Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Visible light-promoted difluoromethylthiolation of cycloalkanols by C-C bond cleavage

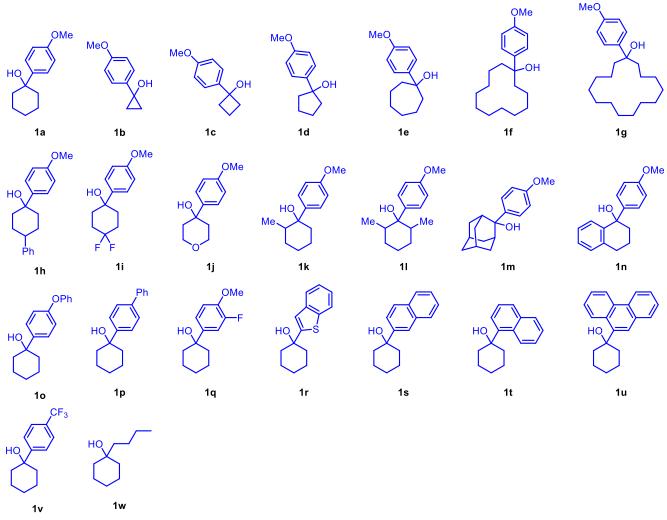
Kehan He,*a Yan Mei,^b Na Jin,^b Yutao Liu^b and Fei Pan*^b

^aSchool of Science, Xichang University, Xichang 615000, P. R. China

^bCollege of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China

*Email:<u>hdss2006@163.com; feipan@sicnu.edu.cn</u>

TABLE OF CONTENTS


1. General Information	S1
2. Preparation of Substrates	S2
3. Standard Reaction Conditions	S4
4. Characterization Data of Products	S5
5. Further Functionalization	S18
6. Mechanistic Studies	S22
7. References	S23
8. NMR Spectra	S24

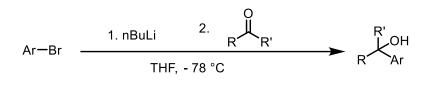
1. General Information

Unless otherwise noted, all reactions were performed in a 10 mL Schlenk tube at room temperature under N₂. Solvents were dried by passage through an activated alumina column under argon. Liquids and solutions were transferred via syringe. For flash column chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were measured in CDCl₃ and recorded on Varian 400 or Brucker ARX 600 spectrometer. Chemical shifts (δ) were given in ppm, referenced to the residual proton resonance of CDCl₃ (7.26), to the carbon resonance of CDCl₃ (77.16). Coupling constants (J) were given in Hertz (Hz). The term m, t, d, s, dd referred to multiplet, triplet, doublet, singlet, doublet of doublet. Gas chromatography-mass spectrometry (GC-MS) was performed on an Thermo Fisher Trace ISQ 7000. Gas chromatography (GC) was performed on a Shimadzu GC 2010-pro system equipped with a split-mode capillary injection system and flame ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer from Sichuan University. All reagents and solvents were commercially available and directly used without any further purification.

Materials and Methods: Unless otherwise stated, starting materials were purchased from commercial suppliers (Adamas-beta®, Macklin, Energy and so on). Mn powder (Energy-140+325 mesh, 99.9% metals basis). All reactions dealing with air- or moisture-sensitive compounds were performed in the argon-filled glove box or by standard Schlenk techniques in oven-dried reaction vessels under nitrogen atmosphere. Solvents were purchased in HPLC quality, degassed by purging thoroughly with argon and dried over activated molecular sieves of appropriate size. Reactions were monitored by thin layer chromatography (TLC) using glass 0.25 mm silica gel plates. Compounds were visualized by UV-light at 254 nm. PhthSCF₂H was synthesized according to the literatures.^{1,2} PhSO₂SCF₂H was synthesized according to the literature.³

S1

2. General Procedure for the Synthesis of Tertiary Alcohols

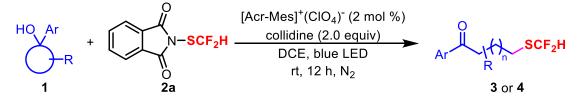

All the compounds are known and prepared according to the literatures.⁴⁻⁶

General procedure A with Grignard reaction:⁴ for compounds 1a-n

$$\begin{array}{c} O \\ R \\ \hline R \\ \hline R' \\ \hline R' \\ \hline e ther, 0 \\ C to rt \\ \hline R' \\ \hline OH \\ R \\ \hline Ar \\ \hline Ar \\ \hline Ar \\ \hline \end{array}$$

A flame-dried round-bottom flask equipped with a stir bar under argon was charged with 4methoxyphenylmagnesium bromide solution (1.5 equiv., 1.0 M in 2-MeTHF) in ether. Then the reaction mixture was cooled at 0 °C with an ice bath and the ketone (1.0 equiv.) was added dropwise. The reaction mixture was stirred for 0.5-1.5 h at the same temperature and monitored by TLC until the complete consumption of ketone, followed by quenching with ice water. After drying over anhydrous Na₂SO₄ it was filtered and concentrated in vacuo. The crude product was purified by neutral alumina flash column chromatography to afford the corresponding product.

General procedure B with lithiation reaction:⁵ for compounds 1o-w



n-Butyllithium (1.6 M solution in hexane, 1.1equiv.) was added slowly to a stirred solution of arylbromide (1.0 equiv.) in THF at -78 °C. The mixture was stirred for 1-2 h at the same temperature and then the corresponding ketone (1 equiv.) was added dropwise via syringe. The mixture was stirred for another 1-1.5 h, followed by quenching with ice water. After drying over anhydrous Na₂SO₄ it was filtered and concentrated in vacuo. The crude product was purified by neutral alumina flash column chromatography to obtain the pure alcohol.

3. Standard Reaction Conditions

(The Parallel Photoreactor is from 3S Tech in Shanghai, China. <u>https://www.3s-</u>tech.net/en/products/af1.html)

To a 8 mL flame-dried tube equipped with a stir bar were added [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), cycloalkanol **1** (0.20 mmol, 1.0 equiv), and PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv). The flask was sealed with a cap containing a TFE-lined silicone septum and placed under a N₂ atmosphere through evacuating and purging with nitrogen three times. To these solids, collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M) was added under nitrogen atmosphere. The mixture was stirred under irradiation with blue LEDs for 12 hours. After the reaction was finished, the crude product was purified by flash chromatography on silica gel (hexane/ethyl acetate).

4. Characterization Data of Products

6-((Difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1-one (3a)

3a

3a was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)cyclohexan-1-ol **1a** (41.2 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3a** was isolated by column chromatography as a colorless oil (43.2 mg, 75% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 8.9 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 6.79 (t, *J* = 56.4 Hz, 1H), 3.86 (s, 3H), 2.92 (t, *J* = 7.3 Hz, 2H), 2.81 (t, *J* = 7.4 Hz, 2H), 1.85 – 1.72 (m, 4H), 1.51 – 1.47 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 197.7, 162.4, 156.1, 129.3, 129.0, 120.5, 119.7 (t, *J* = 272.2 Hz), 112.7, 54.4, 36.9, 29.0, 27.3, 26.0 (t, *J* = 2.6 Hz), 22.8.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.68 (d, *J* = 56.6 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₉O₂F₂S 289.1068; found 289.1065.

3-((difluoromethyl)thio)-1-(4-methoxyphenyl)propan-1-one (3b)

3b

3b was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)cyclopropan-1-ol **1b** (32.8 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3b** was isolated by column chromatography as a colorless oil (28.0 mg, 57% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.6 Hz, 1H), 6.95 (d, *J* = 8.7 Hz, 1H), 6.87 (t, *J* = 56.1 Hz, 1H), 3.88 (s, 2H), 3.36 (t, *J* = 6.9 Hz, 1H), 3.18 (t, *J* = 6.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 196.02 (s), 163.8, 130.3, 129.5, 120.9 (t, *J* = 272.6 Hz), 113.9, 55.5, 39.4, 21.4 (t, *J* = 3.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -92.67 (d, *J* = 56.3 Hz). HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₃O₂F₂S 247.0599; found 247.0600.

4-((Difluoromethyl)thio)-1-(4-methoxyphenyl)butan-1-one (3c)

3c was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)cyclobutan-1-ol **1c** (35.6 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3c** was isolated by column chromatography as a colorless oil (35.9 mg, 69% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.82 (t, *J* = 56.3 Hz, 1H), 3.87 (s, 3H), 3.08 (t, *J* = 7.0 Hz, 2H), 2.92 (t, *J* = 7.1 Hz, 2H), 2.12 (p, *J* = 7.1 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 197.6, 163.6, 130.3, 129.9, 120.7 (t, *J* = 272.6 Hz), 113.8, 55.5, 36.3, 26.9, 24.6.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.45 (d, J = 56.3 Hz).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₅O₂F₂S 261.0755; found 261.0756.

5-((Difluoromethyl)thio)-1-(4-methoxyphenyl)pentan-1-one (3d)

PMP SCF₂H

3d was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)cyclopentan-1-ol **1d** (38.4 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3d** was isolated by column chromatography as a colorless oil (38.9 mg, 71% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.7 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 6.81 (t, *J* = 56.3 Hz, 1H), 3.87 (s, 3H), 2.95 (t, *J* = 7.1 Hz, 2H), 2.84 (t, *J* = 7.3 Hz, 2H), 1.95 – 1.80 (m, 2H), 1.76 (dt, *J* = 14.7, 7.2 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 198.2, 163.5, 130.3, 130.0, 120.7 (t, *J* = 272.4 Hz), 113.7, 55.5, 37.4, 29.9, 27.0, 23.4.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.73 (d, J = 56.4 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₇O₂F₂S 275.0912; found 275.0912.

7-((Difluoromethyl)thio)-1-(4-methoxyphenyl)heptan-1-one (3e)

PMP SCF₂H

3e

3e was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)cycloheptan-1-ol **1e** (44.0 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3e** was isolated by column chromatography as a colorless oil (44.7 mg, 74% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.80 (t, *J* = 56.4 Hz, 1H), 3.87 (s, 3H), 2.92 (t, *J* = 7.4 Hz, 2H), 2.79 (t, *J* = 7.4 Hz, 2H), 1.73 (dt, *J* = 14.4, 7.2 Hz, 2H), 1.68 (dd, *J* = 14.9, 7.5 Hz, 2H), 1.51 – 1.42 (m, 2H), 1.42 – 1.35 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 199.0, 163.4, 130.3, 130.1, 120.8 (t, *J* = 272.4 Hz), 113.7, 55.5, 38.1, 30.0, 28.8, 28.5, 27.1, 24.3.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.72 (d, J = 56.3 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₂₁O₂F₂S 303.1225; found 303.1226.

12-((Difluoromethyl)thio)-1-(4-methoxyphenyl)dodecan-1-one (3f)

PMP SCF₂H

3f

3f was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μmol, 2 mol%), 1-(4-methoxyphenyl)cyclododecan-1-ol **1f** (58.0 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3f** was isolated by column chromatography as a colorless oil (52.1 mg, 70% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.80 (t, *J* = 56.5 Hz, 1H), 3.87 (s, 3H), 2.90 (t, *J* = 7.4 Hz, 2H), 2.78 (t, *J* = 7.5 Hz, 2H), 1.80 – 1.68 (m, 2H), 1.66 (dt, *J* = 15.1, 7.5 Hz, 2H), 1.45 – 1.22 (m, 14H).

¹³C NMR (151 MHz, CDCl₃) δ 199.3, 163.3, 130.3, 130.2, 120.8 (t, *J* = 272.1 Hz), 113.7, 55.5, 38.3, 30.1, 29.5, 29.4, 29.4, 29.4, 29.0, 28.7, 27.2, 24.6.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.74 (d, *J* = 56.9 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₀H₃₁O₂F₂S 373.2007; found 373.2009.

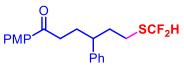
15-((Difluoromethyl)thio)-1-(4-methoxyphenyl)pentadecan-1-one (3g)

PMP 12 SCF₂H

3g

3g was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)cyclopentadecan-1-ol **1g** (66.4 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3g** was isolated by column chromatography as a colorless oil (62.0 mg, 68% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).


¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.79 (t, *J* = 56.5 Hz, 1H), 3.86 (s, 3H), 2.90 (t, *J* = 7.5 Hz, 2H), 2.78 (t, *J* = 7.5 Hz, 2H), 1.71 (dt, *J* = 15.0, 7.5 Hz, 2H), 1.66 (dd, *J* = 15.0, 7.5 Hz, 2H), 1.47 – 1.12 (m, 20H).

¹³C NMR (151 MHz, CDCl₃) δ 199.3, 163.3, 130.3, 130.2, 120.8 (t, *J* = 272.3 Hz), 113.7, 55.5, 38.3, 30.1, 29.6, 29.6, 29.5, 29.5, 29.0, 28.7, 27.2, 24.7.

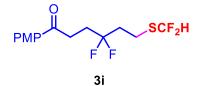
¹⁹F NMR (565 MHz, CDCl₃) δ -92.74 (d, J = 56.4 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₃₇O₂F₂S 415.2477; found 415.2480.

6-((Difluoromethyl)thio)-1-(4-methoxyphenyl)-4-phenylhexan-1-one (3h)

3h was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)-4-phenylcyclohexan-1-ol **1h** (56.4 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3h** was isolated by column chromatography as a colorless oil (56.8 mg, 78% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).


¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, *J* = 9.0 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.25 – 7.21 (m, 1H), 7.17 (dd, *J* = 8.1, 1.1 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 6.74 (t, *J* = 56.4 Hz, 1H), 3.84 (s, 3H), 2.86 – 2.73 (m, 2H), 2.73 – 2.63 (m, 2H), 2.62 – 2.54 (m, 1H), 2.17 – 2.11 (m, 1H), 2.10 – 2.04 (m, 1H), 2.04 – 1.89 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 198.6, 163.4, 143.1, 130.3, 130.0, 128.8, 127.7, 126.8, 120.8 (t, *J* = 272.5 Hz), 113.6, 55.5, 44.4, 37.3, 36.0, 31.0, 25.4 (t, *J* = 2.9 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -92.46 (d, *J* = 56.3 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₃O₂F₂S 365.1381; found 365.1377.

6-((Difluoromethyl)thio)-4,4-difluoro-1-(4-methoxyphenyl)hexan-1-one (3i)

3i was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 µmol, 2 mol%), 4,4-difluoro-1-(4-methoxyphenyl)cyclohexan-1-ol **1i** (48.4 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 µL, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3i** was isolated by column chromatography as a colorless oil (48.6 mg, 75% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.9 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 6.83 (t, *J* = 55.8 Hz, 1H), 3.88 (s, 3H), 3.26 – 3.12 (m, 2H), 3.07 – 2.84 (m, 2H), 2.60 – 2.04 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 196.4, 163.7, 130.3, 129.6, 123.5 (t, *J* = 241.8 Hz), 120.4 (t, *J* = 273.5 Hz), 113.8, 55.53, 38.5 (t, *J* = 25.5 Hz), 30.9 (t, *J* = 24.8 Hz), 30.6 (t, *J* = 3.2 Hz), 19.9 – 19.5 (m).

