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1 Experimental

1.1 PLGA acid value

The number of carboxylic acid end groups in the PLGA was determined by potentiometric 

titration as described elsewhere.1 

1.2 Microsphere size distribution

Using optical micrographs, the size distributions of formulated microsphere batches were 
estimated. The micrographs were processed in ImageJ (National Institute of Health) to yield 
the individual areas of at least 800 particles, assumed to be perfect spheres. The radii of the 
microspheres were then fitted to a log-normal size distribution.

 P(r, M, S) =
1

S r 2π
exp ( -

(ln (r) - M)2

2S2 )      r >  0 (S1)

Here, M and S is the mean and standard deviation, respectively, of the logarithmized radius r. 
The mean, µ, and standard deviation, σ, of the size distribution can then be calculated as 

 µ = exp (M +
S2

2 ) (S2)

and

. σ = exp (2M + S2)(exp (S2) - 1) (S3)

1.3 Infrared spectroscopy

To evaluate the fraction of bound and unbound OCT in the prepared PLGA films, 
deconvolutions of the absorption band at around 1660 cm-1 were performed. Peaks were fitted 
as Gaussian peaks,

 f(x) = a exp ( -
(x - b)2

2c2 ) + y0, (S4)
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where a is the amplitude of the peak, b is the position of the peak center, and c controls the 
peak width. The spectrum of the pure PLGA film was subtracted from the three OCT-loaded 
films. Recorded spectra were fitted with two individual Gaussian peaks centered at 1651 and 
1656 cm-1. The width of each of the two peaks was fitted globally to all the three spectra, 
whereas the amplitudes were fitted individually to each spectrum. A baseline y0 was also 
applied and fitted.

The bound OCT-fraction was calculated by comparing the area of the fitted peak corresponding 
to bound OCT at 1656 cm-1 to the sum of the fitted peaks.

1.4 Release measurements

The final stage of release the release or sorption measurements presented in the main article is 
controlled by the degradation of the polymer matrix, rather than a restricted diffusivity of OCT. 
Since the hydrolysis of PLGA in a small microcapsule occurs via bulk degradation2, an excess 
of water was assumed in the microcapsules. In addition to water, the hydrolysis is catalyzed by 
acid, and thus becomes autocatalyzed by the carboxylate formation during degradation. 
Starting with release and sorption measurements in media containing Brij L23, the degradation 
for these systems was assumed to follow pseudo-first order kinetics.3 During degradation, the 
formed oligomeric PLGA fragments were released and solubilized in the aqueous phase which 
led to a negligible increase in acid groups. This degradation was described as 

fd1(t) = (1 -
α

1 + α)(1 - exp ( - kd1t)), (S5)

where kd1 is the apparent rate constant for the pseudo-first order degradation reaction. 

For release and sorption media without any solubilizing agents, the generated acid groups 
remained inside the microcapsules. This would induce an autocatalytic degradation behavior, 
which has been modeled by Antheunis et al.4 using the rate law

du
dt

= kd2([E]0 - u)([A]0 + u). (S6)

Here, u is the concentration of carboxylic acid groups, [E]0 and [A]0 are the initial 
concentrations of ester bonds and acid, respectively, and kd2 is a second order apparent rate 
constant. The solution to this equation is given by 

 u(t) = [A]0

exp (c1t) - 1

1 + c2exp(c1t)
(S7)

with the coefficients c1 and c2 defined as 

c1 = ([E]0 + [A]0)kd2 (S8)

c2 =
[A]0

[E]0
(S9)

Here, the extent of degradation (amount of generated acid) was assumed to be proportional to 
the fractional release of OCT. Thus, to arrive at the fractional release of OCT, Equation (S6) 
must be scaled according to
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fd2(t) =
α

1 + α
+ (1 -

α
1 + α)u(t)

[E]0
(S10)

Finally, the rate expressions in Equation (S5) or Equation (S10) could be combined with the 
diffusion-controlled release (Equation (6) as described in the main article) to yield an 
expression for the overall observed release,

frelease(D,t) = f0 + pbfb(t) + (1 - pb)fpd(D,t) + fd𝑖(t). (S11)

2 Results

2.1 PLGA acid value

Fig. S1. Acid value of PLGA from titration with aqueous NaOH.

