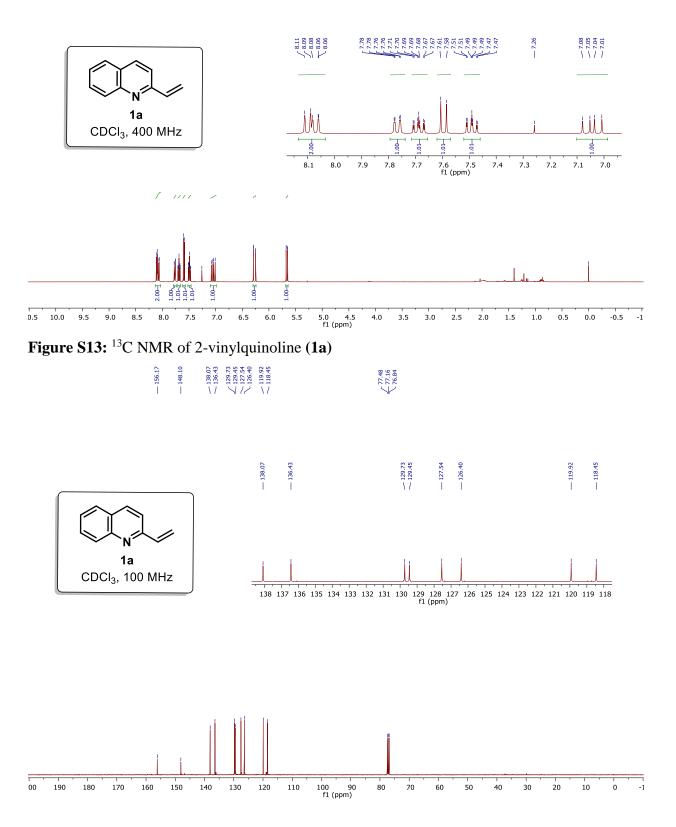

Figure S8: ¹H NMR of impurity I

Figure S10: ¹H NMR of impurity II

Figure S12: ¹H NMR of 2-vinylquinoline (1a)

Figure S14: ¹H NMR of *m*-tolylpiperazine (2a)

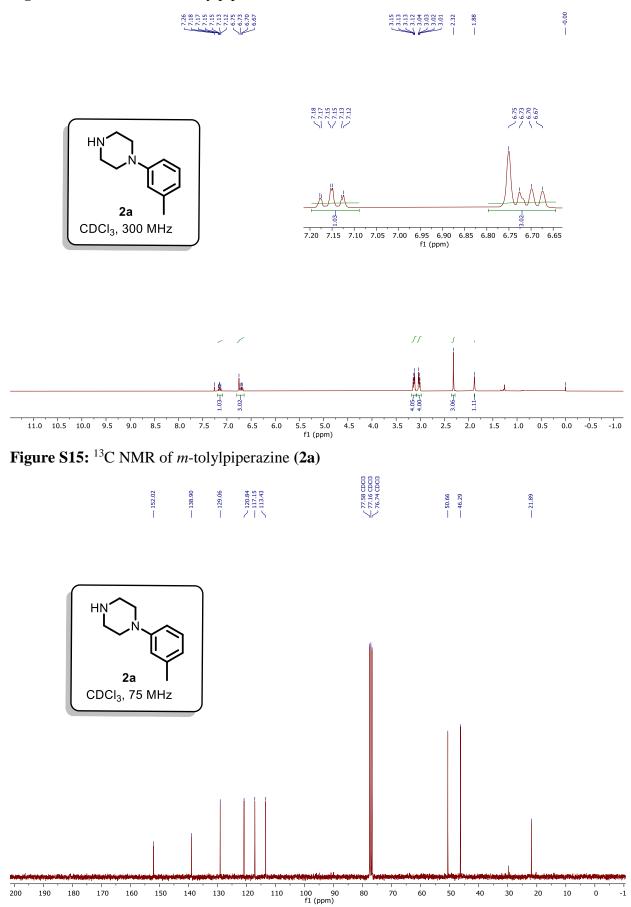
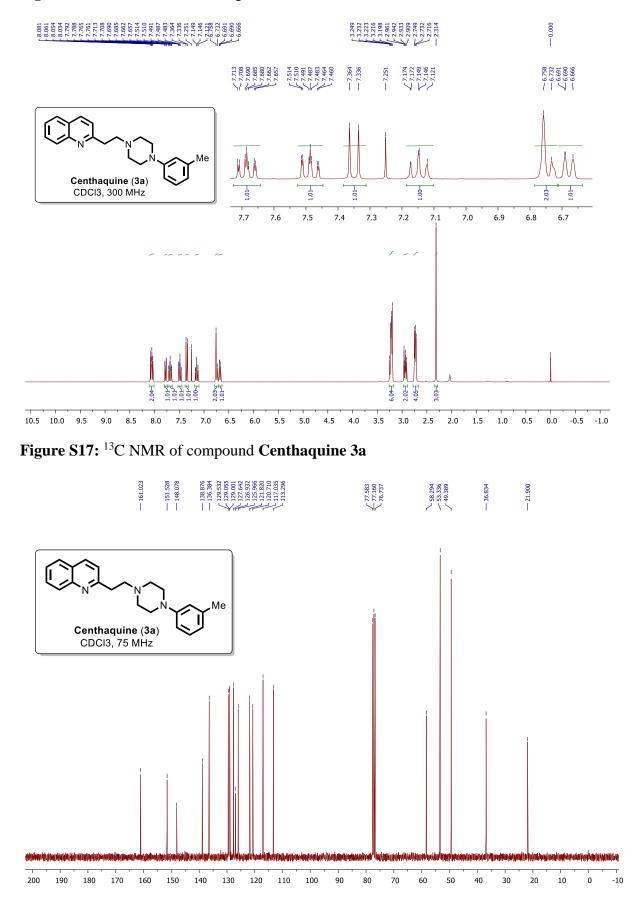
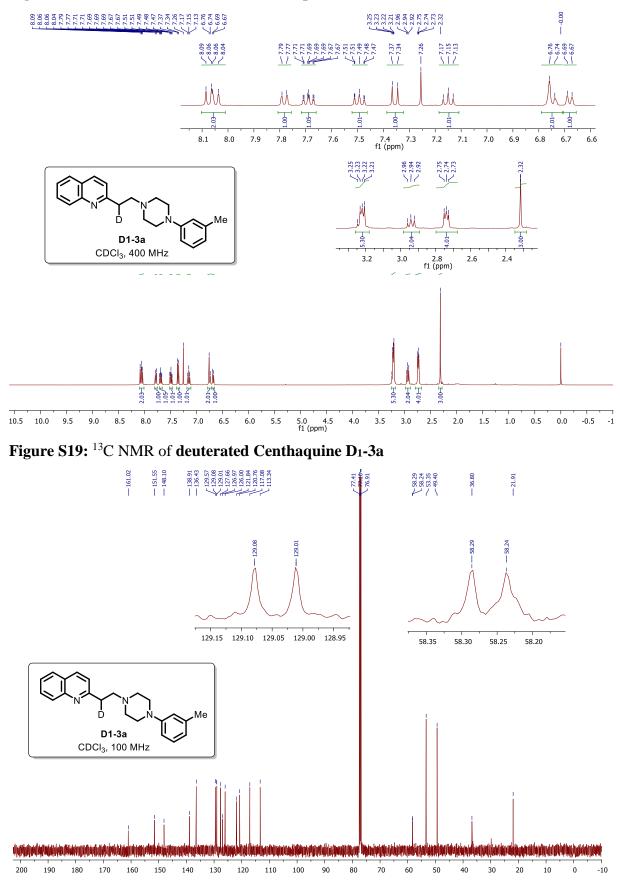




Figure S16: ¹H NMR of Centhaquine 3a

Figure S18: ¹H NMR of deuterated Centhaquine D₁-3a

Figure S20: ²H NMR of deuterated Centhaquine D₁-3a

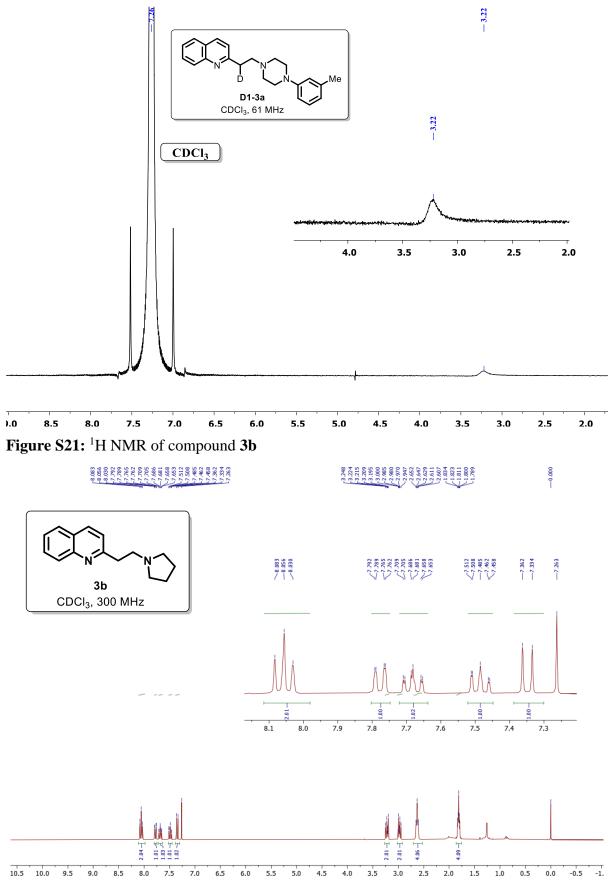
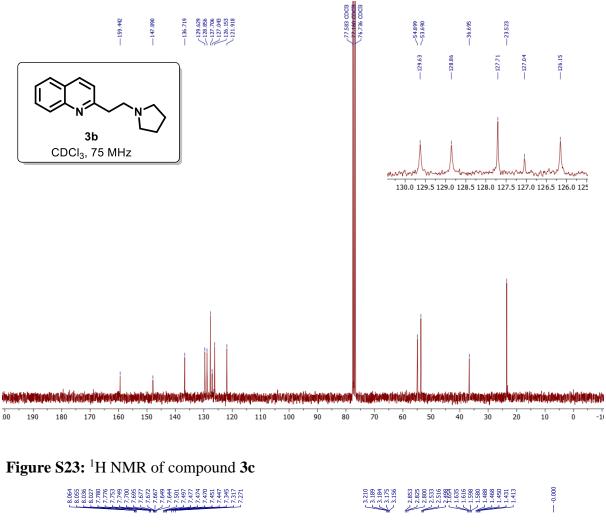