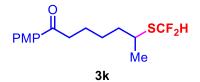
¹⁹F NMR (565 MHz, CDCl₃) δ -92.99 (d, J = 55.2 Hz), -100.76 – -101.11 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₇O₂F₄S 325.0880; found 325.0880.

3-(2-((Difluoromethyl)thio)ethoxy)-1-(4-methoxyphenyl)propan-1-one (3j)

PMP O SCF₂H

3j was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 µmol, 2 mol%), 4-(4-methoxyphenyl)tetrahydro-*2H*-pyran-4-ol **1j** (41.6 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 µL, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3j** was isolated by column chromatography as a colorless oil (38.9 mg, 67% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).


¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 1H), 6.87 (t, J = 56.7 Hz, 1H), 3.90 (t, J = 6.5 Hz, 2H), 3.87 (s, 3H), 3.72 (t, J = 6.3 Hz, 2H), 3.21 (t, J = 6.5 Hz, 2H), 2.95 (t, J = 6.3 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 196.7, 163.6, 130.4, 130.0, 120.7 (t, *J* = 272.5 Hz), 113.8, 70.8, 66.5, 55.5, 38.3, 27.2.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.73 (d, *J* = 56.6 Hz).

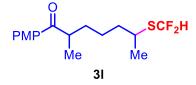
HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₇O₃F₂S 291.0861; found 291.0862.

6-((Difluoromethyl)thio)-1-(4-methoxyphenyl)heptan-1-one (3k)

3k was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)-2-methylcyclohexan-1-ol **1k** (44.0 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol,

2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3k** was isolated by column chromatography as a colorless oil (41.1 mg, 68% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).


¹H NMR (600 MHz, CDCl₃) δ 6.93 (d, *J* = 8.5 Hz, 2H), 6.93 – 6.73 (m, 2H), 6.74 (t, *J* = 56.5 Hz, 1H), 3.87 (s, 3H), 3.26 (h, *J* = 6.8 Hz, 1H), 2.93 (t, *J* = 7.3 Hz, 2H), 1.78 – 1.70 (m, 2H), 1.66 (ddd, *J* = 15.9, 11.3, 7.9 Hz, 2H), 1.51 (dd, *J* = 15.4, 8.3 Hz, 2H), 1.39 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 198.7, 163.4, 130.3, 130.1, 121.0 (t, *J* = 271.8 Hz), 113.7, 55.5, 38.6, 38.0, 37.3, 26.5, 24.0, 22.9.

¹⁹F NMR (565 MHz, CDCl₃) δ -90.27 – -92.76 (m).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₂₁O₂F₂S 303.1225; found 303.1226.

6-((Difluoromethyl)thio)-1-(4-methoxyphenyl)-2-methylheptan-1-one (3I)

3I was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)-2,6-dimethylcyclohexan-1-ol **1I** (46.8 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3I** was isolated by column chromatography as a colorless oil (41.1 mg, 65% yield, *dr* = 1:1).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.82 (t, *J* = 56.6 Hz, 1H), 3.87 (s, 3H), 3.43 (dd, *J* = 13.1, 6.6 Hz, 1H), 3.22 (ddd, *J* = 20.9, 13.7, 6.8 Hz, 1H), 1.91 – 1.75 (m, 1H), 1.49 – 1.37 (m, 2H), 1.35 (dd, *J* = 6.8, 2.9 Hz, 3H), 1.19 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 202.8, 163.4, 130.5, 129.6, 121.0 (t, *J* = 271.9 Hz), 113.8, 55.5, 40.1, 38.6, 37.6, 33.2, 24.7, 22.8, 17.7.

¹⁹F NMR (565 MHz, CDCl₃) δ -91.44 (ddd, *J* = 90.7, 56.6, 23.3 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₂₃O₂F₂S 317.1381; found 317.1382.

(7-((Difluoromethyl)thio)bicyclo[3.3.1]nonan-3-yl)(4-methoxyphenyl)methanone (3m)

3m was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 µmol, 2 mol%), 2-(4-methoxyphenyl)adamantan-2-ol**1m** (51.6 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 µL, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3m** was isolated by column chromatography as a colorless oil (44.9 mg, 66% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.80 (t, *J* = 56.6 Hz, 1H), 5.25 (tt, *J* = 7.0, 4.5 Hz, 1H), 4.41 – 4.08 (m, 1H), 3.86 (s, 3H), 2.27 (dt, *J* = 15.1, 7.3 Hz, 2H), 2.18 (d, *J* = 11.8 Hz, 2H), 2.08 (dd, *J* = 11.9, 2.1 Hz, 2H), 1.80 – 1.71 (m, 2H), 1.67 (td, *J* = 13.2, 4.3 Hz, 2H), 1.62 (d, *J* = 13.0 Hz, 1H), 1.50 – 1.41 (m, 1H).

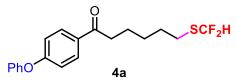
¹³C NMR (151 MHz, CDCl₃) δ 165.9, 163.4, 131.6, 122.9, 121.0 (t, *J* = 271.9 Hz), 113.7, 67.1, 55.5, 40.0, 34.4, 33.9, 30.8, 27.4.

¹⁹F NMR (565 MHz, CDCl₃) δ -90.11 (d, *J* = 56.3 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₂₃O₂F₂S 341.1381; found 341.1383.

(2-(3-((Difluoromethyl)thio)propyl)phenyl)(4-methoxyphenyl)methanone (3n)

PMP SCF₂H


3n was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 µmol, 2 mol%), 1-(4-methoxyphenyl)-1,2,3,4-tetrahydronaphthalen-1-ol **1n** (50.8 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 µL, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **3n** was isolated by column chromatography as a colorless oil (41.7 mg, 62% yield). TLC R_f = 0.70 (Hexane/EtOAc = 10:1, v/v). ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 8.8 Hz, 2H), 7.47 – 7.39 (m, 1H), 7.32 (d, *J* = 7.7 Hz, 1H), 7.30 – 7.20 (m, 4H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.74 (t, *J* = 56.5 Hz, 1H), 3.88 (s, 3H), 2.74 (dt, *J* = 10.5, 7.5 Hz, 4H), 2.03 – 1.78 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 197.1, 163.8, 139.6, 139.0, 132.6, 130.6, 130.1, 130.0, 128.4, 125.6, 120.7 (t, *J* = 272.5 Hz), 113.7, 55.6, 32.1, 31.9, 26.9.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.70 (d, *J* = 56.3 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₉O₂F₂S 337.1068; found 337.1070.

6-((Difluoromethyl)thio)-1-(4-phenoxyphenyl)hexan-1-one (4a)

4a was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(4-phenoxyphenyl)cyclohexan-1-ol **1o** (53.6 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **4a** was isolated by column chromatography as a colorless oil (50.4 mg, 72% yield).

TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 2H), 7.40 (t, *J* = 7.9 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 2H), 6.80 (t, *J* = 56.4 Hz, 1H), 2.94 (t, *J* = 7.3 Hz, 2H), 2.82 (t, *J* = 7.4 Hz, 2H), 1.80 – 1.67 (m, 4H), 1.50 (dq, *J* = 15.3, 7.7 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 198.7, 161.9, 155.5, 131.7, 130.3, 130.1, 124.6, 120.7 (t, *J* = 272.4 Hz), 120.2, 117.3, 38.1, 30.0, 28.4, 27.0, 23.7.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.68 (d, *J* = 56.3 Hz).

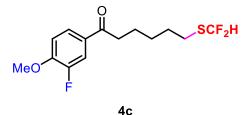
HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₁O₂F₂S 351.1225; found 351.1226.

1-([1,1'-Biphenyl]-4-yl)-6-((difluoromethyl)thio)hexan-1-one (4b)

SCF₂H 4b

4b was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-([1,1'-biphenyl]-4-yl)cyclohexan-1-ol **1p** (50.4 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **4b** was isolated by column chromatography as a colorless oil (42.7 mg, 64% yield).

TLC $R_f = 0.80$ (Hexane/EtOAc = 10:1, v/v).


¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, *J* = 8.3 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 6.81 (t, *J* = 56.4 Hz, 1H), 3.02 (t, *J* = 7.3 Hz, 2H), 2.83 (t, *J* = 7.4 Hz, 2H), 1.94 – 1.70 (m, 4H), 1.57 – 1.49 (m, 2H).

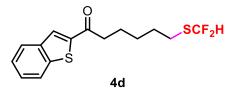
¹³C NMR (151 MHz, CDCl₃) δ 199.7, 145.7, 139.9, 135.7, 129.0, 128.7, 128.2, 127.3, 127.3, 120.8 (t, *J* = 272.4 Hz), 38.3, 30.1, 28.4, 27.0, 23.7.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.66 (d, *J* = 56.7 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₁OF₂S 335.1276; found 335.1277.

6-((Difluoromethyl)thio)-1-(3-fluoro-4-methoxyphenyl)hexan-1-one (4c)

4c was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(3-fluoro-4-methoxyphenyl)cyclohexan-1-ol **1q** (44.8 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **4c** was isolated by column chromatography as a colorless oil (45.9 mg, 75% yield).


TLC $R_f = 0.70$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.6 Hz, 1H), 7.69 (dd, *J* = 11.9, 2.0 Hz, 1H), 6.99 (t, *J* = 8.3 Hz, 1H), 6.80 (t, *J* = 56.4 Hz, 1H), 3.95 (s, 3H), 2.91 (t, *J* = 7.3 Hz, 2H), 2.81 (t, *J* = 7.4 Hz, 2H), 1.74 (tt, *J* = 15.0, 7.4 Hz, 4H), 1.55 – 1.43 (m, 2H).

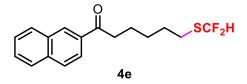
¹³C NMR (151 MHz, CDCl₃) δ 197.7, 152.3 (d, J = 152.7 Hz), 151.5 (d, J = 84.3 Hz), 130.3 (d, J = 5.1 Hz), 125.3 (d, J = 3.2 Hz), 120.7 (t, J = 272.4 Hz), 115.7 (d, J = 19.0 Hz), 112.3 (d, J = 1.5 Hz), 56.3, 37.9, 29.4, 28.3, 27.0, 23.7.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.69 (d, *J* = 56.4 Hz), -133.21 – -138.49 (m). HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₈O₂F₃S 307.0974; found 307.0972.

1-(Benzo[b]thiophen-2-yl)-6-((difluoromethyl)thio)hexan-1-one (4d)

4d was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 µmol, 2 mol%), 1-(benzo[b]thiophen-2-yl)cyclohexan-1-ol **1r** (46.4 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 µL, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **4d** was isolated by column chromatography as a colorless oil (36.4 mg, 58% yield).

TLC $R_f = 0.60$ (Hexane/EtOAc = 10:1, v/v).


¹H NMR (600 MHz, CDCl₃) δ 7.96 (s, 1H), 7.89 (dd, *J* = 10.8, 8.1 Hz, 2H), 7.52 – 7.44 (m, 1H), 7.43 – 7.38 (m, 1H), 6.81 (t, *J* = 56.3 Hz, 1H), 3.03 (t, *J* = 7.3 Hz, 2H), 2.83 (t, *J* = 7.4 Hz, 2H), 1.83 (dt, *J* = 15.1, 7.4 Hz, 2H), 1.79 – 1.69 (m, 2H), 1.56 – 1.51 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 194.5, 143.7, 142.5, 139.1, 128.9, 127.4, 125.9, 125.0, 123.0, 120.7 (t, *J* = 272.5 Hz), 38.9, 30.0, 28.3, 27.0, 24.0.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.67 (d, *J* = 56.3 Hz).

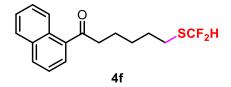
HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₇OF₂S₂ 315.0683; found 315.0685.

6-((Difluoromethyl)thio)-1-(naphthalen-2-yl)hexan-1-one (4e)

4e was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μmol, 2 mol%), 1-(naphthalen-2-yl)cyclohexan-1-ol **1s** (45.2 mg, 0.20 mmol, 1.0

equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **4e** was isolated by column chromatography as a colorless oil (33.3 mg, 54% yield).

TLC $R_f = 0.80$ (Hexane/EtOAc = 10:1, v/v).


¹H NMR (600 MHz, CDCl₃) δ 8.47 (s, 1H), 8.03 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.89 (dd, *J* = 11.4, 8.4 Hz, 2H), 7.61 (dd, *J* = 10.9, 3.9 Hz, 1H), 7.56 (dd, *J* = 11.1, 3.8 Hz, 1H), 6.81 (t, *J* = 56.4 Hz, 1H), 3.12 (t, *J* = 7.3 Hz, 2H), 2.84 (t, *J* = 7.4 Hz, 2H), 1.83 (dt, *J* = 15.1, 7.4 Hz, 2H), 1.80 – 1.71 (m, 2H), 1.58 – 1.51 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 200.0, 135.6, 134.3, 132.5, 129.6, 129.6, 128.5, 128.4, 127.8, 126.8, 123.9, 120.7 (t, *J* = 272.4 Hz), 38.3, 30.1, 28.4, 27.0, 23.8.

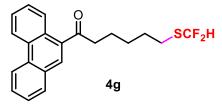
¹⁹F NMR (565 MHz, CDCl₃) δ -92.66 (d, *J* = 56.3 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₉OF₂S 309.1119; found 309.1121.

6-((Difluoromethyl)thio)-1-(naphthalen-1-yl)hexan-1-one (4f)

4f was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(naphthalen-1-yl)cyclohexan-1-ol **1t** (45.2 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **4f** was isolated by column chromatography as a colorless oil (32.0 mg, 52% yield).

TLC $R_f = 0.80$ (Hexane/EtOAc = 10:1, v/v).


¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.91 – 7.74 (m, 2H), 7.65 – 7.42 (m, 3H), 6.80 (t, *J* = 56.4 Hz, 1H), 3.07 (t, *J* = 7.3 Hz, 2H), 2.82 (t, *J* = 7.4 Hz, 2H), 1.83 (dt, *J* = 15.1, 7.4 Hz, 2H), 1.74 (dt, *J* = 15.0, 7.4 Hz, 2H), 1.56 – 1.47 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 204.5, 136.2, 134.0, 132.5, 130.1, 128.5, 127.9, 127.2, 126.5, 125.7, 124.4, 120.7 (t, *J* = 272.4 Hz), 41.9, 30.0, 28.3, 27.0, 24.0.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.69 (d, *J* = 56.3 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₉OF₂S 309.1119; found 309.1120.