2.2 Microsphere formulation

The size distribution of prepared microspheres with or without OCT is shown in Fig. S2. Since 
the microsphere formulation is preceded by creating a DCM-in-water emulsion, the interfacial 
tension between DCM determines the size of emulsion droplets, and subsequent microspheres. 
The surface activity of OCT likely reduces this interfacial tension efficiently, leading to a 
narrower size distribution shifted towards smaller radii for OCT-loaded microspheres 
compared to microspheres without any active (Fig. S2).
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Fig. S2. Size distributions for the PLGA microspheres loaded with 5 % OCT, and empty microspheres without 
OCT.

Table S1. Fitted size distribution parameters with 95 % confidence intervals for the OCT-loaded and empty 
microspheres.

µ (µm) σ (µm)
OCT-loaded 0.65 ± 0.02 0.3 ±0.1
Empty 1.50 ± 0.06 0.72 ± 0.3

Fig. S3. Encapsulated amount of OCT as a function of the initial loading of OCT in the 
microcapsule during formulation. 

In Fig. S4 the encapsulated fraction of OCT is shown for two kinds of PLGA with either a 
lactic:glycolic-ratio of 70:30 (Polysciences) or 50:50 (Evonik) and with either free carboxylic 
acid (A) or ester capped end groups. As can be seen, the encapsulation yield is rather 
independent on the polymer hydrophilicity (lactic:glycolic ratio), but to a great extent 
dependent on whether there are free acid end groups available or not to bind OCT. 
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Fig. S4. Encapsulated OCT fraction at a loading of 5% in three different grades of PLGA with a lactic:glycolic 
ratio of either 70:30 or 50:50, and with either free carboxylic acid (A) or ester capped (E) end groups.
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2.3 Infrared spectroscopy

Fig. S5. Deconvolutions of the absorption band around 1660 cm-1 for PLGA films containing a) 2%, b) 5%, and 
c) 10 % OCT. In the figure, recorded spectra (—), fitted Gaussian peaks (—) and the sum of fitted peaks (- - -) 
are shown.

Table S2. Fraction of bound OCT from deconvolution for OCT-loaded films.

OCT loading (%) Bound fraction (%)
2 86
5 80
10 13

2.4 UV-vis spectrophotometry

Fig. S6. UV-vis calibration curve for OCT with a fitted absorption coefficient of ε = 38.8 ± 0.4 mM-1cm-1.
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2.5 Release measurements

In addition to the diffusion-controlled release for the first part of the release and sorption 
measurements presented in the main article, the final part of the release was controlled by the 
polymer degradation kinetics with apparent rate constants shown in Fig. S7. As motivated 
previously, either a pseudo-first order rate expression (for measurements in media containing 
Brij L23) or a modified second order rate expression (for measurements in media without 
Brij L23) was used. In all cases, the models were well-fitted to the experimental data as seen 
by the dotted lines in Fig. 3-5 in the main article as well as the individually fitted data in Fig. S8 
and Fig. S9. Starting with the release measurements, a fourfold increase in kd1 and a twofold 
increase in kd2 was observed upon increasing the temperature from 22 °C to 37 °C. For the 
corresponding sorption measurements, the trends were identical with increasing rate constants 
at increasing temperatures, however, there was a slight difference in their absolute values. 

The origin of this difference between release and sorption remains unclear, but it might be 
linked to a difference in spatial distribution of OCT within the microcapsules. For release 
measurements, OCT was initially uniformly distributed in the microcapsules. In the case of 
sorption, however, it is possible that OCT only had sufficient time to reach the outermost parts 
of the microcapsule by diffusion before being released again by degradation. In this outermost 
region, it is possible that OCT was more sensitive to the PLGA degradation and consequently 
was released at a faster rate (resulting in an apparent increase of the degradation rate constants). 

Fig. S7. Fitted a1) first order and a2) second order rate constants from release measurements. b) Corresponding 
values for the sorption measurements. Values are presented with a 95% confidence interval for the fitted 
parameters. The legend is valid for all subfigures. 
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Fig. S8. Release of OCT from PLGA microspheres in TRIS-buffered release media at pH 7.4 with 0% (—), 0.5% 
(—), and 6% (—) Brij L23. Measurements were performed at a) 22 °C and c) 37 °C and are shown both on a 
logarithmic time scale, a) and c), and a linear time scale, b) and d). Experimental data is shown along with 
individually fitted diffusion models to each data set. 
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Fig. S9. Sorption of OCT from TRIS-buffered aqueous phases containing 0% (—), 0.5% (—), and 6% (—) Brij 
L23 at pH 7.4 into empty PLGA microspheres at a) 22 °C and b) 37 °C. The data is shown both on a logarithmic 
time scale, a) and c), and a linear time scale, c) and d). Experimental data is shown along with individually fitted 
diffusion models to each data set.