Figure S22: ¹³C NMR of compound 3b

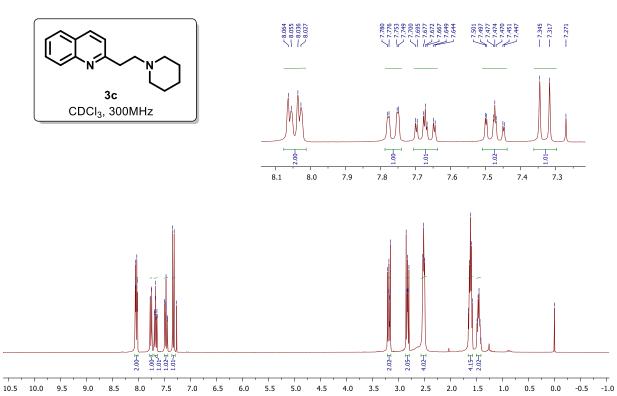


Figure S24: ¹³C NMR of compound 3c

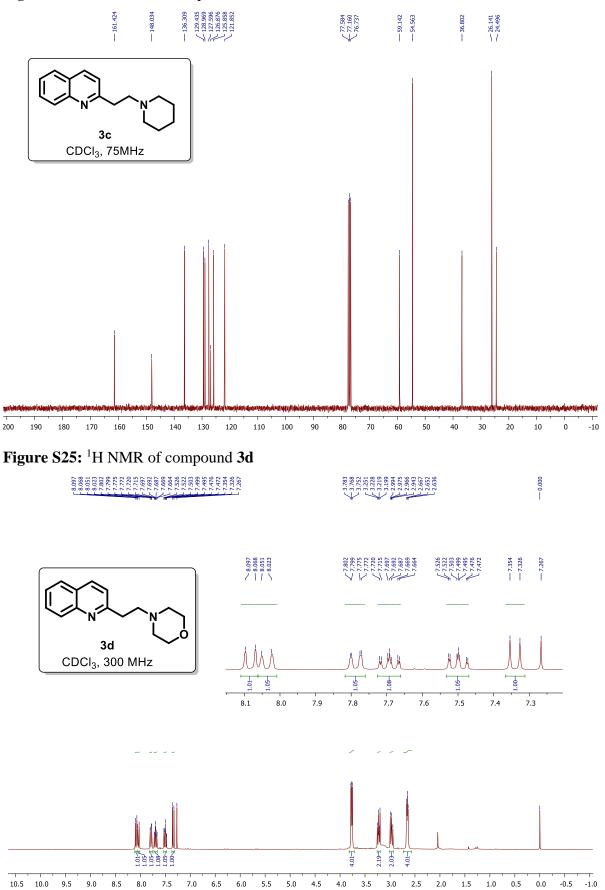


Figure S26: ¹³C NMR of compound 3d

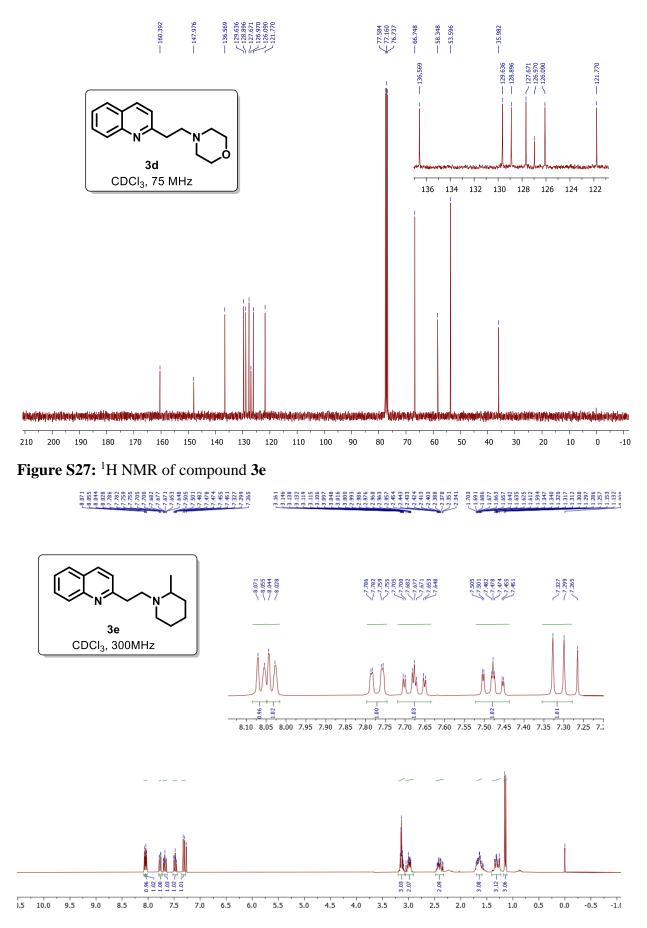
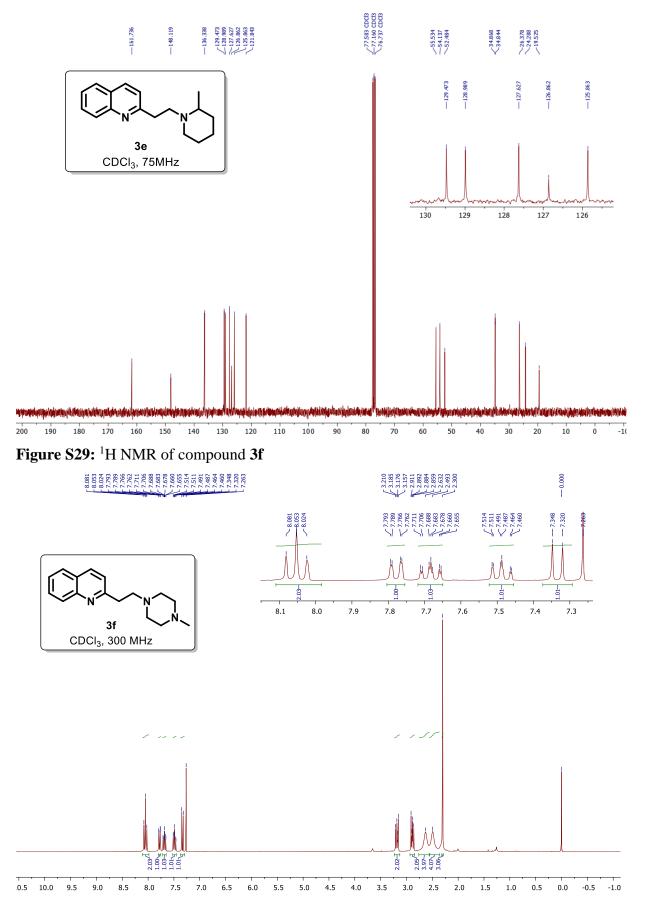
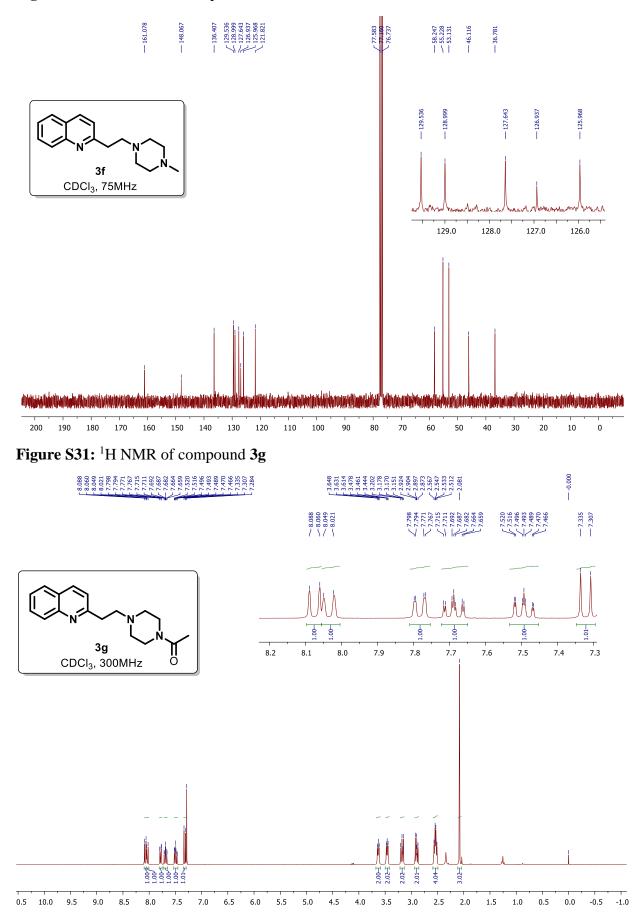