6-((Difluoromethyl)thio)-1-(phenanthren-9-yl)hexan-1-one (4g)

4g was prepared according to the general procedure outlined above, using [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 μ mol, 2 mol%), 1-(phenanthren-9-yl)cyclohexan-1-ol **1u** (55.2 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), collidine (52.8 μ L, 0.40 mmol, 2.0 equiv) and DCE (2.0 mL, 0.1 M). After the reaction was finished, the product **4g** was isolated by column chromatography as a colorless oil (39.4 mg, 55% yield).

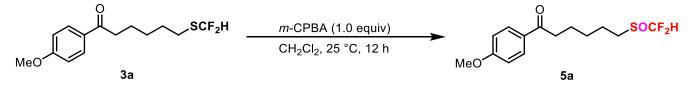
TLC $R_f = 0.80$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 8.5 Hz, 1H), 8.68 (d, *J* = 8.3 Hz, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 8.08 (s, 1H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.75 (t, *J* = 7.7 Hz, 1H), 7.72 – 7.56 (m, 3H), 6.81 (t, *J* = 56.4 Hz, 1H), 3.14 (t, *J* = 7.3 Hz, 2H), 2.83 (t, *J* = 7.3 Hz, 2H), 1.87 (dt, *J* = 15.2, 7.5 Hz, 2H), 1.76 (dt, *J* = 15.0, 7.5 Hz, 2H), 1.60 – 1.48 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 204.7, 135.5, 131.8, 130.8, 130.0, 129.7, 129.0, 128.8, 128.4, 127.5, 127.2, 127.2, 126.5, 122.9, 122.7, 120.7 (t, *J* = 272.4 Hz), 42.0, 30.0, 28.3, 27.0 (t, *J* = 3.1 Hz), 24.1.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.65 (d, *J* = 56.7 Hz).

HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₁H₂₀OF₂NaS 381.1095; found 381.1091.


5. Further Functionalization

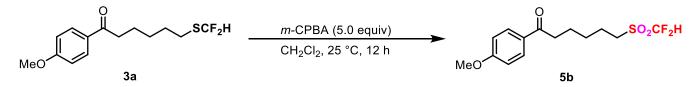
(a) Large-scale (2.0 mmol) experiment:

To a 100 mL flame-dried Schlenk tube equipped with a stir bar were added [Acr-Mes]⁺(ClO₄)⁻ (16.0 mg, 40.0 μ mol, 2 mol%), 1-(4-methoxyphenyl)cyclohexan-1-ol **1a** (412.0 mg, 2.0 mmol, 1.0 equiv), and PhthSCF₂H **2a** (687.4 mg, 3.0 mmol, 1.5 equiv). The flask was sealed with a cap containing a TFE-lined silicone septum and placed under a N₂ atmosphere through evacuating and purging with nitrogen three times. To these solids, collidine (528.4 μ L, 4.0 mmol, 2.0 equiv) and DCE (20.0 mL, 0.1 M) was added under nitrogen atmosphere. The mixture was stirred under irradiation with blue LEDs for 12 hours. After the reaction was finished, the crude product was purified by flash chromatography on silica gel (hexane/ethyl acetate) to get the product **3a** as a colorless oil (409 mg, 71% yield).

(b) Synthetic transformations of products:6-((Difluoromethyl)sulfinyl)-1-(4-methoxyphenyl)hexan-1-one (5a)

A dried tube was added with 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1-one **3a** (28.8 mg, 0.10 mmol, 1.0 equiv) and *m*-CPBA (57.7 mg, 0.10 mmol, 1.0 equiv, assay ca. 30%). Then dry DCM (4 mL) was added. The tube was sealed with a rubber septum and the suspension was stirred at room temperature for 12 h. Then, the reaction mixture was diluted with DCM (10 mL), washed with a saturated Na₂SO₃ aqueous solution (10 mL), a saturated NaHCO₃ aqueous solution (10 mL) and brine (10 mL), dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel to afford the products **5a** as a colorless oil (23.1 mg, 76% yield).

TLC $R_f = 0.50$ (Hexane/EtOAc = 5:1, v/v).


¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 8.9 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 6.30 (t, *J* = 54.8 Hz, 1H), 3.87 (s, 3H), 2.96 (t, *J* = 7.2 Hz, 2H), 2.94 – 2.71 (m, 2H), 1.94 – 1.82 (m, 2H), 1.86 – 1.70 (m, 2H), 1.74 – 1.44 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 198.4, 163.5, 130.3, 129.9, 120.5 (dd, *J* = 290.4, 284.9 Hz), 113.8, 55.5, 47.1, 37.6, 28.4, 23.7, 21.6.

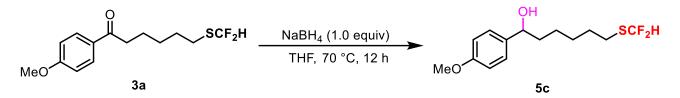
¹⁹F NMR (565 MHz, CDCl₃) δ -120.81 – -122.52 (m).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₉O₃F₂S 305.1017; found 305.1017.

6-((Difluoromethyl)sulfonyl)-1-(4-methoxyphenyl)hexan-1-one (5b)

A dried tube was added with 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1-one **3a** (28.8 mg, 0.10 mmol, 1.0 equiv) and *m*-CPBA (288.5 mg, 0.50 mmol, 5.0 equiv, assay ca. 30%). Then dry DCM (4 mL) was added. The tube was sealed with a rubber septum and the suspension was stirred at room temperature for 12 h. Then, the reaction mixture was diluted with DCM (10 mL), washed with a saturated Na₂SO₃ aqueous solution (10 mL), a saturated NaHCO₃ aqueous solution (10 mL) and brine (10 mL), dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel to afford the products **5b** as a colorless oil (27.8 mg, 87% yield).

TLC $R_f = 0.40$ (Hexane/EtOAc = 5:1, v/v).


¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, *J* = 9.1 Hz, 2H), 6.88 (d, *J* = 9.1 Hz, 2H), 6.11 (t, *J* = 52.7 Hz, 1H), 3.79 (s, 3H), 3.38 – 2.96 (m, 2H), 2.58 (t, *J* = 7.3 Hz, 2H), 1.98 (dt, *J* = 15.7, 7.8 Hz, 2H), 1.85 – 1.68 (m, 2H), 1.61 (dt, *J* = 15.5, 7.7 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 172.1, 157.3, 144.1, 122.3, 115.1 (t, *J* = 286.1 Hz), 114.5, 55.6, 47.5, 33.7, 27.9, 24.1, 20.3.

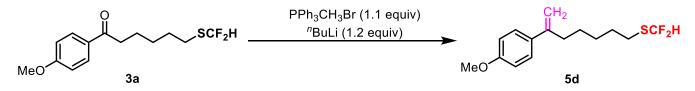
¹⁹F NMR (565 MHz, CDCl₃) δ -122.67 (d, *J* = 52.8 Hz).

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₉O₄F₂S 321.0967; found 321.0961.

6-((Difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1-ol (5c)

To a 4 mL reaction vial equipped with a stir bar was added 6-((difluoromethyl)thio)-1-(4methoxyphenyl)hexan-1-one **3a** (28.8 mg, 0.10 mmol, 1.0 equiv) in dry THF (1.0 mL). Then NaBH₄ (3.8 mg, 0.10 mmol, 1.0 equiv) was added and the reaction was allowed to run for 12 hours at 70 °C in an oil bath. After this time, the reaction was quenched with water, and extracted with Et₂O (3 X 10 mL). The combined organic layers were dried (Na₂SO₄), and the solvent was removed *in vacuo* by rotary evaporation. Further purification was accomplished by SiO₂ column chromatography (gradient Hexane/EtOAc) to give the desired product **5c** as a colorless oil (26.1 mg, 90% yield).

TLC $R_f = 0.60$ (Hexane/EtOAc = 10:1, v/v).


¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 6.78 (t, *J* = 56.4 Hz, 1H), 4.59 (t, *J* = 6.7 Hz, 1H), 3.80 (s, 3H), 2.76 (t, *J* = 7.4 Hz, 2H), 1.87 – 1.73 (m, 1H), 1.75 – 1.58 (m, 3H), 1.50 – 1.26 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 159.1, 136.9, 127.1, 120.8 (t, J = 272.4 Hz), 113.9, 74.1, 55.3, 38.7, 30.0, 28.5, 27.1, 25.3.

¹⁹F NMR (565 MHz, CDCl₃) δ -92.71 (d, *J* = 56.3 Hz).

HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₄H₂₀O₂F₂SNa 313.1044; found 313.1040.

(difluoromethyl)(6-(4-methoxyphenyl)hept-6-en-1-yl)sulfane (5d)

To a 10 mL reaction vial equipped with a stir bar was added methylphosphonium bromide (40.0 mg, 0.11 mmol, 1.1 equiv), and dry THF (1 mL). The solution was subjected to an ice bath, and then ^{*n*}BuLi (0.1 mL, 1.2 M in hexanes, 1.2 equiv) was added dropwise. The reaction mixture was allowed to stir for 1 h at 0 °C. Lastly, 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1- one **3a** (28.8 mg, 0.10 mmol, 1.0 equiv) dissolved in 0.5 mL of THF was added. The reaction mixture was allowed to warm to rt, and then heated to 70 °C in an oil bath for 12 h. After this

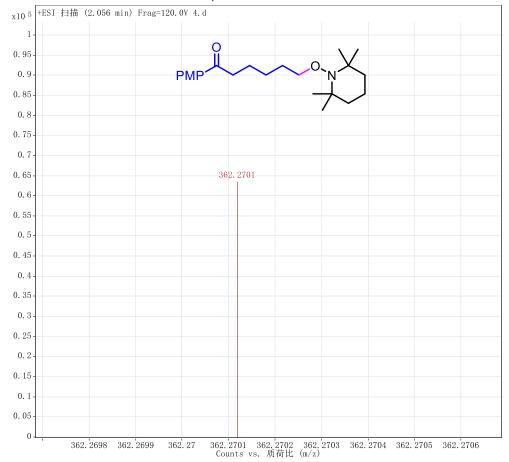
time, the reaction was quenched with water, and extracted with Et_2O (3 X 10 mL). The combined organic layers were dried (Na₂SO₄), and the solvent was removed *in vacuo* by rotary evaporation. Further purification was accomplished by SiO₂ column chromatography (gradient Hexane/EtOAc) to give the desired product **5d** as a colorless oil (19.7 mg, 69% yield).

TLC $R_f = 0.80$ (Hexane/EtOAc = 10:1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.78 (t, *J* = 56.4 Hz, 2H), 5.20 (d, *J* = 1.4 Hz, 1H), 4.97 (d, *J* = 1.3 Hz, 1H), 3.81 (s, 3H), 2.77 (t, *J* = 7.5 Hz, 2H), 2.48 (t, *J* = 6.8 Hz, 2H), 1.66 (dt, *J* = 14.5, 7.4 Hz, 2H), 1.52 – 1.36 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 159.0, 147.6, 133.6, 127.2, 120.8 (t, *J* = 272.1 Hz), 113.6, 110.9, 55.3, 35.2, 29.9, 28.3, 27.6, 27.1 (t, *J* = 2.8 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -92.73 (d, *J* = 56.4 Hz).

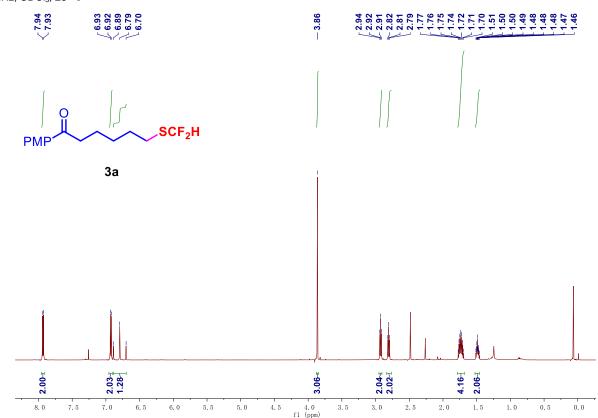

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₂₁OF₂S 287.1276; found 287.1273.

6. Mechanistic Studies

(a) Radical inhibition experiment:

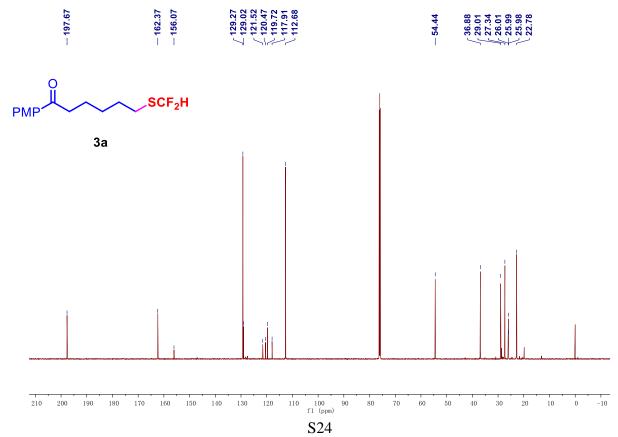
To a 10 mL flame-dried Schlenk tube equipped with a stir bar were added [Acr-Mes]⁺(ClO₄)⁻ (1.6 mg, 4.0 µmol, 2 mol%), 1-(4-methoxyphenyl)cyclohexan-1-ol **1a** (41.2 mg, 0.20 mmol, 1.0 equiv), PhthSCF₂H **2a** (68.7 mg, 0.30 mmol, 1.5 equiv), and TEMPO or BHT (0.60 mmol, 3.0 equiv). The flask was sealed with a cap containing a TFE-lined silicone septum and placed under a N₂ atmosphere through evacuating and purging with nitrogen three times. To these solids, collidine (39.6 µL, 0.30 mmol, 1.5 equiv) and DCE (2.0 mL, 0.1 M) was added under nitrogen atmosphere. The mixture was stirred under irradiation with blue LEDs for 12 hours. After the reaction was finished, then the reaction system was subjected to GC-MS for analysis, and no corresponding product **3a** was observed. And the TEMPO-radical adduct was observed by HRMS.

[M+H]⁺ Calcd for C₂₂H₃₆O₃N 362.2690; found 362.2701.