Table S3. Individually fitted diffusion (Di) and partition (Ki) coefficients and release burst fractions for release 
and sorption studies in aqueous media with different concentrations of solubilizing Brij L23 at 22 °C and 37 °C 
along with kI calculated from fitted Drelease and Dsorption. Values are presented with a 95% confidence interval for 
the fitted parameters.

22 °C
Brij L23 
fraction (%)

Burst 
fraction

Drelease·1020

(m2/s)
Krelease·10-3 Dsorption·1019

(m2/s)
Ksorption·10-3 kI

0 - - - 5.9±2.8 0.3±0.5 -
0.5 0.14±0.18 1.3±7.9 3.4±3.2 1.3±0.6 0.1±1.3 0.1
6.0 0.14±0.01 7.5±5.8 1.8±0.4 0.2±0.2 12.1±4.0 0.28

37 °C
Brij L23 
fraction (%)

Burst 
fraction

Drelease·1020

(m2/s)
Krelease·10-3 Dsorption·1019

(m2/s)
Ksorption·10-3 kI

0 0±0.06 14.8±38.8 5.4±0.7 7.6±4.5 1.6 ±0.6 0.19
0.5 0.19±0.08 1.0±2.8 2.1±1.2 9.0±10.0 2.4±1.0 0.01
6.0 0.20±0.06 5.2±8.7 1.8±0.4 1.9±2.2 6.9±2.7 0.27

As seen by the fit in Fig. S8 and as discussed in the main text, there is a lack of data points to 
confidently fit these data series individually which is evidenced by large uncertainties in the 
fitted parameters. Because of this, there are also significant uncertainties and deviations in the 
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calculated kI-values based on individual fits of D. Additionally, it should be emphasized that 
this is the best fit with all parameters free. 

2.5.1 The PLGA-OCT interaction

The interaction between PLGA and OCT can be considered as a reversible binding event,
Afree + S⇌Abound

where the substance A either is free or bound to specific adsorption sites S. The equilibrium 
constant for this reversible reaction can then be expressed as

keq
I =

[Abound]

Γmax[Afree]
(S12)

with Γmax being the number of free binding sites in the material. By defining [Abound]=  =c and Γ

c0 as the total concentration of A,  can then be expressed askeq
I

keq
I =

c
(Γmax - c)(c0 - c)

. (S13)

By adding (c0-c)/(c0-c)=1 to both sides, we get

keq
I (Γmax - c) + 1 =

c
c0 - c

+
c0 - c

c0 - c
=

c0

c0 - c
. (S14)

It can clearly be seen that the right-hand side of the equation is the inverse of the free fraction 
of A, defined as kI in the article. Hence, we get

k𝐼 =
c0 - c

c0
=

1

keq
I (Γ𝑚𝑎𝑥 - c) + 1

(S15)

This indicates that kI is concentration-dependent since c depends on the initial starting 
conditions c0 according to Equation (S13). A closer inspection of this relation shows that the 
strong concentration dependence commences as c0 surpasses Γmax, shown in Fig. S9. 

Fig. S10. The free fraction kI as a function of the total amount c0 in the capsule. The concentration is expressed in 

units of Γmax. In this example, the product  is arbitrarily set to 100.keq
I Γmax

On the other hand, as c0 falls below Γmax, kI drops quickly to the value given by the reduced 
equation 
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k𝐼 =
c0 - c

c0
=

1

keq
I Γmax + 1

. (S16)

We must now recognize that as the encapsulation of OCT as presented in the article is limited 
by Γmax, c0 will always be lower than Γmax. In addition, during the course of the release event, 
kI will approach the asymptotic kI value given by Equation (S16). If we use the data provided 
in the article indicating that a maximum of two thirds of the available sorption sites are 
occupied, the total error cannot exceed a scaling factor of 1.1 in the limit as . Hence, for keq

I →∞

a system - such as the one presented in the article – where the encapsulation is limited by the 
binding event, Equation (S16) provides a very good approximation of the bound fraction during 
the entire release event.
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