Figure S28: ¹³C NMR of compound 3e

Figure S30: ¹³C NMR of compound 3f

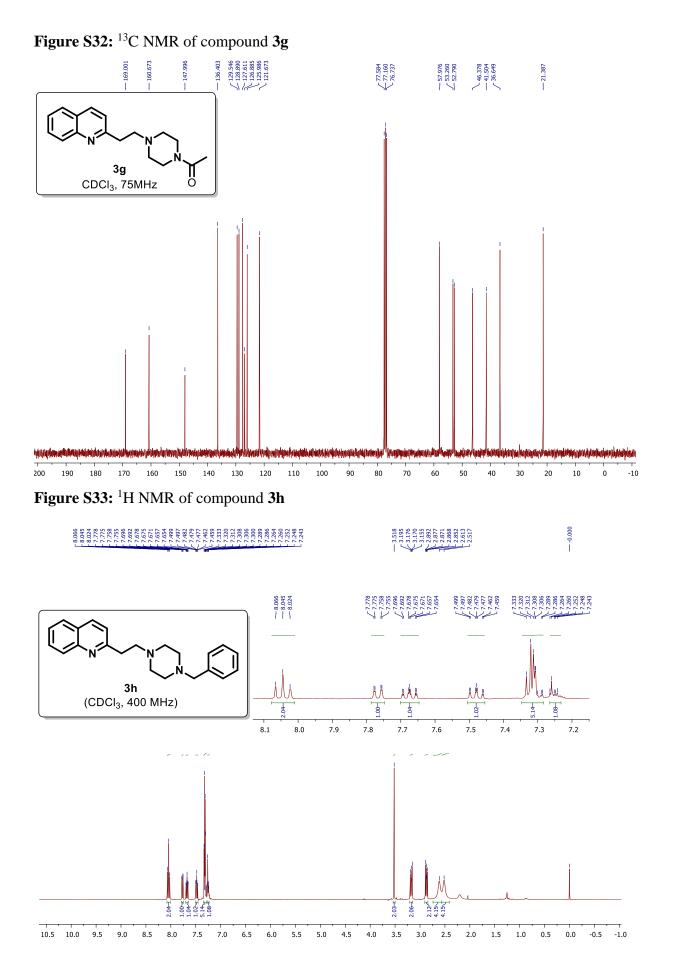
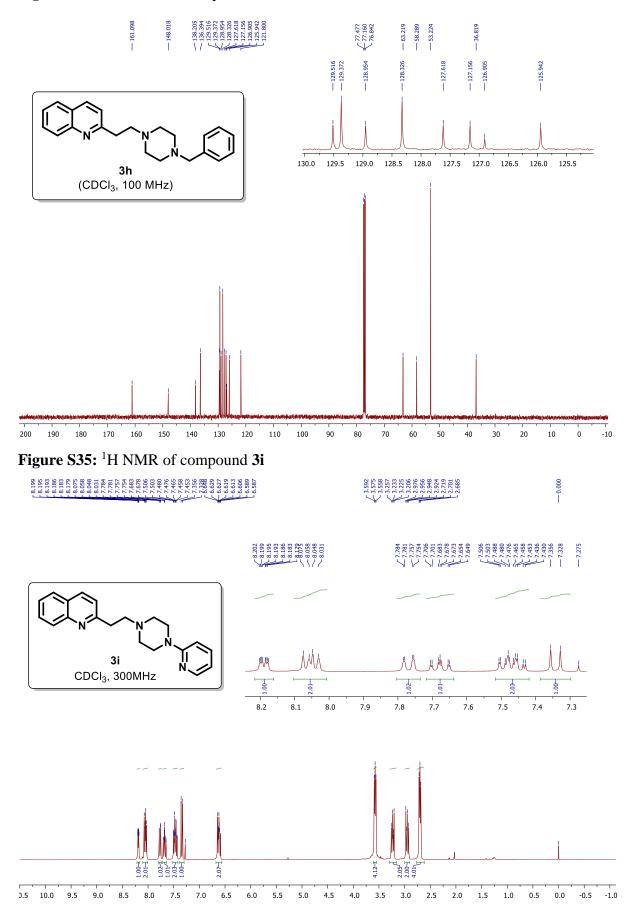
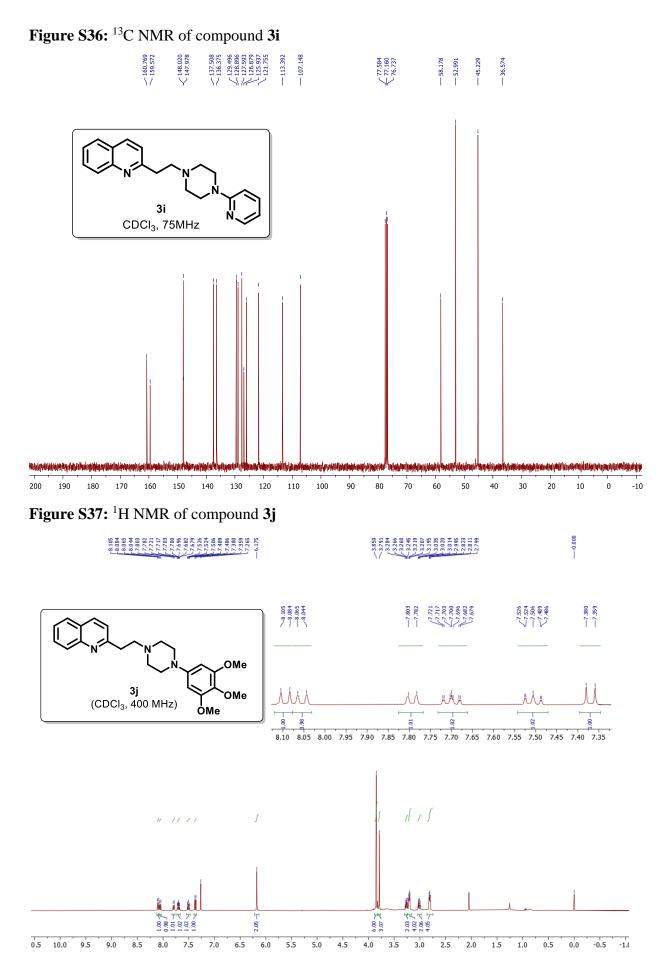
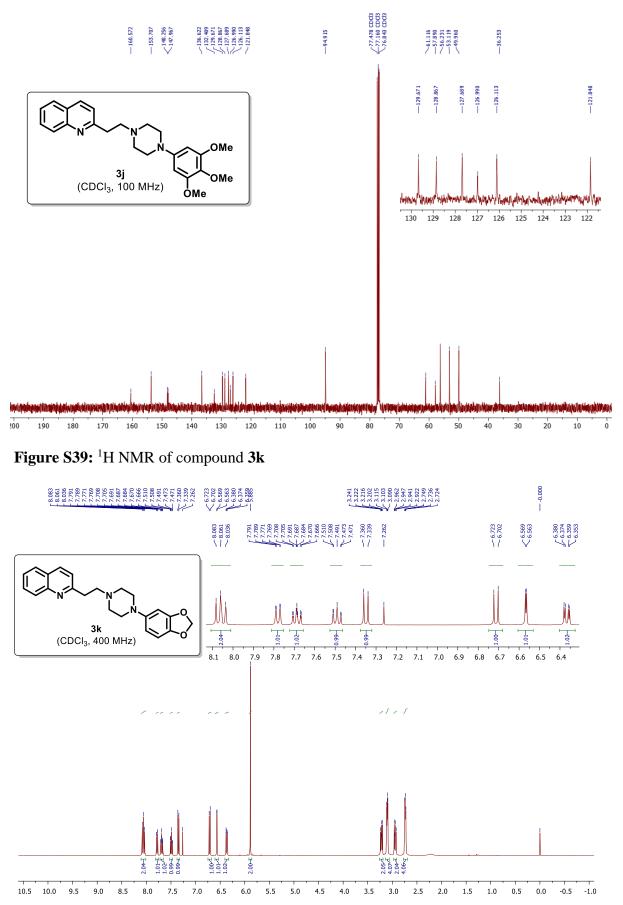
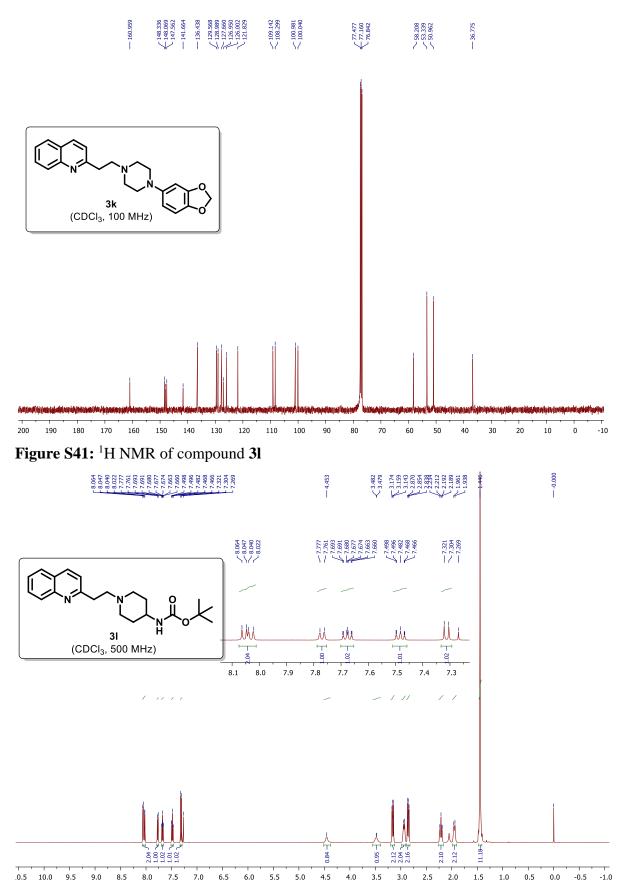