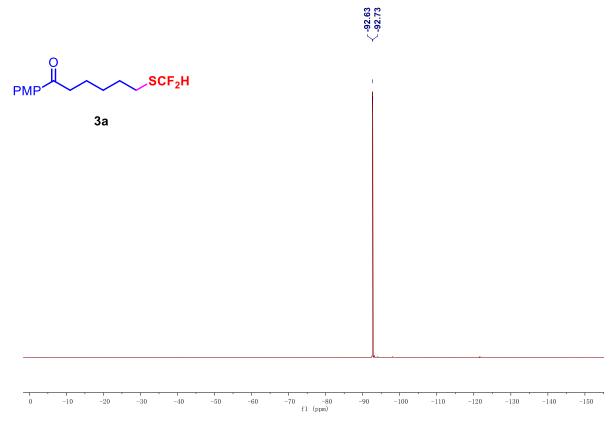

7. References

- [1] Zhu, D.-H.; Gu, Y.; Lu, L.; Shen, Q.-L. N-Difluoromethylthiophthalimide: A Shelf-Stable, Electrophilic Reagent for Difluoromethylthiolation. J. Am. Chem. Soc. 2015, 137, 10547–10553.
- [2] Zhu, D.-H.; Hong, X.; Li, D.-Z.; Lu, L.; Shen, Q.-L. A Two-Step, One-Pot, and Multigram-Scale Synthesis of *N*-Difluoromethylthiophthalimide. *Org. Process Res. Dev.* 2017, *21*, 1383–1387.
- [3] Zhu, D.-H.; Shao, X.-X.; Hong, X.; Lu, L.; Shen, Q.-L. PhSO₂SCF₂H: A Shelf-Stable, Easily Scalable Reagent for Radical Difluoromethylthiolation. *Angew. Chem. Int. Ed.* 2016, *55*, 15807–15811.
- [4] Huang, L.; Ji, T.; Rueping, M., Remote Nickel-Catalyzed Cross-Coupling Arylation via Proton-Coupled Electron Transfer-Enabled C–C Bond Cleavage. J. Am. Chem. Soc. 2020, 142, 3532-3539.
- [5] Ji T.-F.; Chen, X.-Y.; Huang, L.; Rueping, M. Remote Trifluoromethylthiolation Enabled by Organophotocatalytic C–C Bond Cleavage. Org. Lett. 2020, 22, 2579–2583.
- [6] Yayla, H. G.; Wang, H.-J.; Tarantino, K. T.; Orbe, H. S.; Knowles, R. R. Catalytic Ring-Opening of Cyclic Alcohols Enabled by PCET Activation of Strong O-H Bonds. J. Am. Chem. Soc. 2016, 138, 10794–10797.

8. NMR Spectra

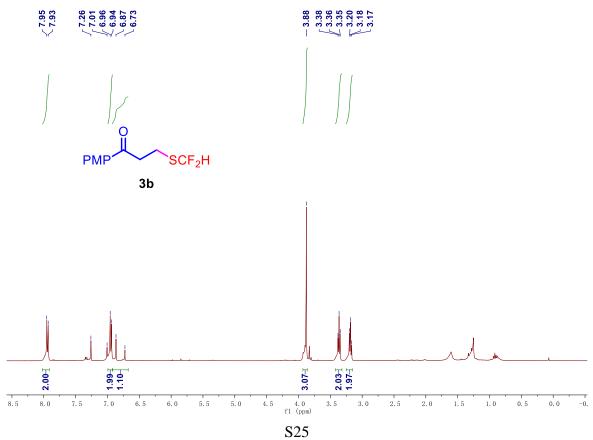

¹H NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1-one (3a)

600 MHz, CDCl₃, 23 ℃

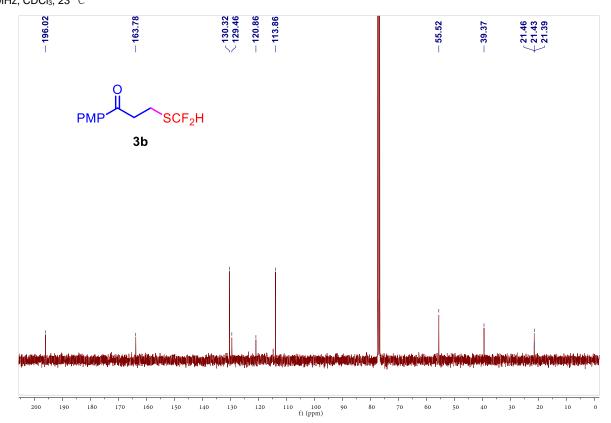


¹³C NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1-one (3a)

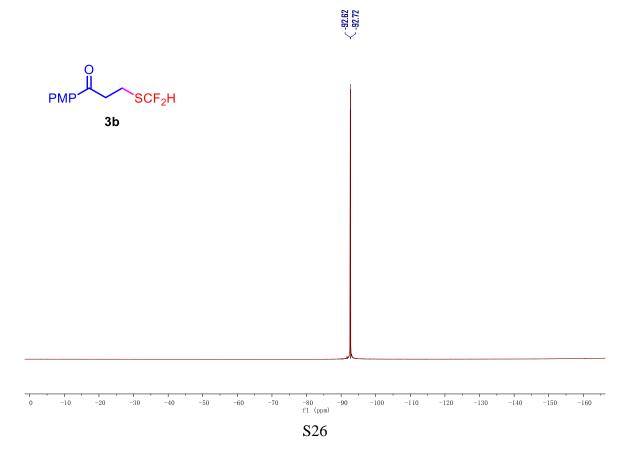
151 MHz, CDCl₃, 23 °C

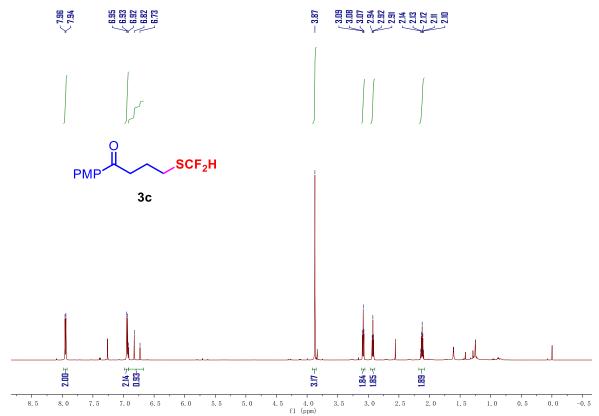


 $^{19}\mathsf{F}$ NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1-one (**3a**) 565 MHz, CDCl₃, 23 $^\circ\!\!\!C$

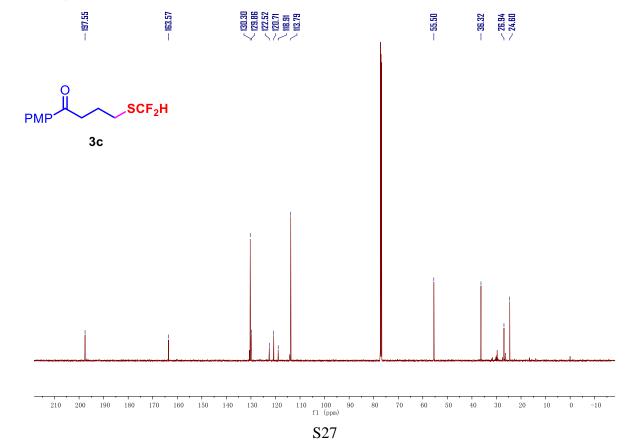


¹H NMR spectrum of 3-((difluoromethyl)thio)-1-(4-methoxyphenyl)propan-1-one (3b)

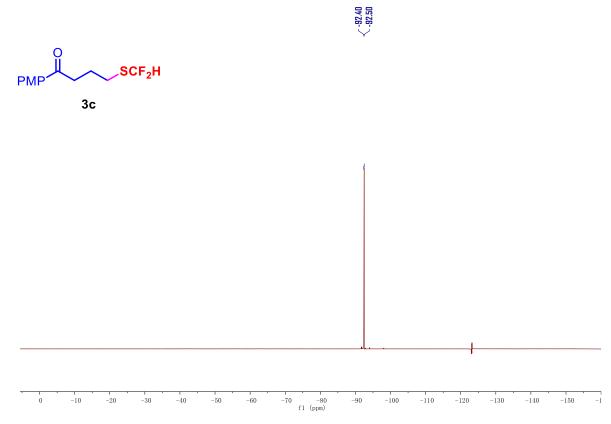

600 MHz, CDCl₃, 23 °C


 ^{13}C NMR spectrum of 3-((difluoromethyl)thio)-1-(4-methoxyphenyl)propan-1-one (**3b**) 151 MHz, CDCl₃, 23 $^{\circ}\text{C}$

 $^{19}\mathsf{F}$ NMR spectrum of 3-((difluoromethyl)thio)-1-(4-methoxyphenyl)propan-1-one (**3b**) 600 MHz, CDCI₃, 23 $^\circ\!\!\!C$

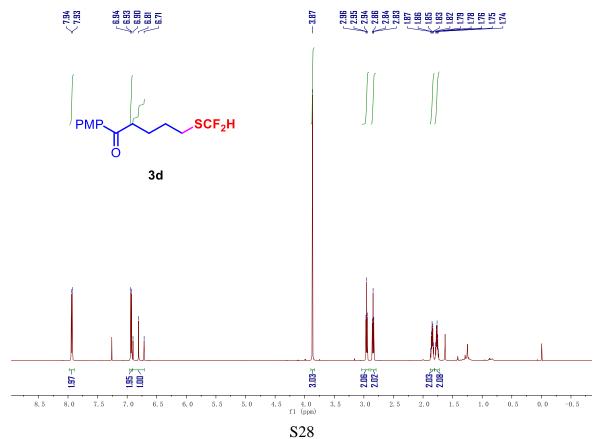


¹H NMR spectrum of 4-((difluoromethyl)thio)-1-(4-methoxyphenyl)butan-1-one (**3c**) 565 MHz, CDCl₃, 23 $^{\circ}$ C

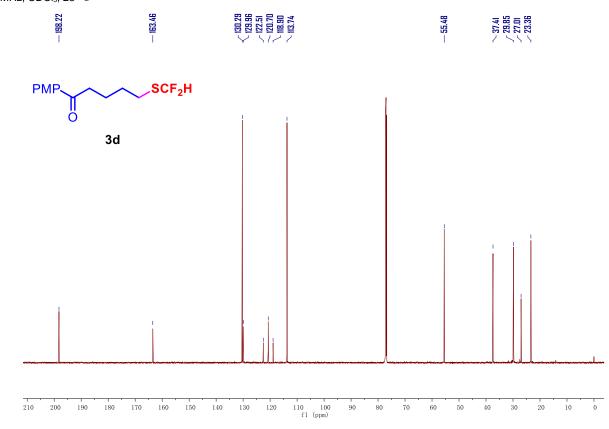


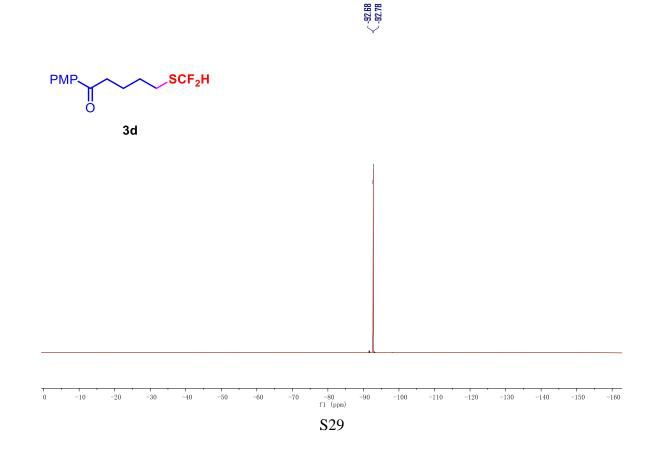
¹³C NMR spectrum of 4-((difluoromethyl)thio)-1-(4-methoxyphenyl)butan-1-one (3c)

151 MHz, CDCl₃, 23 ℃

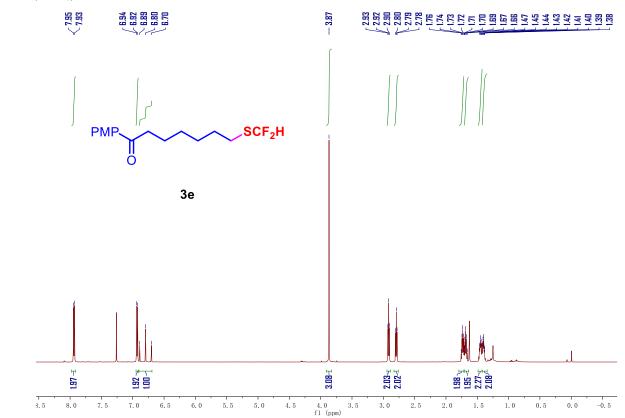


 ^{19}F NMR spectrum of 4-((difluoromethyl)thio)-1-(4-methoxyphenyl)butan-1-one (3c) $_{565}$ MHz, CDCl3, 23 $^{\circ}\text{C}$

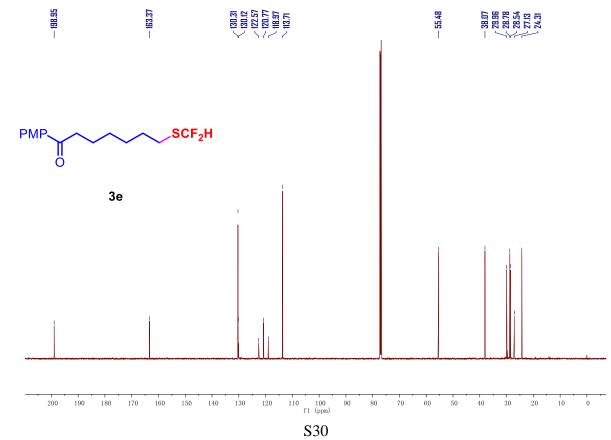


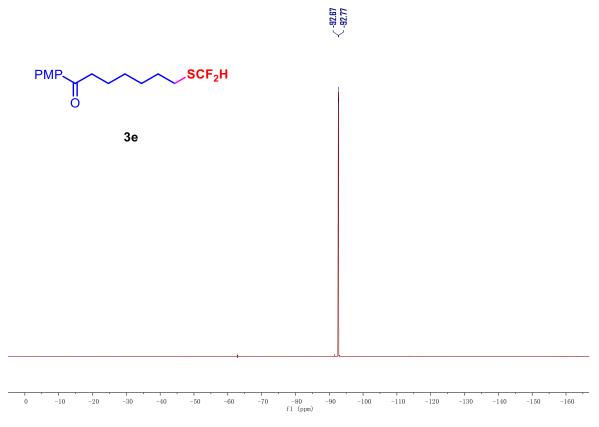

¹H NMR spectrum of 5-((difluoromethyl)thio)-1-(4-methoxyphenyl)pentan-1-one (3d)