Figure S34: ¹³C NMR of compound 3h



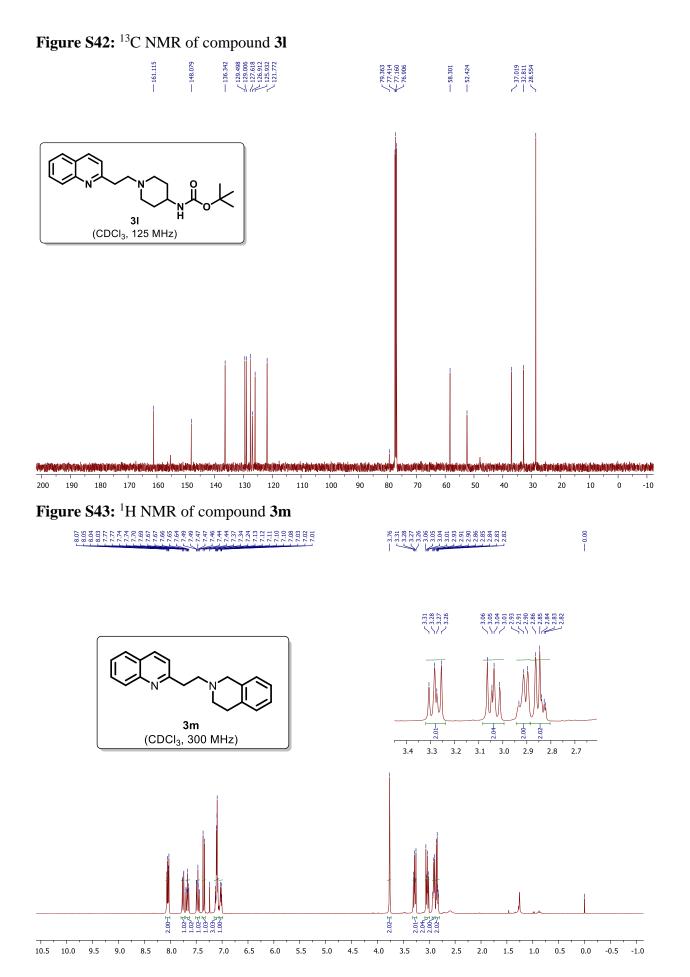


Figure S40: ¹³C NMR of compound 3k

S67

Figure S44: ¹³C NMR of compound 3m

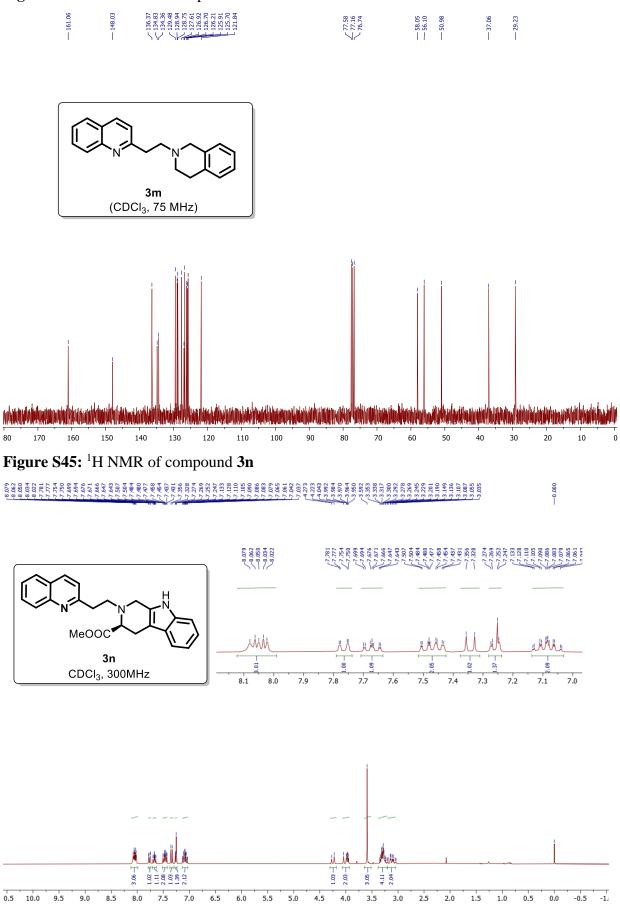
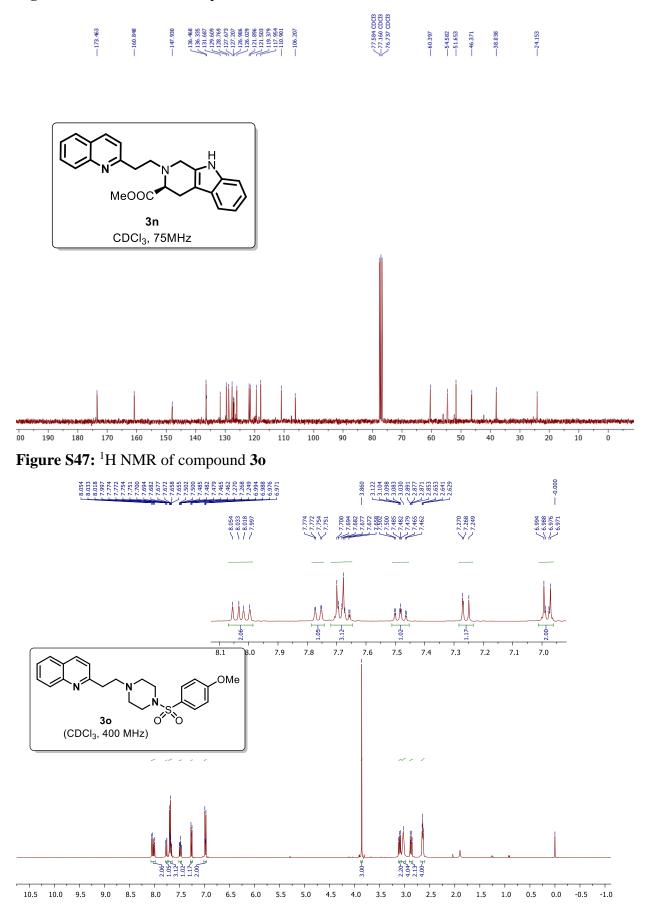
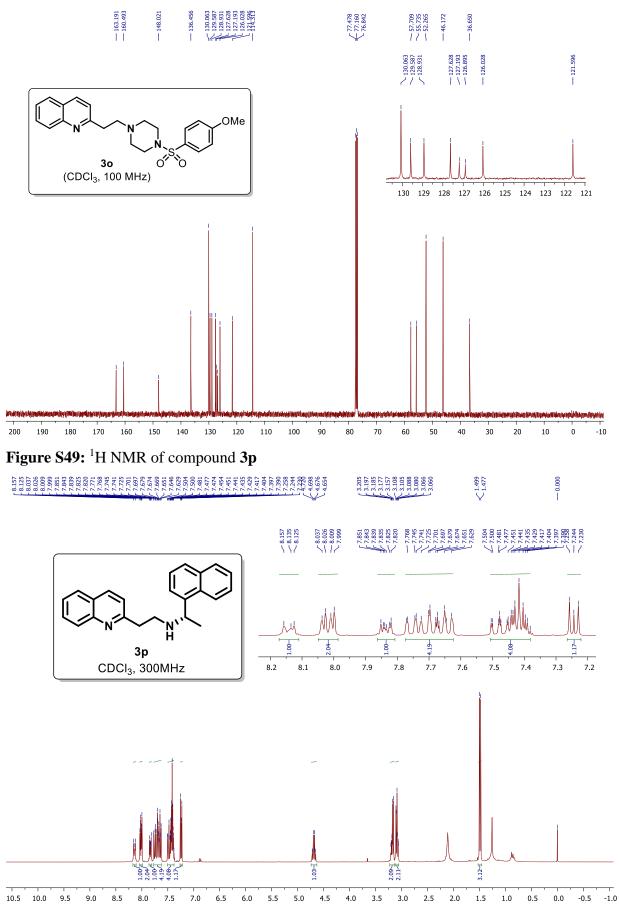
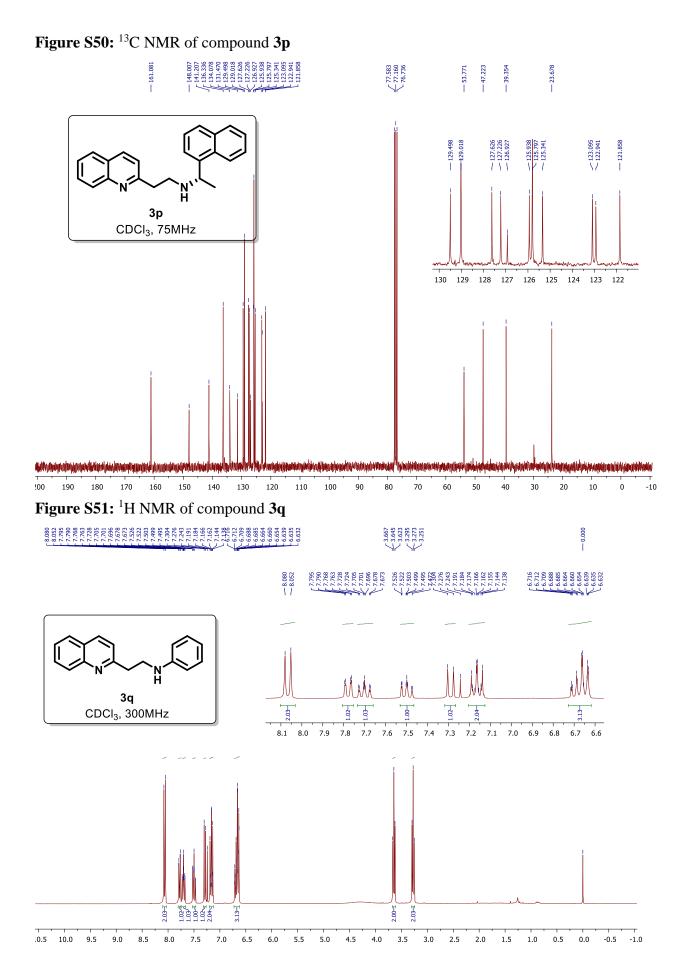
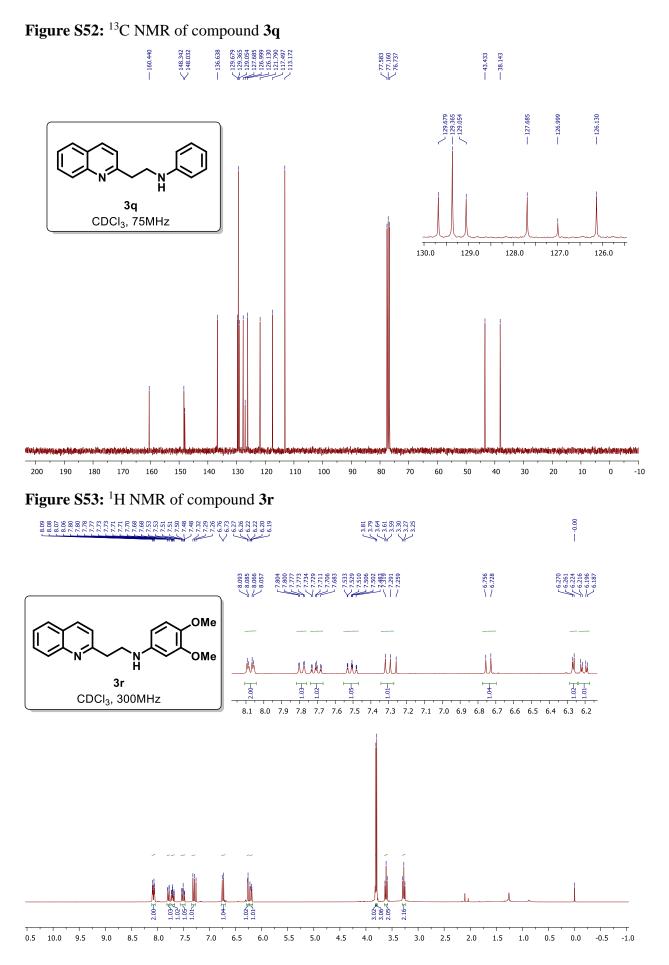





Figure S46: ¹³C NMR of compound 3n



S71

S72

Figure S54: ¹³C NMR of compound 3r

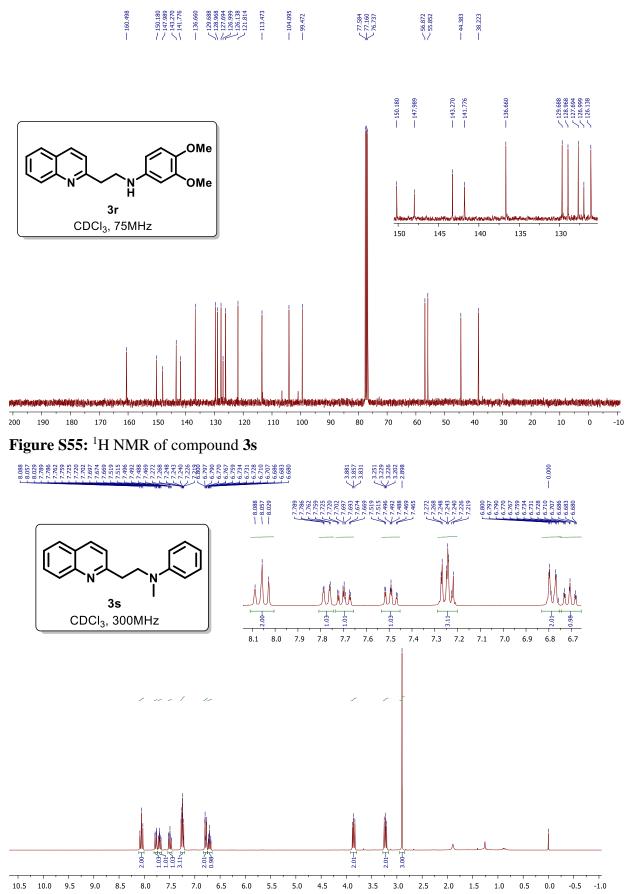


Figure S56: ¹³C NMR of compound 3s

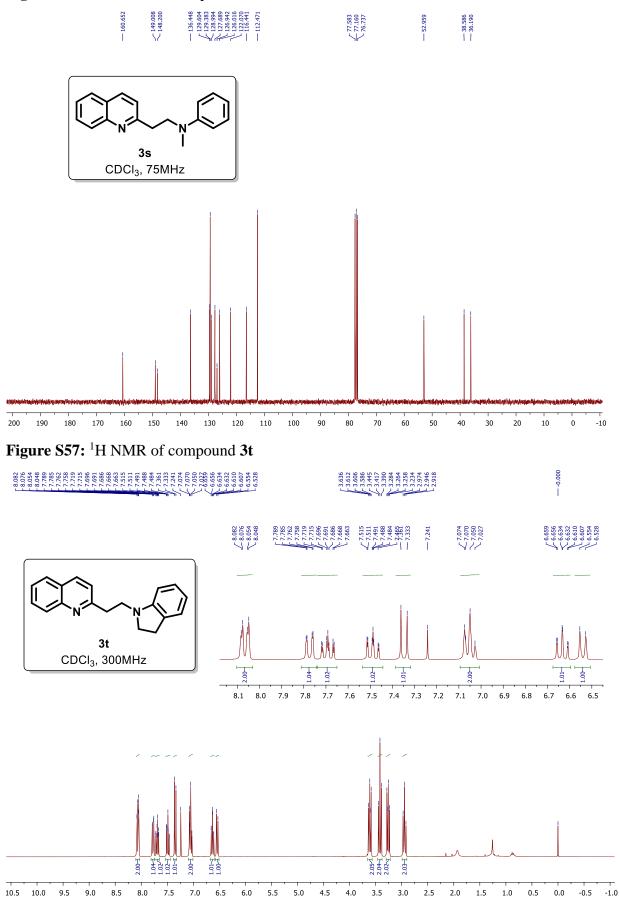
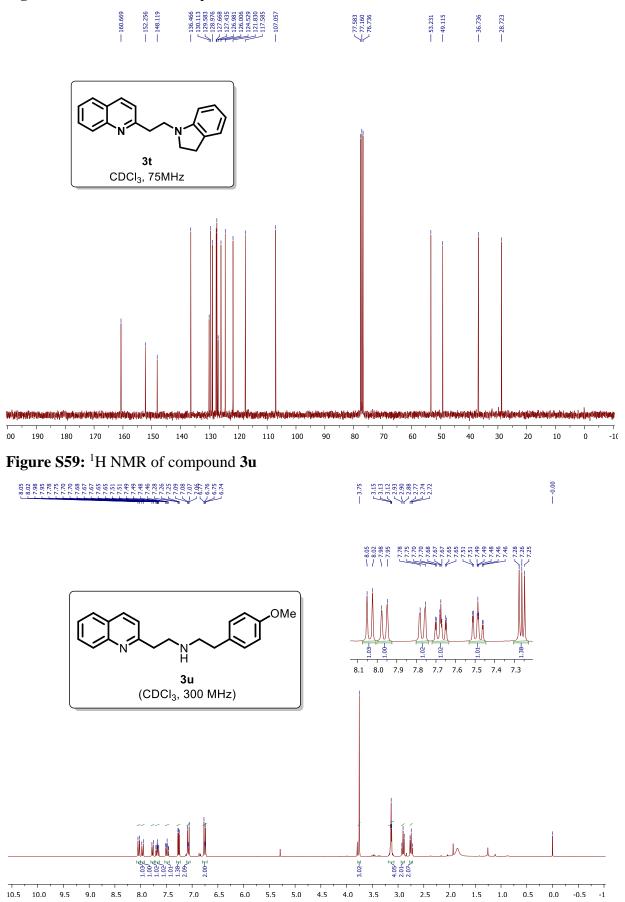