600 MHz, CDCl₃, 23 ℃

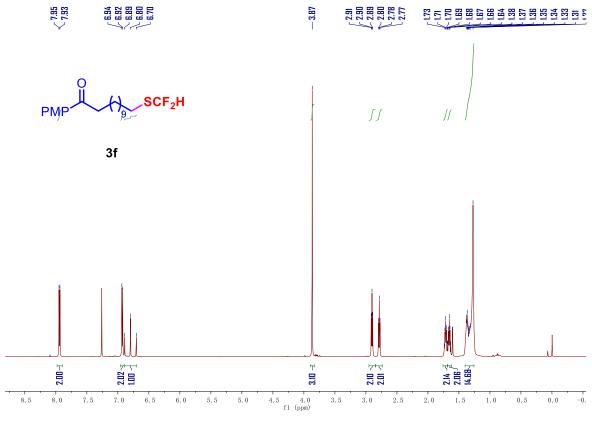


 ^{13}C NMR spectrum of 5-((difluoromethyl)thio)-1-(4-methoxyphenyl)pentan-1-one (3d) 151 MHz, CDCl₃, 23 $^{\circ}\text{C}$

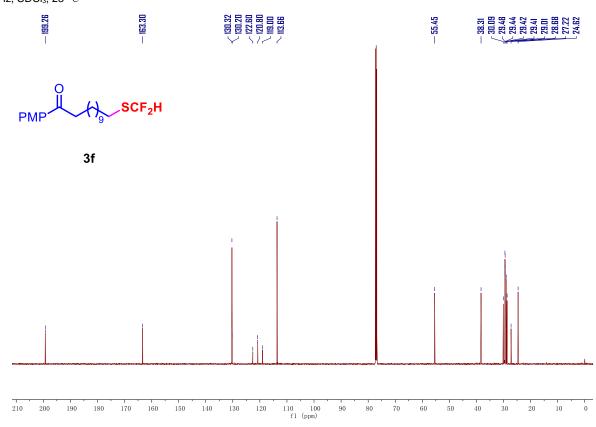



¹H NMR spectrum of 7-((difluoromethyl)thio)-1-(4-methoxyphenyl)heptan-1-one (**3e**) 600 MHz, CDCl₃, 23 $^{\circ}$ C

 ^{13}C NMR spectrum of 7-((difluoromethyl)thio)-1-(4-methoxyphenyl)heptan-1-one (3e) 151 MHz, CDCl₃, 23 $^{\circ}\text{C}$



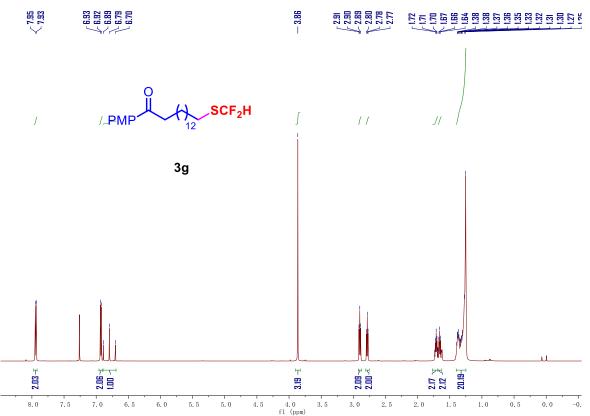
 $^{19}\mathsf{F}$ NMR spectrum of 7-((difluoromethyl)thio)-1-(4-methoxyphenyl)heptan-1-one (**3e**) 565 MHz, CDCl₃, 23 $^\circ\!\!\!\!\!^\circ$



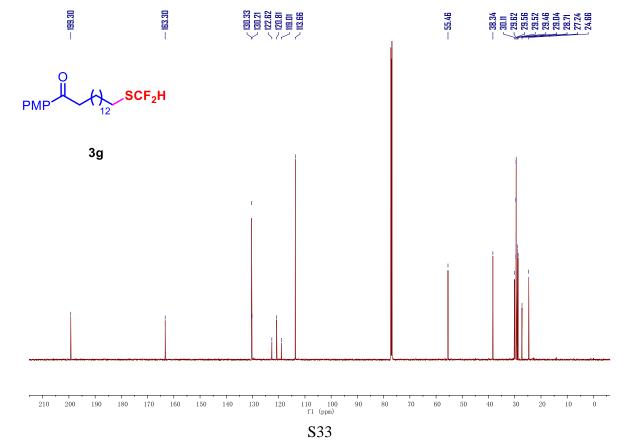
¹H NMR spectrum of 12-((difluoromethyl)thio)-1-(4-methoxyphenyl)dodecan-1-one (3f)

600 MHz, CDCl₃, 23 °C

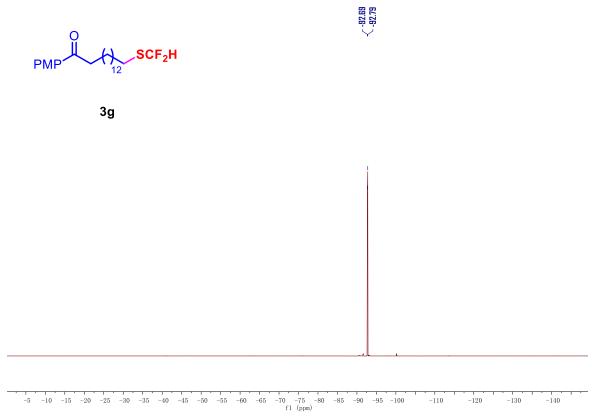
 ^{13}C NMR spectrum of 12-((difluoromethyl)thio)-1-(4-methoxyphenyl)dodecan-1-one (**3f**) 151 MHz, CDCl₃, 23 $^{\circ}\text{C}$



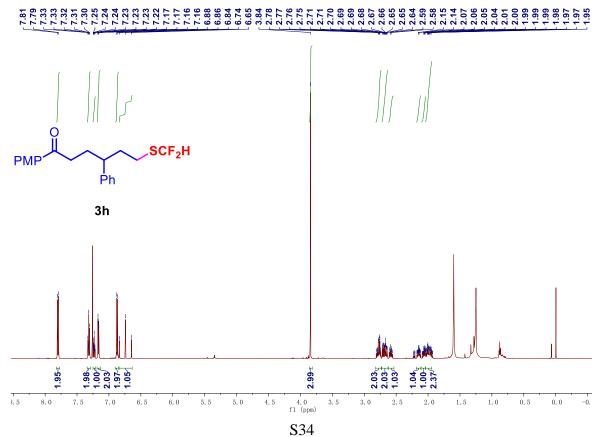
CF₂H РМ


3f

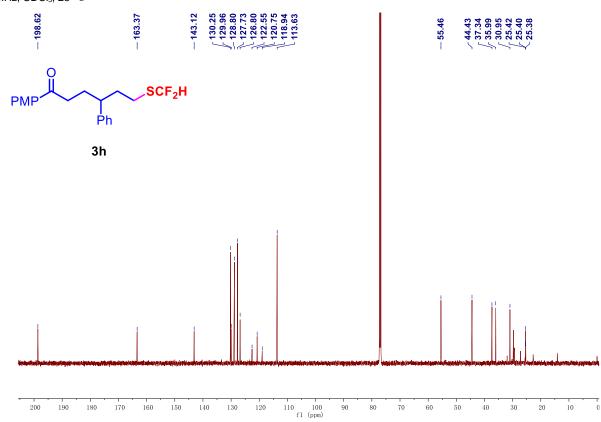
- -92.68


¹H NMR spectrum of 15-((difluoromethyl)thio)-1-(4-methoxyphenyl)pentadecan-1-one (**3g**) 600 MHz, CDCl₃, 23 °C

¹³C NMR spectrum of 15-((difluoromethyl)thio)-1-(4-methoxyphenyl)pentadecan-1-one (**3g**) 151 MHz, CDCl₃, 23 °C

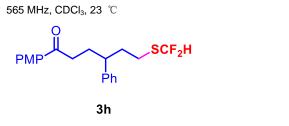


 $^{19}\mathsf{F}$ NMR spectrum of 15-((difluoromethyl)thio)-1-(4-methoxyphenyl)pentadecan-1-one (**3g**) 565 MHz, CDCl₃, 23 $^{\circ}\text{C}$

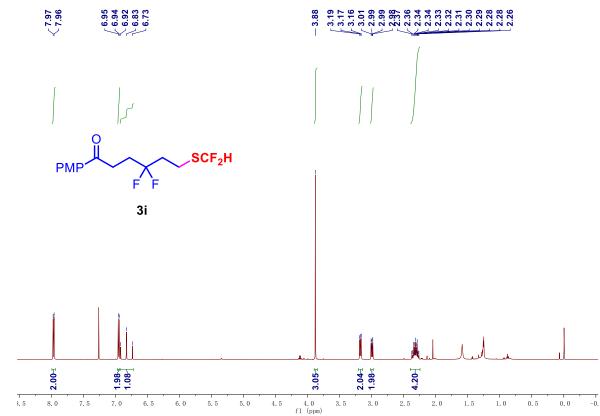


 $\label{eq:homoschedule} \ensuremath{^1}H\ NMR\ spectrum\ of\ 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)-4-phenylhexan-1-one\ (\mathbf{3h})$

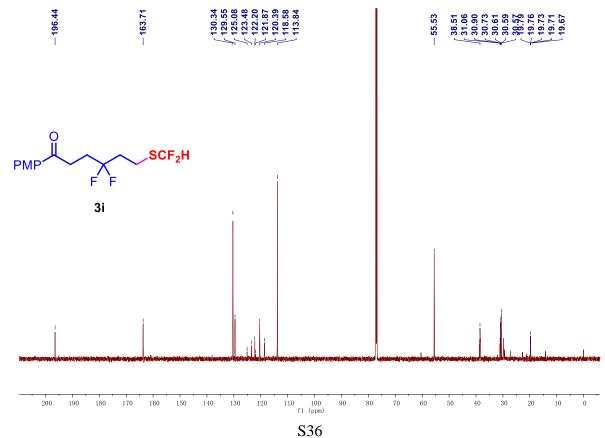
600 MHz, CDCl₃, 23 ℃

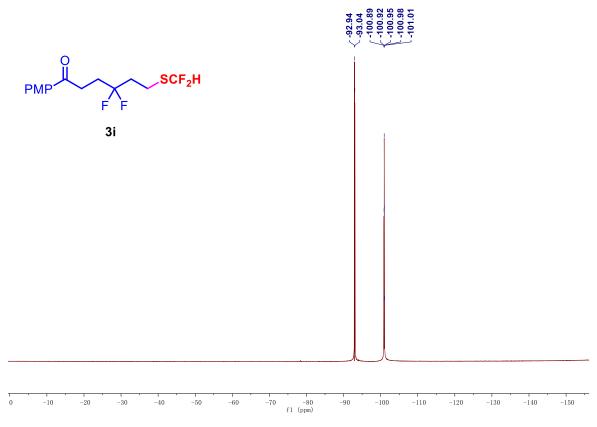


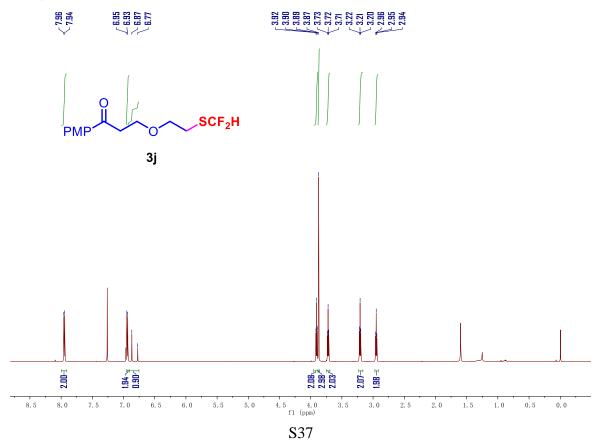
¹³C NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)-4-phenylhexan-1-one (**3h**) 151 MHz, CDCl₃, 23 °C

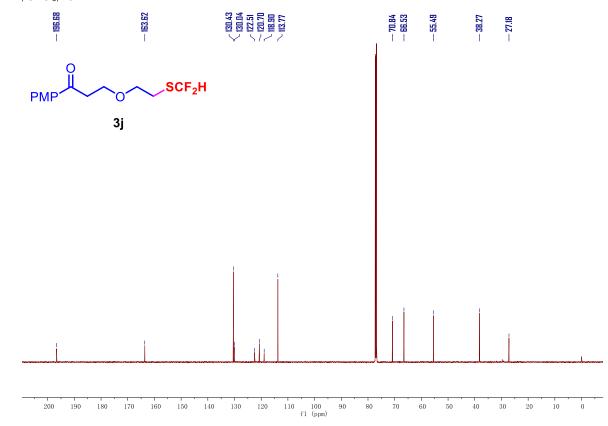


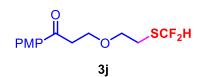
 $< \frac{-92.41}{-92.51}$


¹⁹F NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)-4-phenylhexan-1-one (**3h**)


¹H NMR spectrum of 6-((difluoromethyl)thio)-4,4-difluoro-1-(4-methoxyphenyl)hexan-1-one (**3i**) 600 MHz, CDCl₃, 23 °C

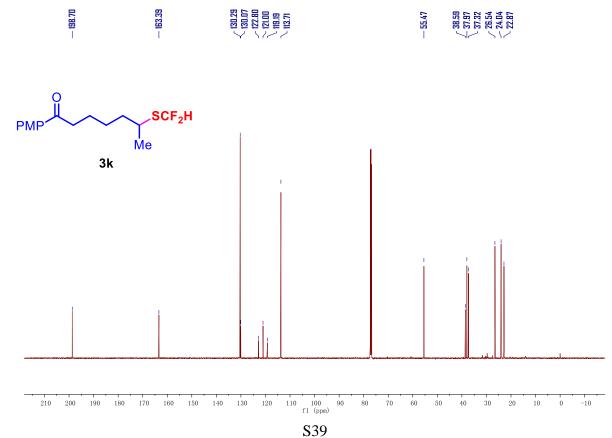

 ^{13}C NMR spectrum of 6-((difluoromethyl)thio)-4,4-difluoro-1-(4-methoxyphenyl)hexan-1-one (3i) 151 MHz, CDCl₃, 23 $^{\circ}\text{C}$


 $^{19}\mathsf{F}$ NMR spectrum of 6-((difluoromethyl)thio)-4,4-difluoro-1-(4-methoxyphenyl)hexan-1-one (**3i**) 565 MHz, CDCI₃, 23 $^\circ\!\!\!C$

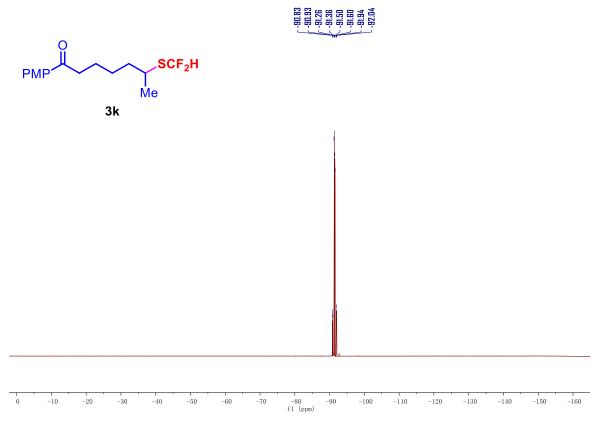

¹H NMR spectrum of 3-(2-((difluoromethyl)thio)ethoxy)-1-(4-methoxyphenyl)propan-1-one (**3j**) 600 MHz, CDCl₃, 23 °C

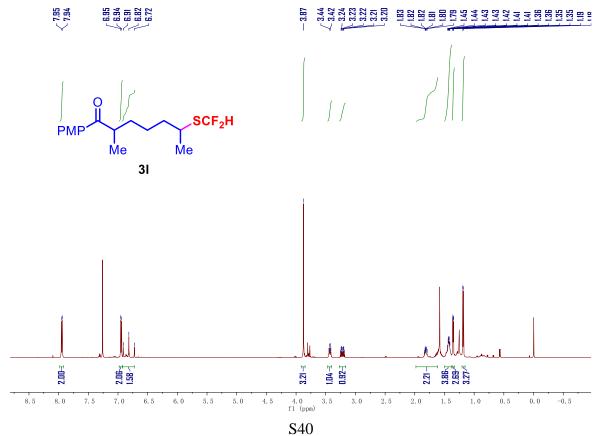
 ^{13}C NMR spectrum of 3-(2-((difluoromethyl)thio)ethoxy)-1-(4-methoxyphenyl)propan-1-one (3j) 151 MHz, CDCI_3, 23 $^{\circ}\text{C}$

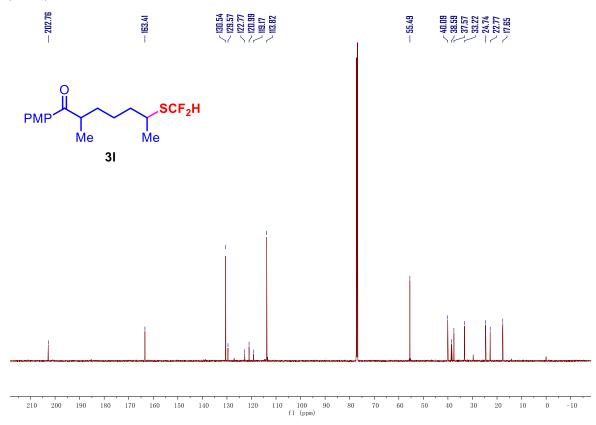

¹⁹F NMR spectrum of 3-(2-((difluoromethyl)thio)ethoxy)-1-(4-methoxyphenyl)propan-1-one (**3j**) 565 MHz, CDCI₃, 23 °C

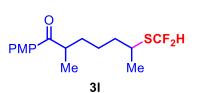


0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 -145 f1 (ppm)


¹H NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)heptan-1-one (**3k**) 600 MHz, CDCI₃, 23 $^{\circ}$ C


¹³C NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)heptan-1-one (**3k**) 151 MHz, CDCI₃, 23 °C

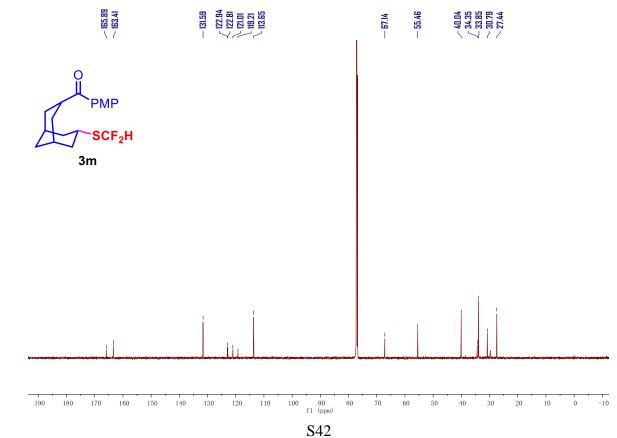

 $^{19}\mathsf{F}$ NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)heptan-1-one (**3k**) 565 MHz, CDCl₃, 23 $^\circ\!\!\!C$


¹H NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)-2-methylheptan-1-one (**3I**) 600 MHz, CDCl₃, 23 $^{\circ}$ C

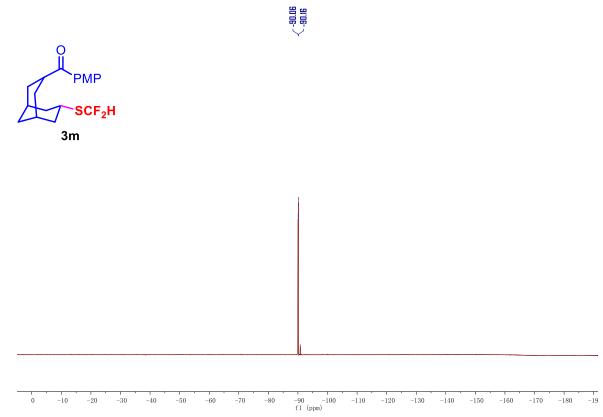
 ^{13}C NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)-2-methylheptan-1-one (**3I**) 151 MHz, CDCI₃, 23 $^{\circ}\text{C}$

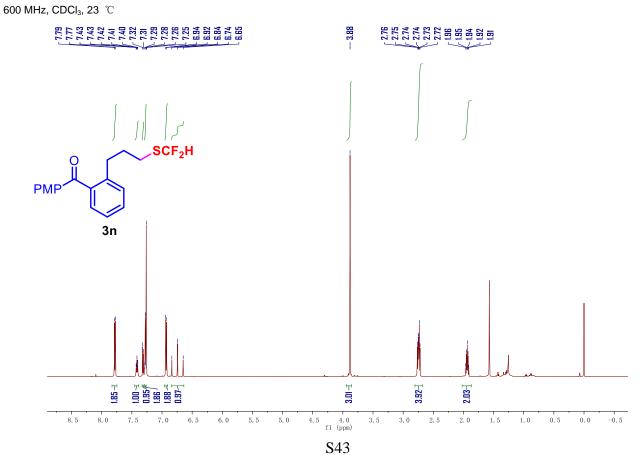


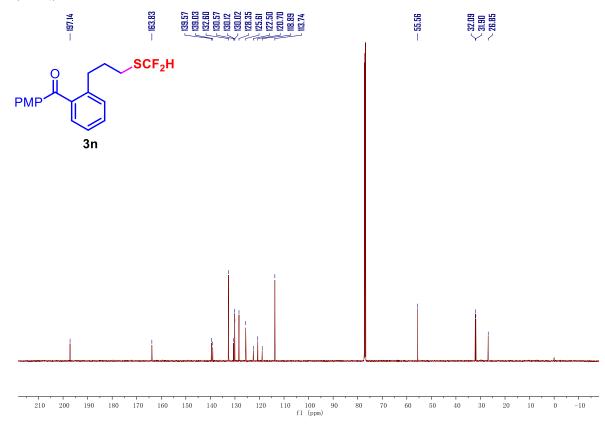
 $^{19}\mathsf{F}$ NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)-2-methylheptan-1-one (**3l**) 565 MHz, CDCl₃, 23 $^\circ\!\!\!\!\!^\circ$

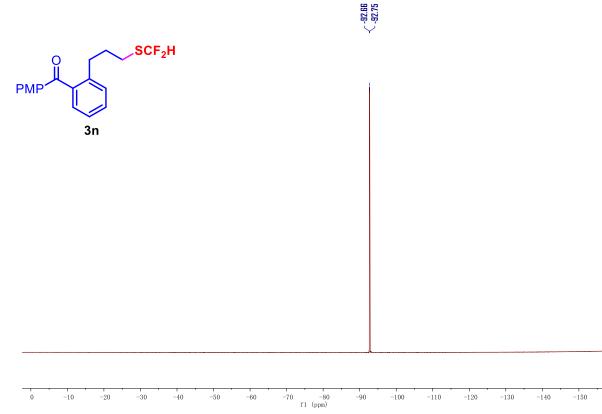


-91.27 -91.30 -91.37 -91.40 -91.47 -91.53 -91.53

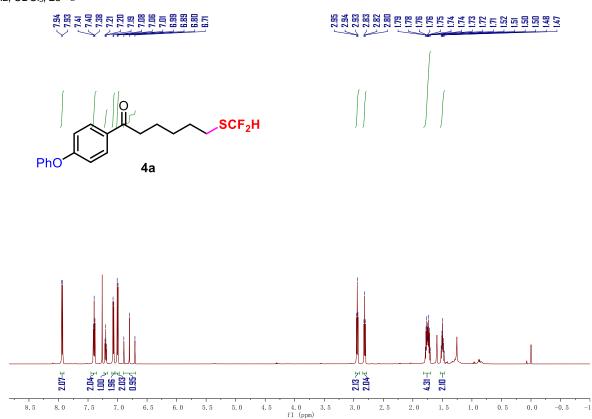

¹H NMR spectrum of (7-((difluoromethyl)thio)bicyclo[3.3.1]nonan-3-yl)(4-methoxyphenyl)methanone (**3m**) 600 MHz, CDCl₃, 23 °C


¹³C NMR spectrum of (7-((difluoromethyl)thio)bicyclo[3.3.1]nonan-3-yl)(4-methoxyphenyl)methanone (**3m**) 151 MHz, CDCl₃, 23 °C

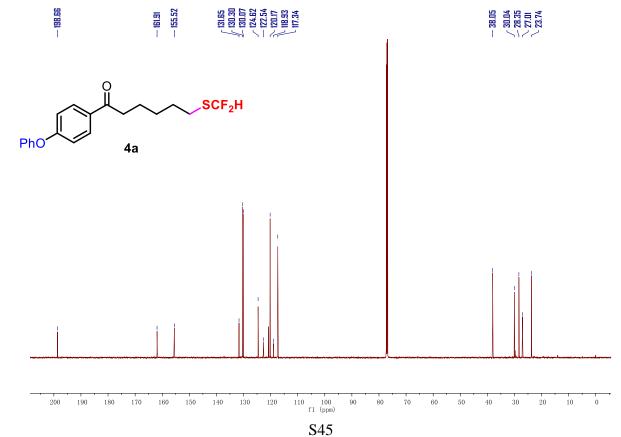

¹⁹F NMR spectrum of (7-((difluoromethyl)thio)bicyclo[3.3.1]nonan-3-yl)(4-methoxyphenyl)methanone (**3m**) 565 MHz, CDCl₃, 23 °C


¹H NMR spectrum of (2-(3-((difluoromethyl)thio)propyl)phenyl)(4-methoxyphenyl)methanone (**3n**)

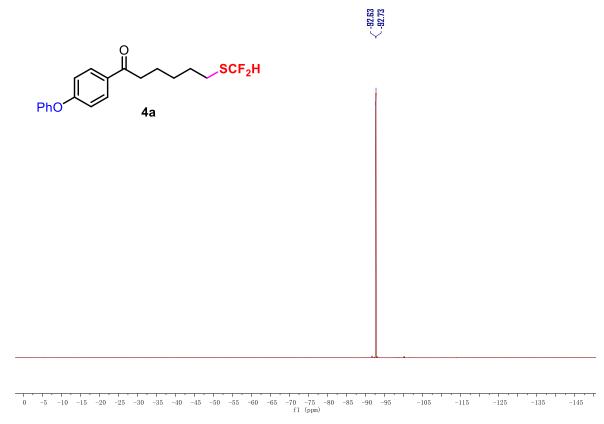
¹³C NMR spectrum of (2-(3-((difluoromethyl)thio)propyl)phenyl)(4-methoxyphenyl)methanone (**3n**) 151 MHz, CDCl₃, 23 °C



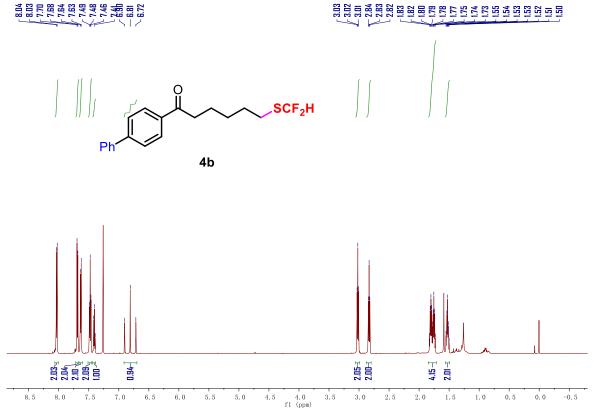
 $^{19}\mathsf{F}$ NMR spectrum of (2-(3-((difluoromethyl)thio)propyl)phenyl)(4-methoxyphenyl)methanone (**3n**) 565 MHz, CDCI₃, 23 $^\circ\!\!\!C$


S44

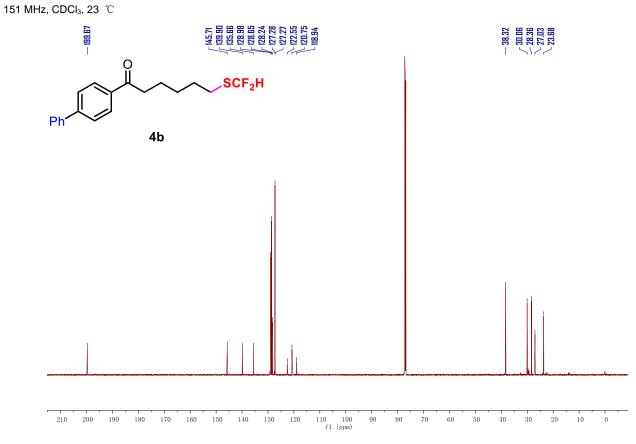
¹H NMR spectrum of 6-((difluoromethyl)thio)-1-(4-phenoxyphenyl)hexan-1-one (**4a**) 600 MHz, CDCl₃, 23 $^{\circ}$ C