Figure S58: ¹³C NMR of compound 3t

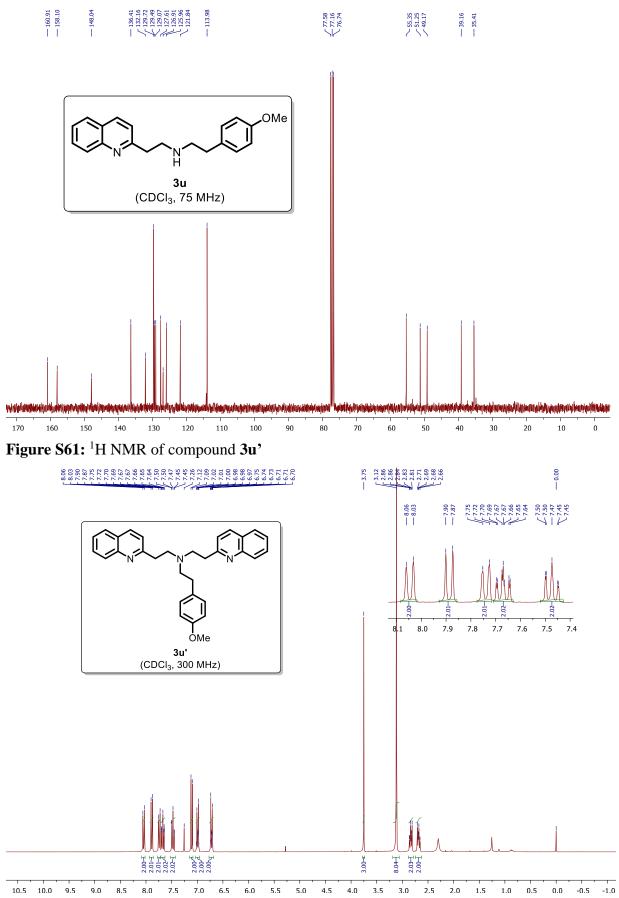


Figure S62: ¹³C NMR of compound 3u'

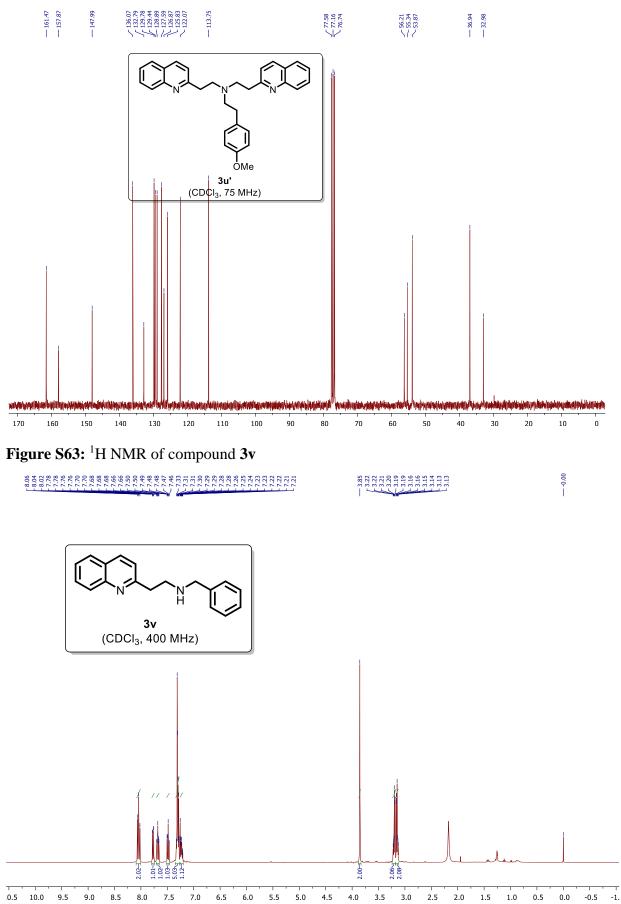


Figure S64: ¹³C NMR of compound 3v

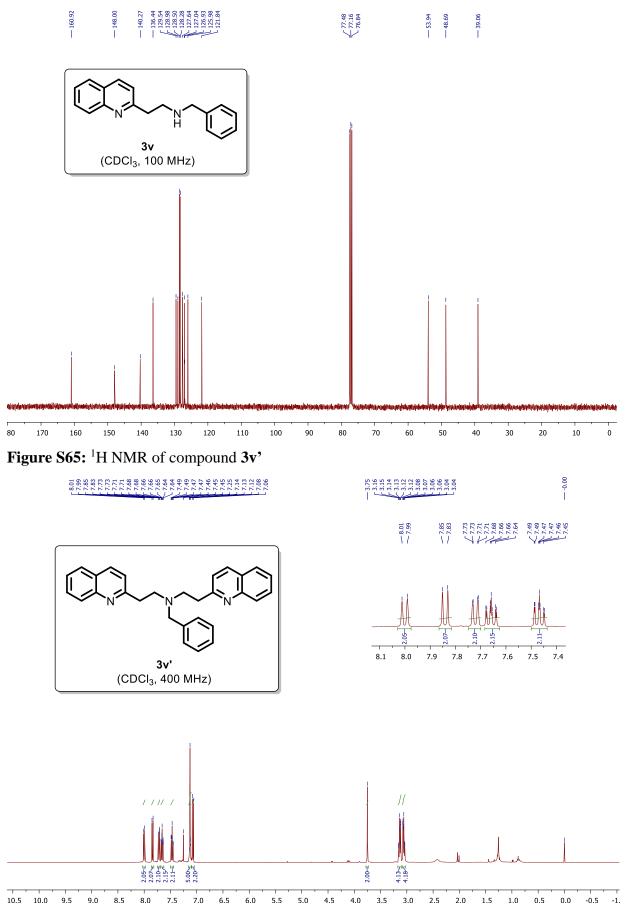
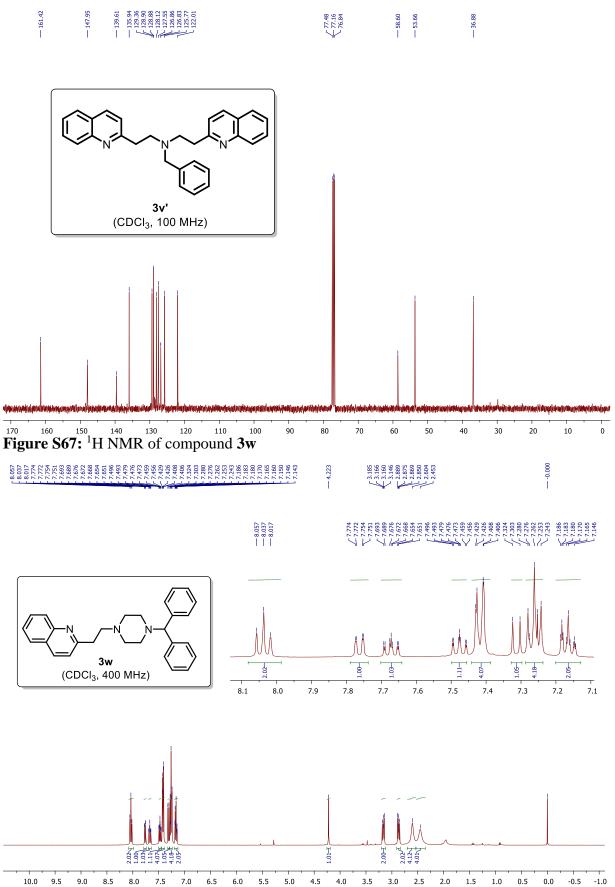



Figure S66: ¹³C NMR of compound 3v'

Figure S68: ¹³C NMR of compound 3w

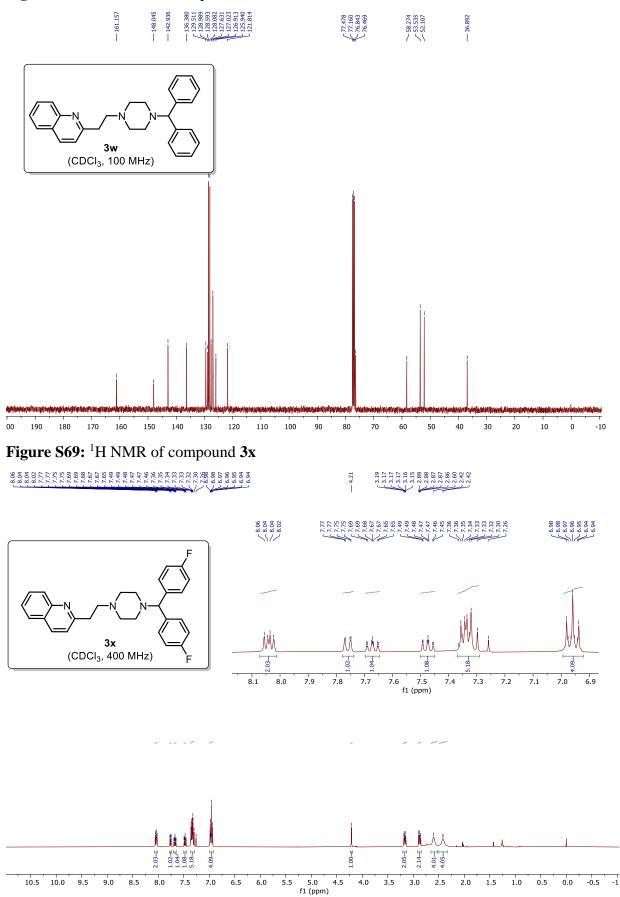
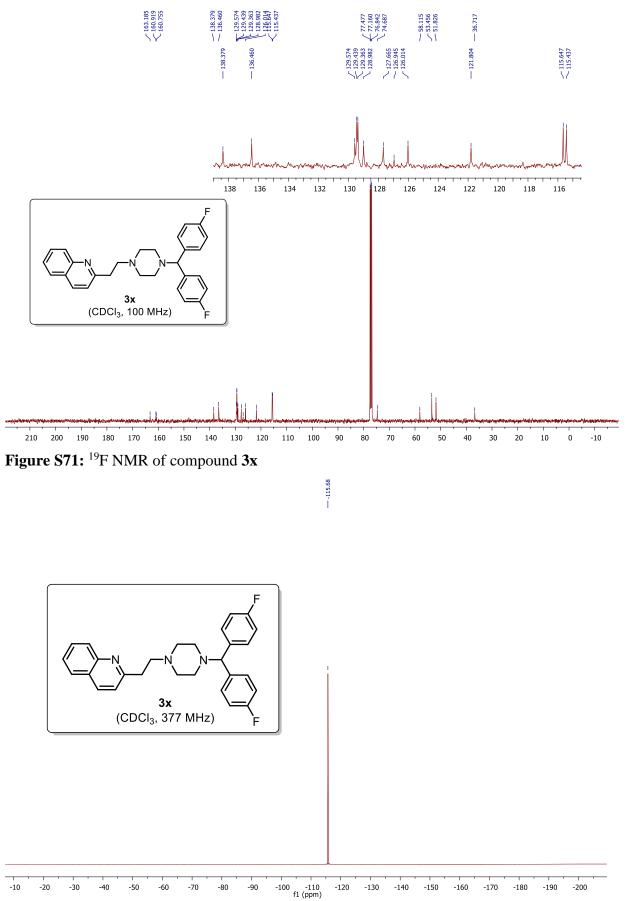
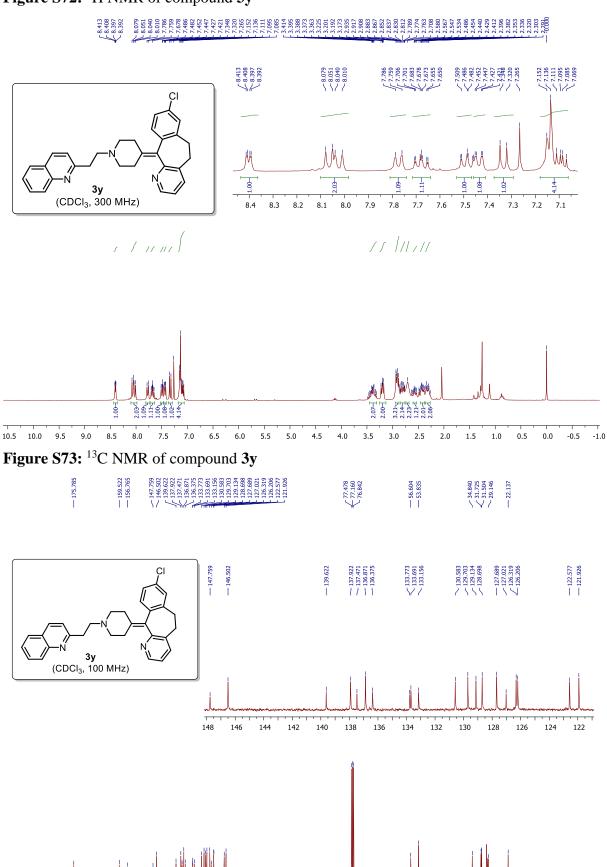