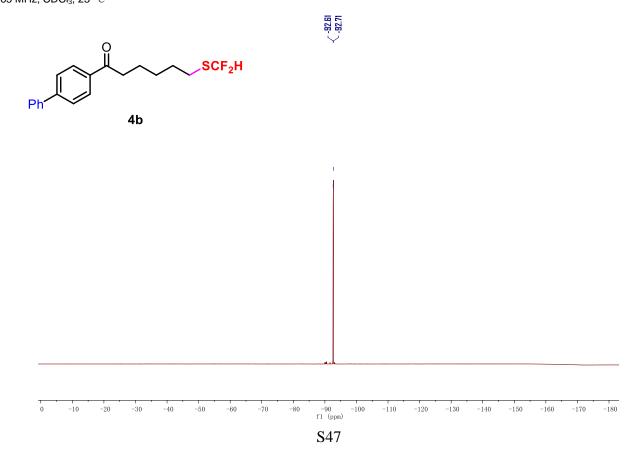
¹³C NMR spectrum of 6-((difluoromethyl)thio)-1-(4-phenoxyphenyl)hexan-1-one (4a)


151 MHz, CDCl₃, 23 ℃

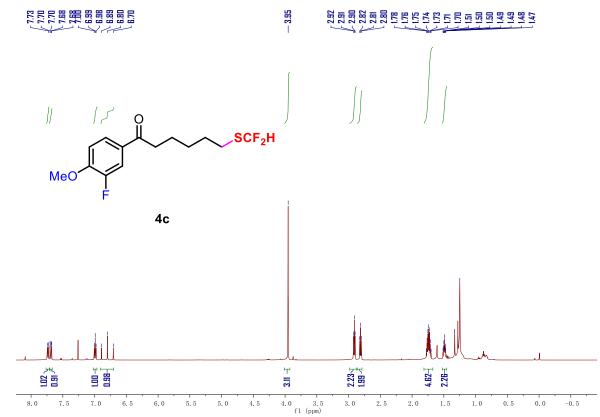
 $^{19}\mathsf{F}$ NMR spectrum of 6-((difluoromethyl)thio)-1-(4-phenoxyphenyl)hexan-1-one (**4a**) 565 MHz, CDCI₃, 23 $^\circ\!\!\!C$

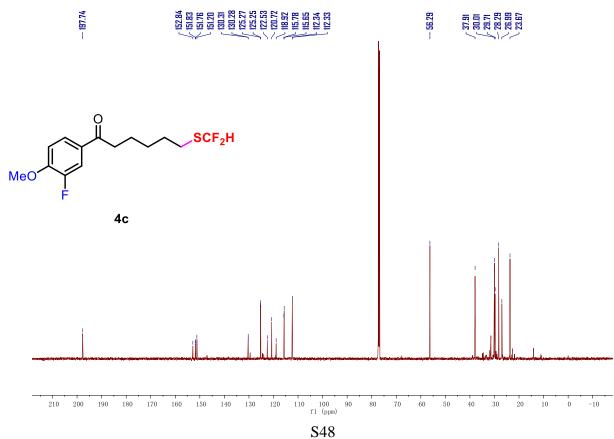


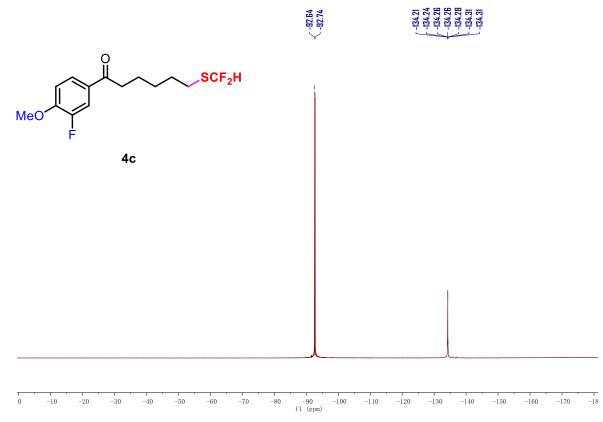
¹H NMR spectrum of 1-([1,1'-biphenyl]-4-yl)-6-((difluoromethyl)thio)hexan-1-one (**4b**) 600 MHz, CDCl₃, 23 °C



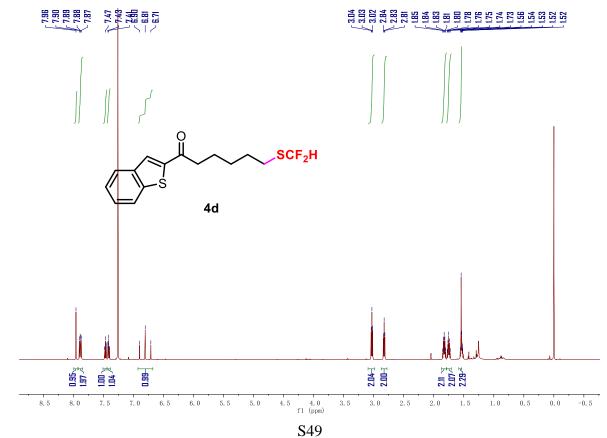
S46


¹³C NMR spectrum of 1-([1,1'-biphenyl]-4-yl)-6-((difluoromethyl)thio)hexan-1-one (**4b**)

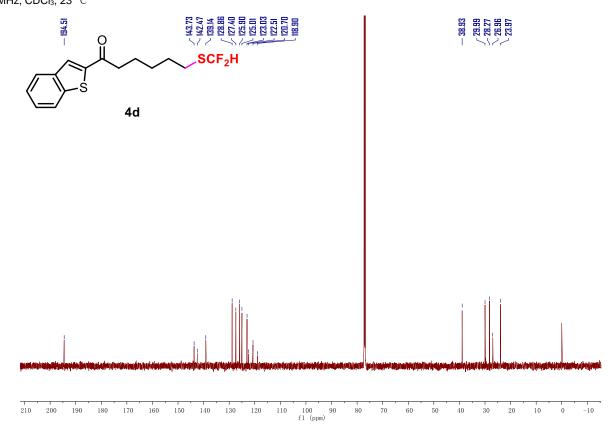

 $^{19}\mathsf{F}$ NMR spectrum of 1-([1,1'-biphenyl]-4-yl)-6-((difluoromethyl)thio)hexan-1-one (**4b**) 565 MHz, CDCl₃, 23 $^\circ\!\!\!\!\!^\circ\!\!\!\!^\circ$


¹H NMR spectrum of 6-((difluoromethyl)thio)-1-(3-fluoro-4-methoxyphenyl)hexan-1-one (**4c**) 600 MHz, CDCl₃, 23 °C

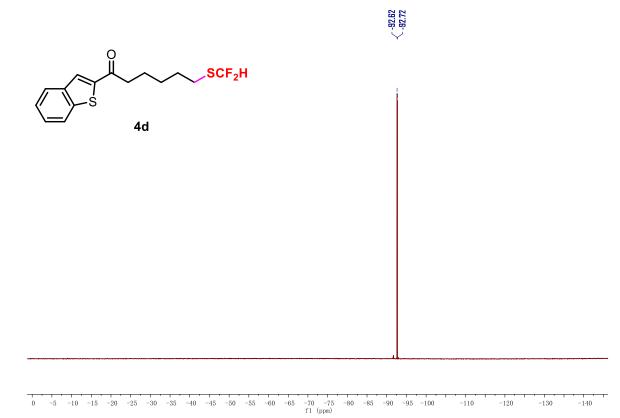
 ^{13}C NMR spectrum of 6-((difluoromethyl)thio)-1-(3-fluoro-4-methoxyphenyl)hexan-1-one (**4c**) 151 MHz, CDCI_3, 23 $^\circ \text{C}$

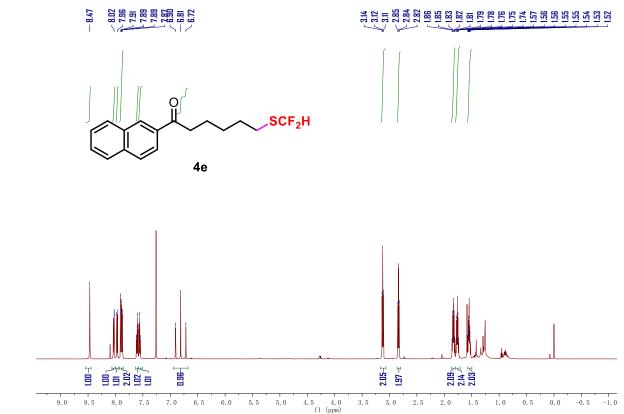


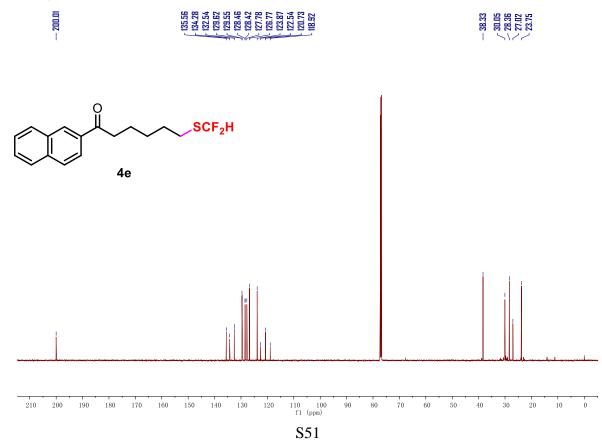
¹⁹F NMR spectrum of 6-((difluoromethyl)thio)-1-(3-fluoro-4-methoxyphenyl)hexan-1-one (**4c**) 565 MHz, CDCl₃, 23 ℃

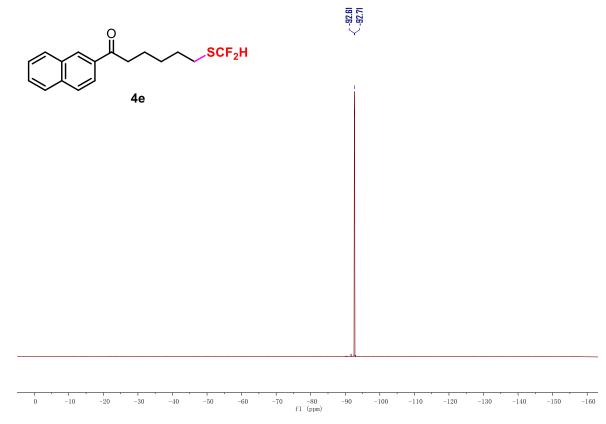


¹H NMR spectrum of 1-(benzo[b]thiophen-2-yl)-6-((difluoromethyl)thio)hexan-1-one (4d)

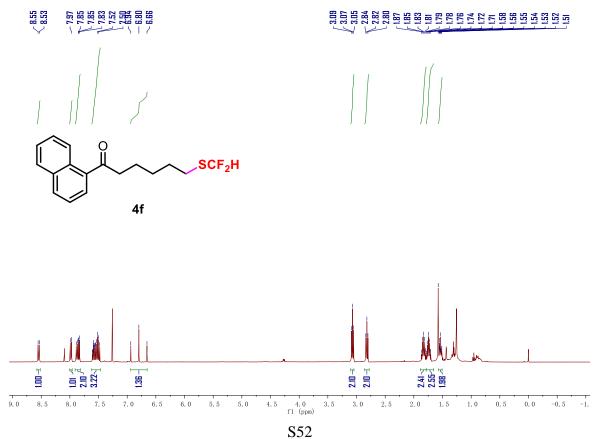

600 MHz, CDCl₃, 23 °C


 ^{13}C NMR spectrum of 1-(benzo[b]thiophen-2-yl)-6-((difluoromethyl)thio)hexan-1-one (4d) 151 MHz, CDCl₃, 23 $^{\circ}\text{C}$

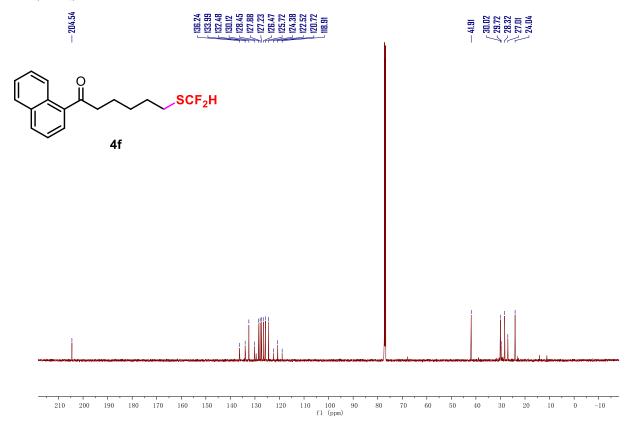

 $^{19}\mathsf{F}$ NMR spectrum of 1-(benzo[b]thiophen-2-yl)-6-((difluoromethyl)thio)hexan-1-one (**4d**) 565 MHz, CDCl₃, 23 $^\circ\!\!\!C$


¹H NMR spectrum of 6-((difluoromethyl)thio)-1-(naphthalen-2-yl)hexan-1-one (**4e**) 600 MHz, CDCl₃, 23 $^{\circ}$ C

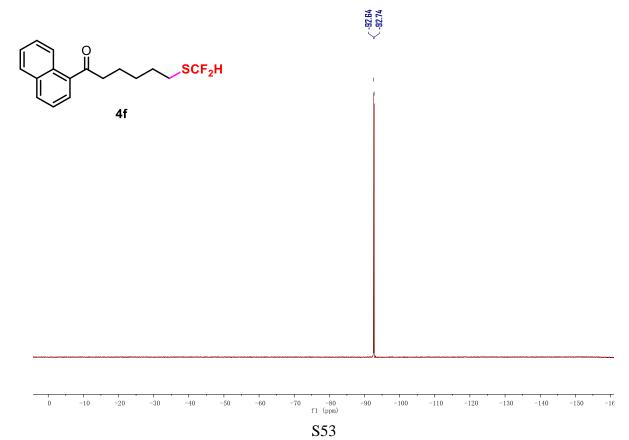
¹³C NMR spectrum of 6-((difluoromethyl)thio)-1-(naphthalen-2-yl)hexan-1-one (**4e**) 151 MHz, CDCl₃, 23 °C



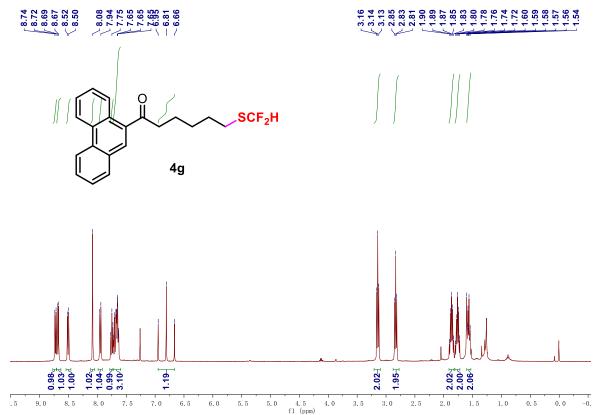
 $^{19}\mathsf{F}$ NMR spectrum of 6-((difluoromethyl)thio)-1-(naphthalen-2-yl)hexan-1-one (4e) 565 MHz, CDCl_3, 23 $^\circ\!\!\!C$