Figure S70: ¹³C NMR of compound 3x

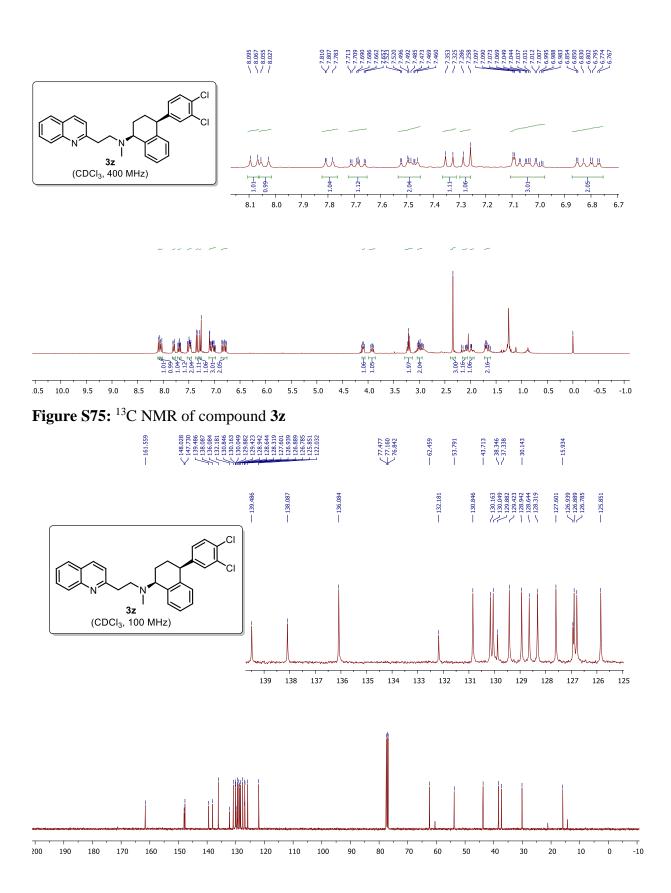
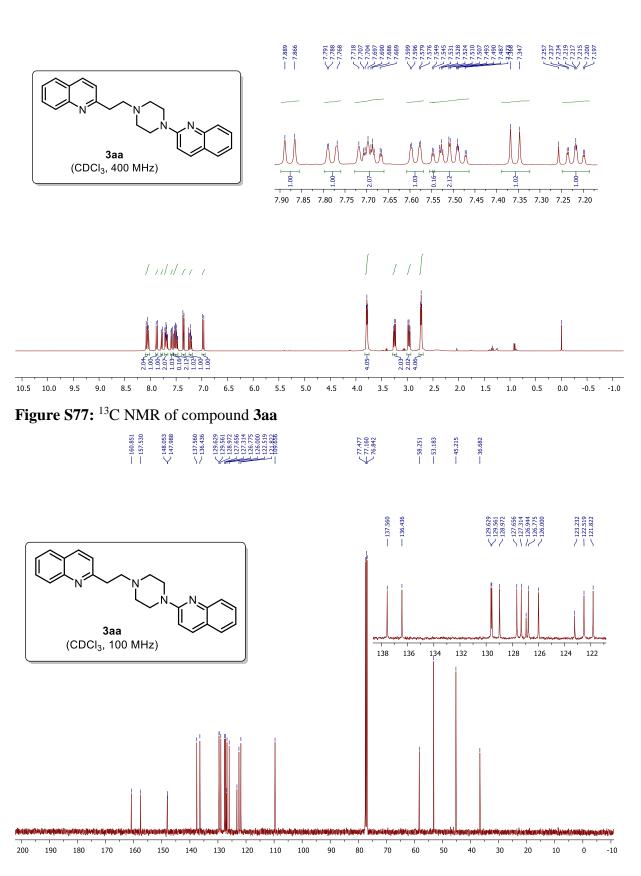
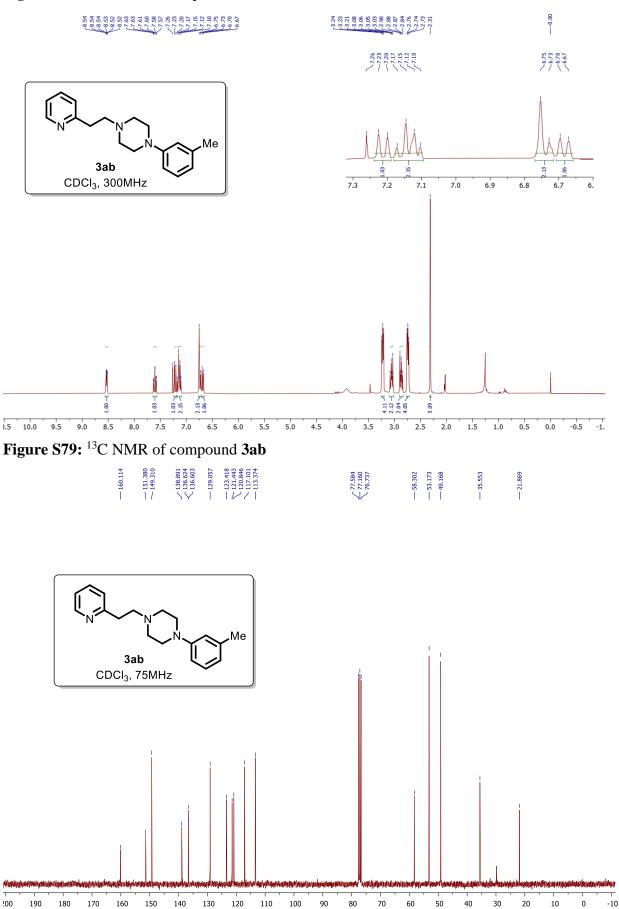


Figure S72: ¹H NMR of compound 3y

. -10

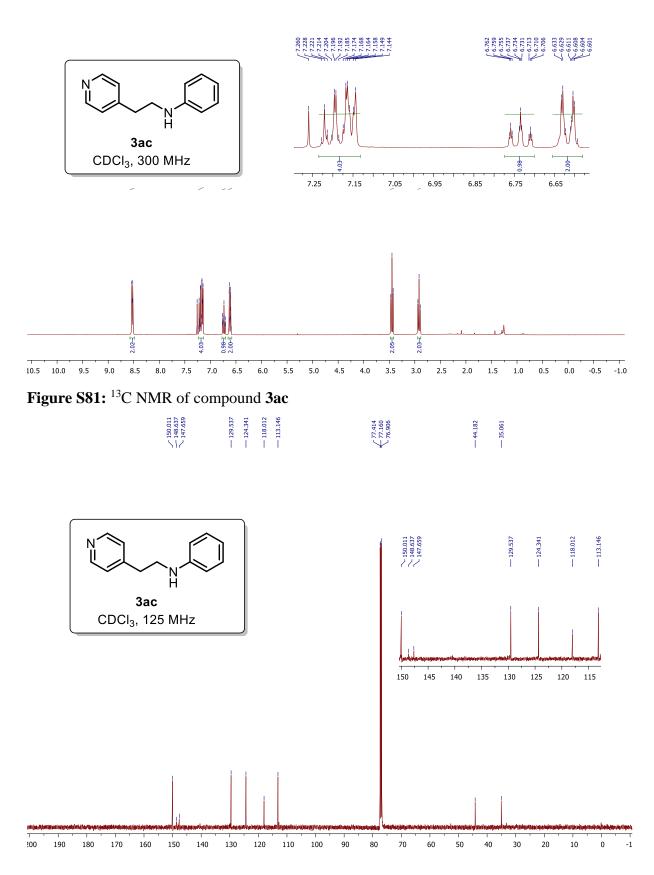
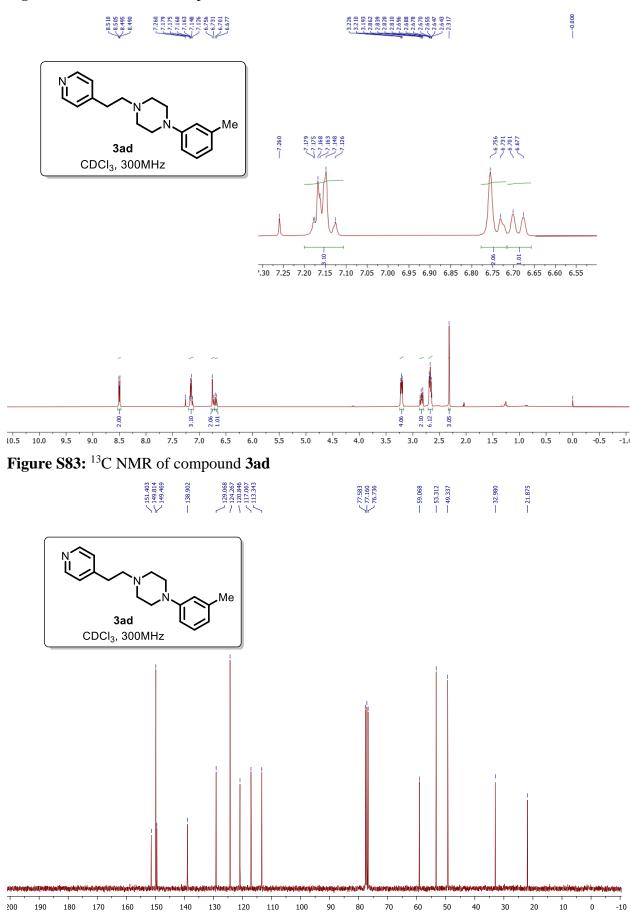

Figure S74: ¹H NMR of compound **3z**

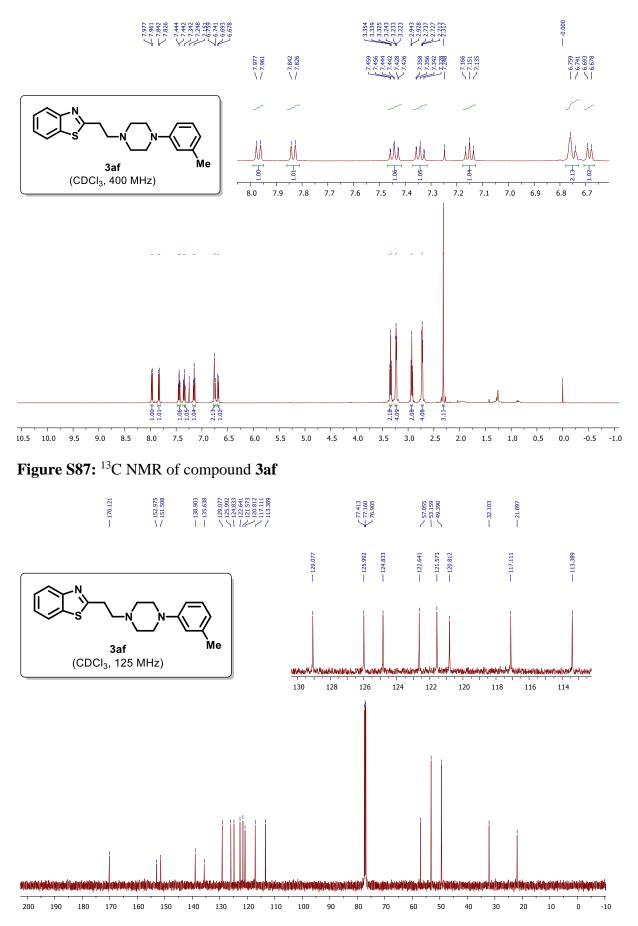

Figure S76: ¹H NMR of compound 3aa

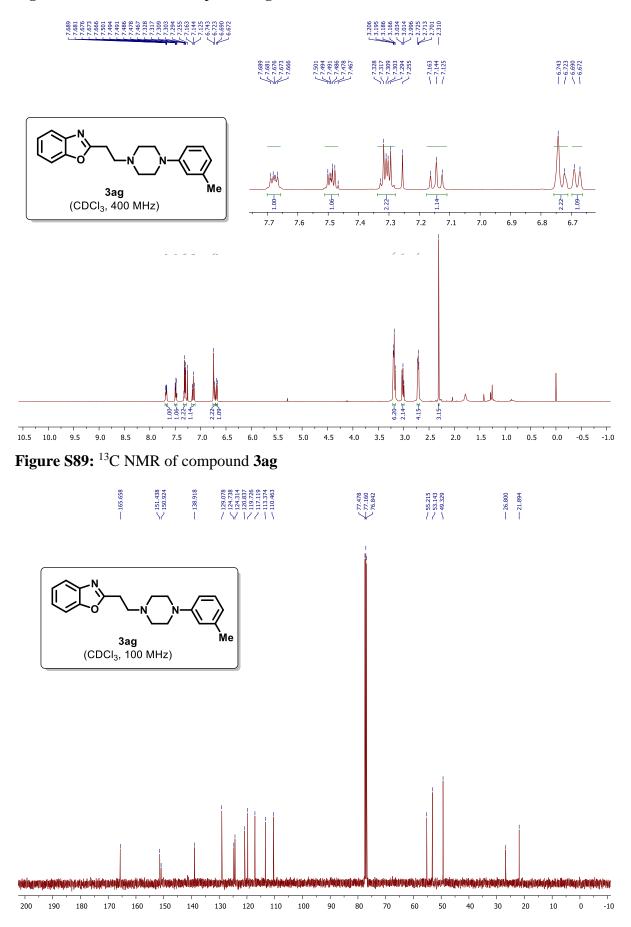
88.008 88.005 88

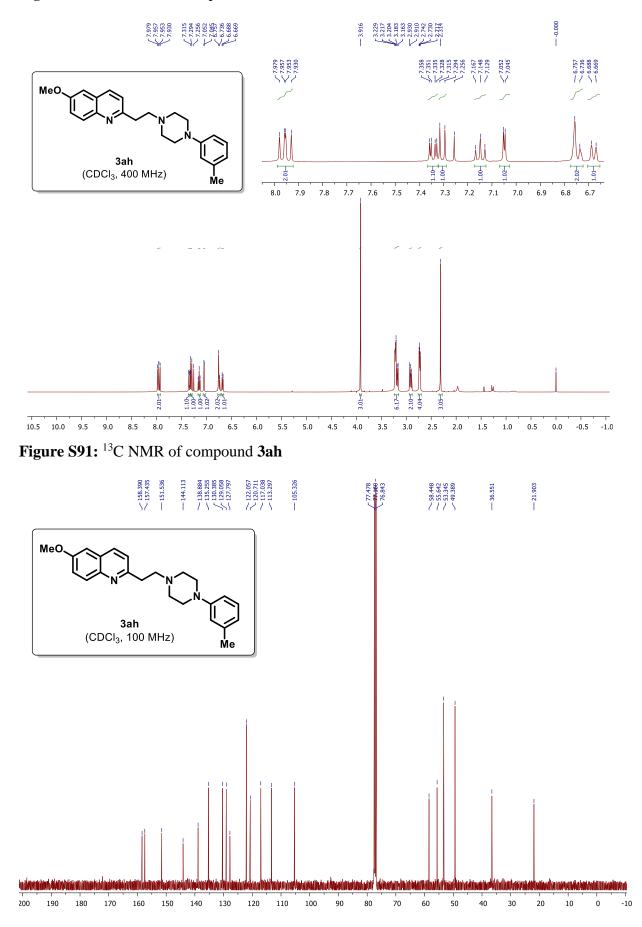
Figure S78: ¹H NMR of compound 3ab

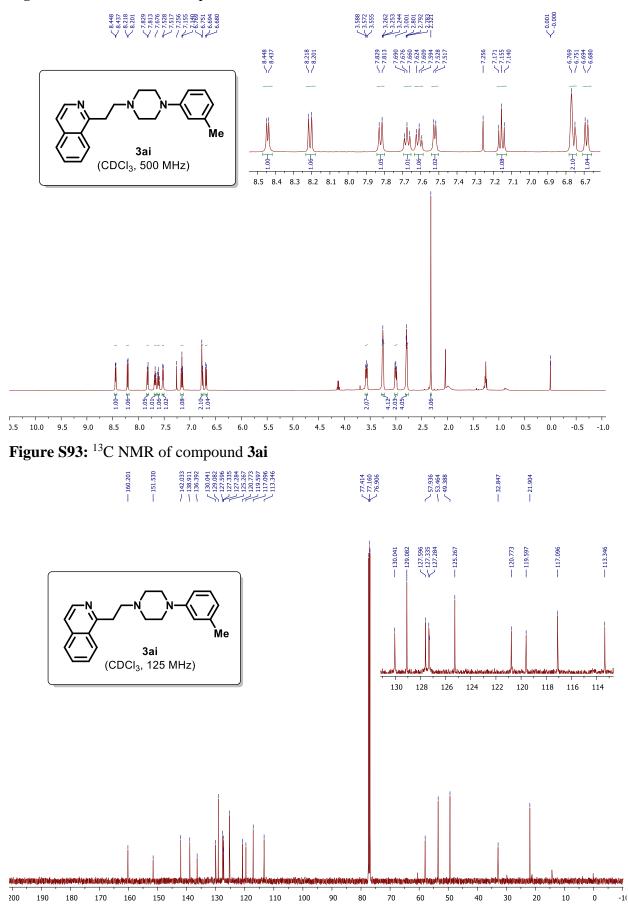
Figure S80: ¹H NMR of compound 3ac

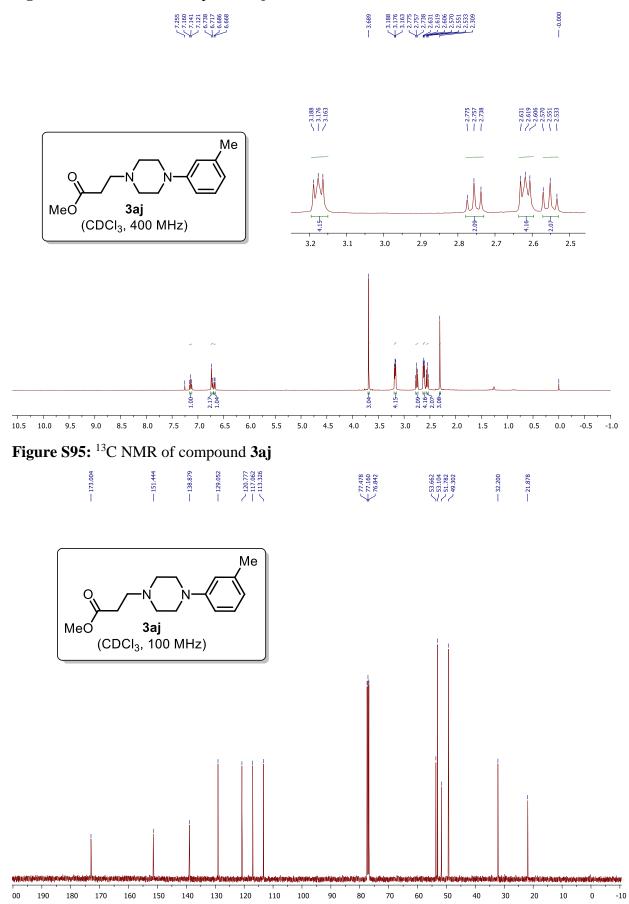




Figure S82: ¹H NMR of compound 3ad


Figure S84: ¹H NMR of compound 3ae


Figure S86: ¹H NMR of compound 3af


Figure S88: ¹H NMR of compound 3ag


Figure S90: ¹H NMR of compound 3ah

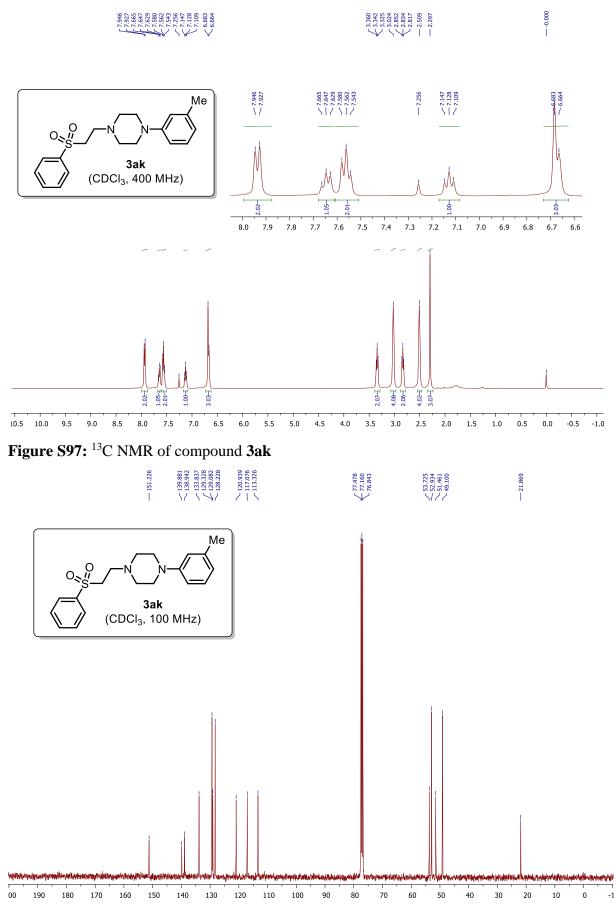

Figure S92: ¹H NMR of compound 3ai

Figure S94: ¹H NMR of compound 3aj

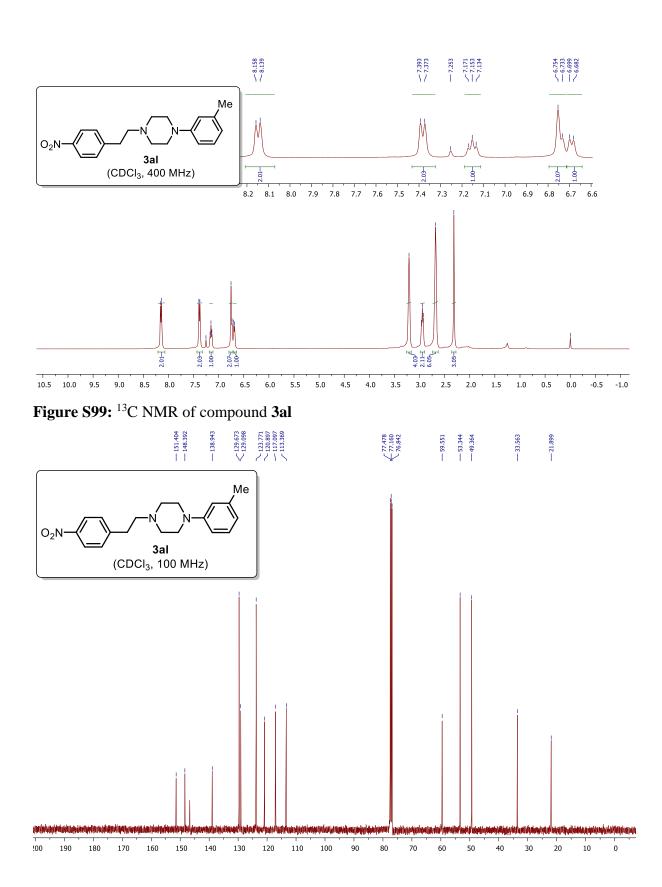


Figure S96: ¹H NMR of compound 3ak

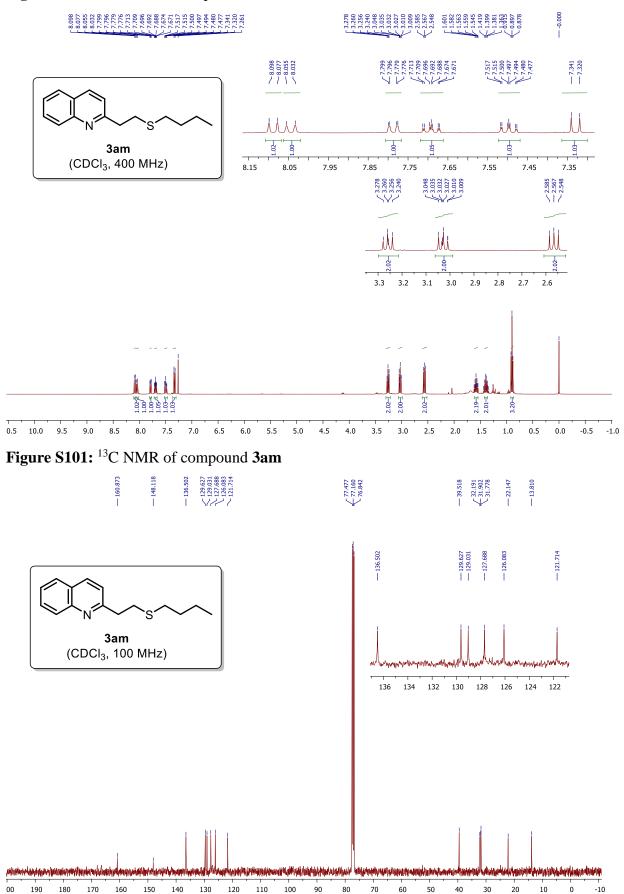


Figure S98: ¹H NMR of compound 3al