¹H NMR spectrum of 6-((difluoromethyl)thio)-1-(naphthalen-1-yl)hexan-1-one (4f)

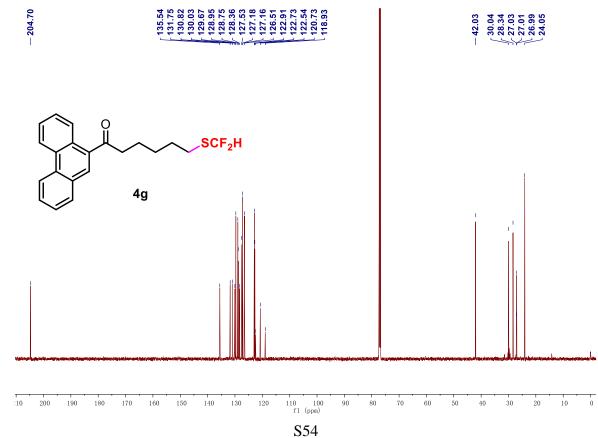
600 MHz, CDCl₃, 23 °C


¹³C NMR spectrum of 6-((difluoromethyl)thio)-1-(naphthalen-1-yl)hexan-1-one (4f)

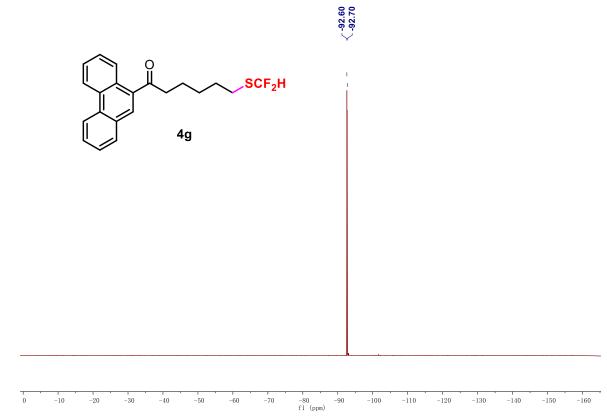
151 MHz, CDCl₃, 23 ℃


¹⁹F NMR spectrum of 6-((difluoromethyl)thio)-1-(naphthalen-1-yl)hexan-1-one (4f)

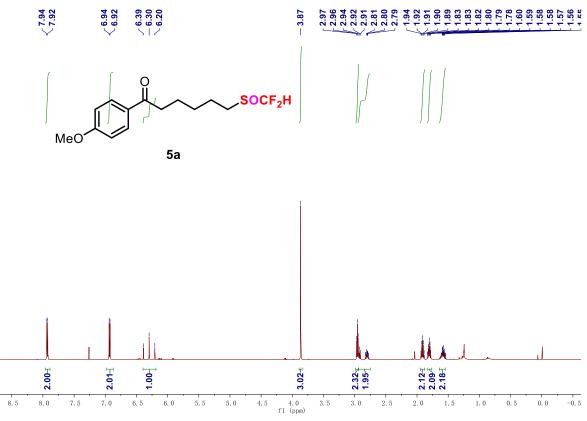
565 MHz, CDCl₃, 23 °C



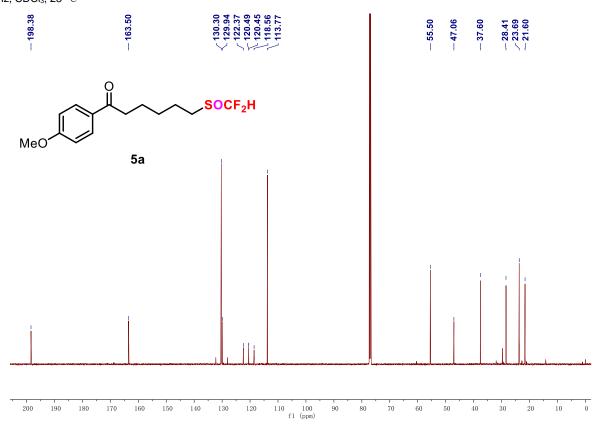
¹H NMR spectrum of 6-((difluoromethyl)thio)-1-(phenanthren-9-yl)hexan-1-one (**4g**)



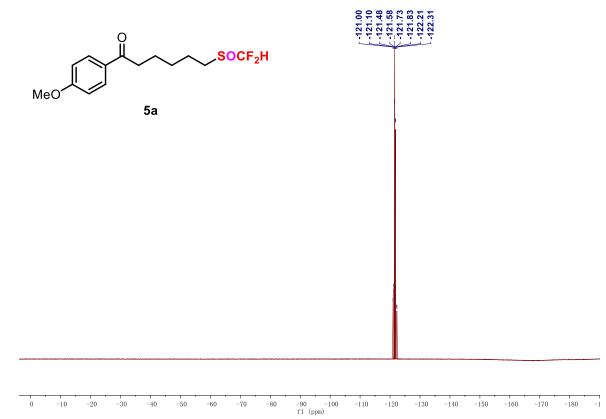
 ^{13}C NMR spectrum of 6-((difluoromethyl)thio)-1-(phenanthren-9-yl)hexan-1-one (4g) 151 MHz, CDCl_3, 23 $\,^\circ\!\!\!C$

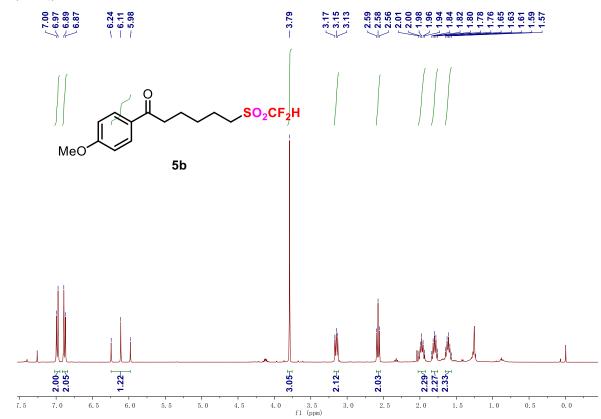


 ^{19}F NMR spectrum of 6-((difluoromethyl)thio)-1-(phenanthren-9-yl)hexan-1-one (4g) 565 MHz, CDCl3, 23 $^{\circ}\text{C}$

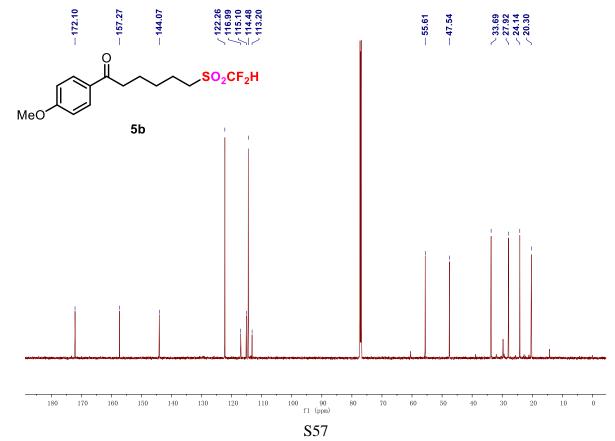


¹H NMR spectrum of 6-((difluoromethyl)sulfinyl)-1-(4-methoxyphenyl)hexan-1-one (5a)

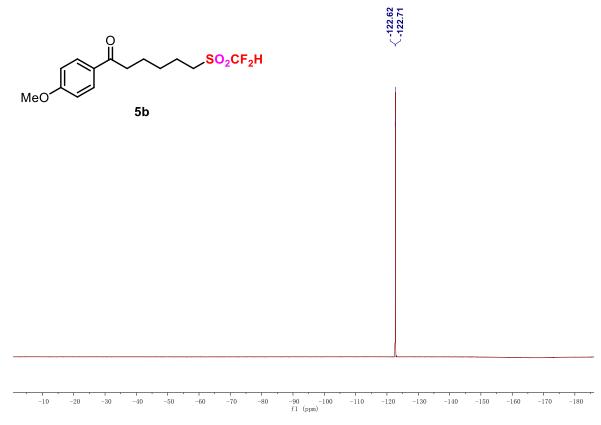

600 MHz, CDCl₃, 23 ℃


 ^{13}C NMR spectrum of 6-((difluoromethyl)sulfinyl)-1-(4-methoxyphenyl)hexan-1-one (5a) 151 MHz, CDCl₃, 23 $^\circ \text{C}$

¹⁹F NMR spectrum of 6-((difluoromethyl)sulfinyl)-1-(4-methoxyphenyl)hexan-1-one (**5a**) 565 MHz, CDCl₃, 23 °C



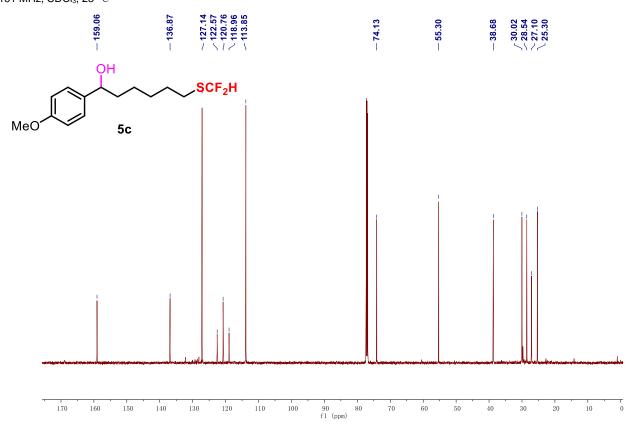
¹H NMR spectrum of 6-((difluoromethyl)sulfonyl)-1-(4-methoxyphenyl)hexan-1-one (**5b**) 600 MHz, CDCl₃, 23 °C

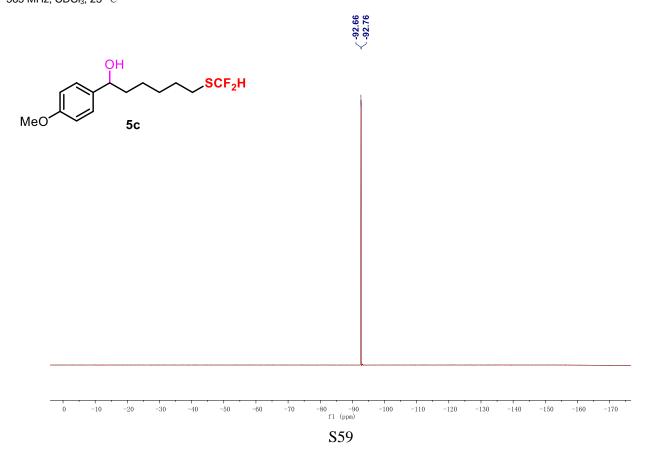


¹³C NMR spectrum of 6-((difluoromethyl)sulfonyl)-1-(4-methoxyphenyl)hexan-1-one (**5b**)

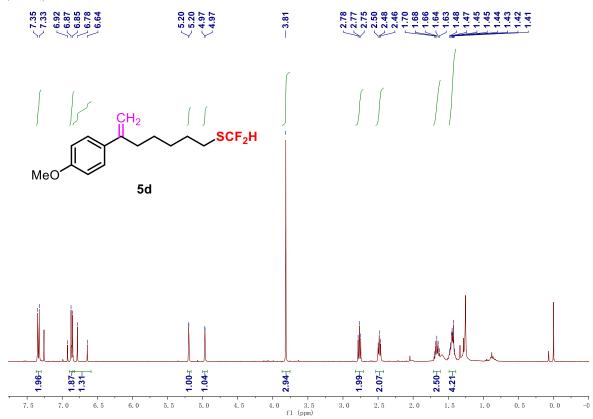
151 MHz, CDCl₃, 23 °C

 $^{19}\mathsf{F}$ NMR spectrum of 6-((difluoromethyl)sulfonyl)-1-(4-methoxyphenyl)hexan-1-one (**5b**) 565 MHz, CDCl₃, 23 $^\circ\!\!\!C$

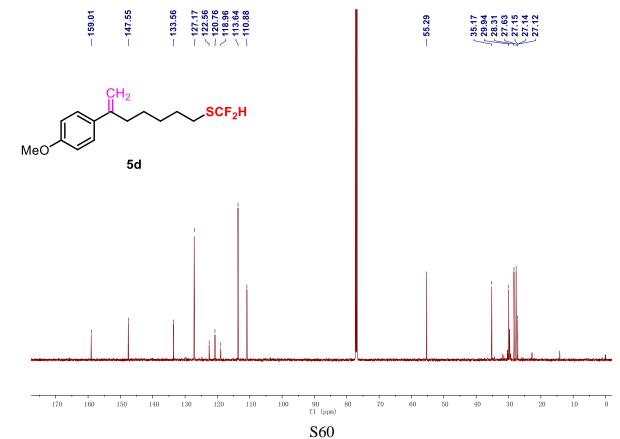



¹H NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1-ol (5c)

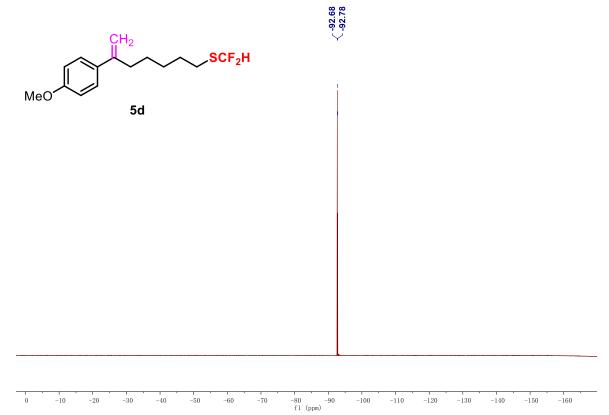
600 MHz, CDCl₃, 23 ℃



 ^{13}C NMR spectrum of 6-((difluoromethyl)thio)-1-(4-methoxyphenyl)hexan-1-ol (5c) 151 MHz, CDCl₃, 23 $^{\circ}\text{C}$



¹H NMR spectrum of (difluoromethyl)(6-(4-methoxyphenyl)hept-6-en-1-yl)sulfane (**5d**) 600 MHz, CDCl₃, 23 °C



 ^{13}C NMR spectrum of (difluoromethyl)(6-(4-methoxyphenyl)hept-6-en-1-yl)sulfane (5d)

151 MHz, CDCl₃, 23 ℃

 $^{19}\mathsf{F}$ NMR spectrum of (difluoromethyl)(6-(4-methoxyphenyl)hept-6-en-1-yl)sulfane (**5d**) 565 MHz, CDCl_3, 23 $^\circ \!\!\!\!\!^\circ \!\!\!\!^\circ$