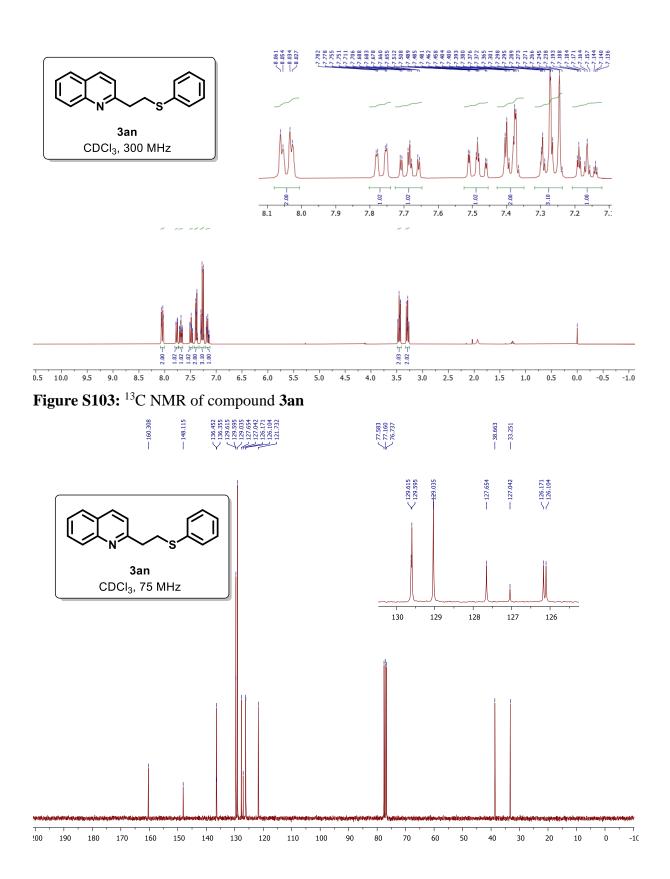


Figure S100: ¹H NMR of compound 3am

Figure S102: ¹H NMR of compound 3an

14
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16<

000.0---

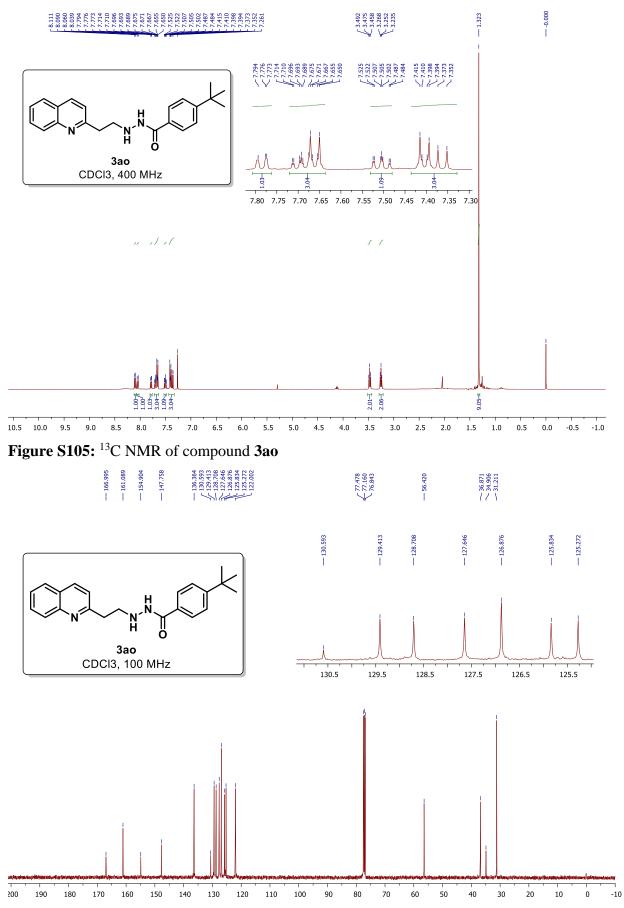
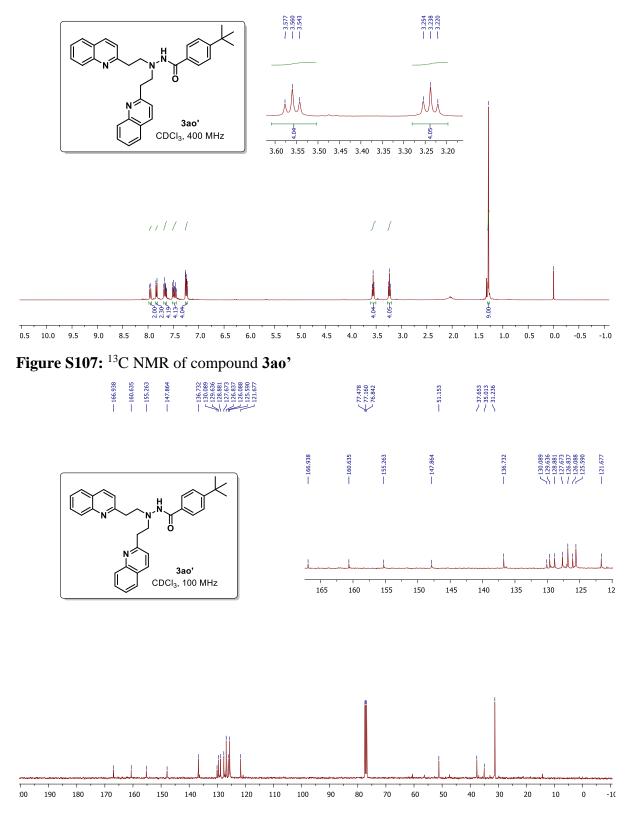
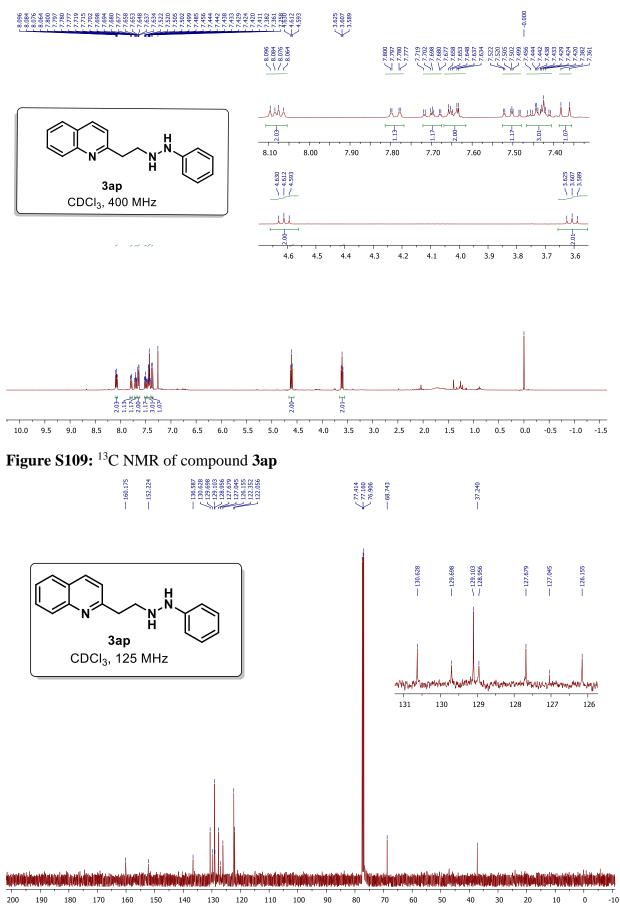




Figure S106: ¹H NMR of compound 3ao'

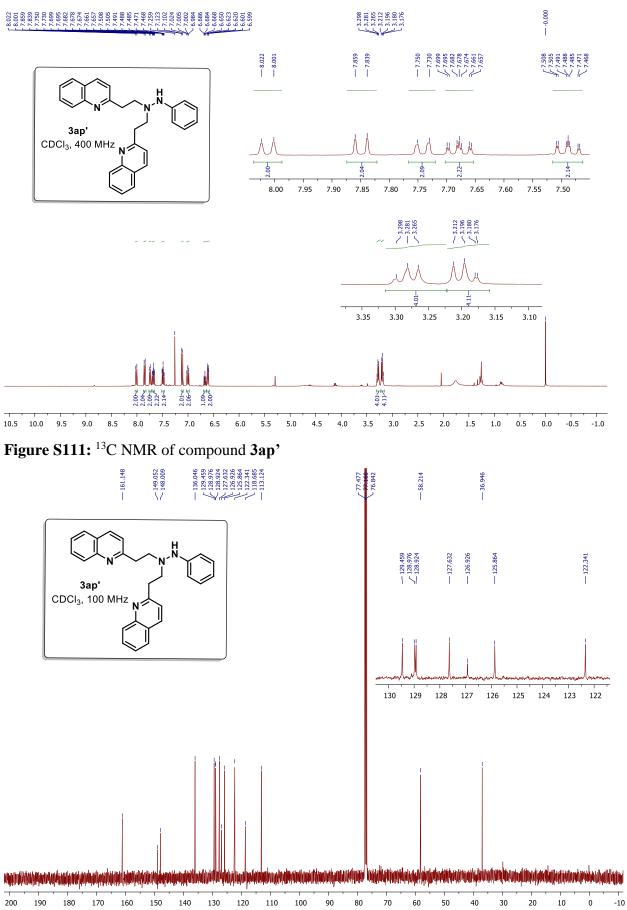


Figure S108: ¹H NMR of compound 3ap

REFERENCES

- 1. J. Xiao, Y. Huang, Z. Song, W. Feng, RSC Adv., 2015, 5, 9095-9909.
- 2. B. Zhou, K. H. Hong, M. Ji, J. Cai, Chem Biol Drug Des., 2018, 92, 1597–1609.
- A. Santhoshi, S. N. Kumar, P. Sujitha, Y. Poornachandra, P. S. Sadhu, C. G. Kumar, V. J. Rao, *Med Chem Res.*, 2014, 23, 3207–3219.
- 4. A. Asagarasu, T. Matsui, H. Hayashi, S. Tamaoki, Y. Yamauchi, K. Minato, M. Sato, *J. Med. Chem.*, 2010, **53**, 7549–7563.