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Table S1 Comparison of various drug delivery systems involving different hydrogels with their mechanism of release at different pH.

Sr. 
No.

Hydrogels Polymerization 
technique

pH of 
release

Model Drugs Kinetic 
model/mechanism

Ref.

1. Gum ghatti-co-poly(acrylic 
acid-aniline) (Gg-co-

poly(AA-ANI)

Graft 
copolymerization

9.2 Amoxicillin 
trihydrate

Non-Fickian [1]

2. Gum tragacanth and acrylic 
acid

[Gt-cl-poly(AA)]

graft 
copolymerization

9.2 Pantoprazole sodium Case II diffusion 
mechanism

[2]

3. Gum ghatti-g-poly(acrylic
acid-aniline) [Gg-g-poly(AA-

IPN-ANI)]

Free radical 
polymerization

9.2 Amoxicillin 
trihydrate and 
Paracetamol

Fickian type [3]

4. Gum tragacanth, poly(acrylic 
acid) (PAA), and 

poly(acrylamide) (PAAm),

9.2 Losartan potassium Non-fickian [4]

5. Chitosan graft Acrylamide 
microsphere (CS-g-AAm)

Free radical 
polymerization

6.8 Nitrendipine Quasi-diffusion [5]

6. Chit-g-polymer (NIPAAM-
co-AA) and Chit-g-polymer 

(NIPAAM-co-AN)

Graft 
copolymerization

9.4 Diclofenac sodium non-Fickian 
diffusion

[6]

7. (pNIPAAm–chitosan–PVA) Freezing and 
thawing followed

by gamma 
irradiation at a total 

dose of 20 kGy

9 Metformin HCl - [7]

8. Montmorillonite clay - 7.4 Diclofenac sodium Anomalous 
diffusion or non-
Fickian diffusion

[8]

9. Poly(methyl methacrylate)-
grafted-ghatti

gum (GG-g-PMMA)

Free radical 
polymerization

6.8 Metformin HCl Fickian diffusion 
and/or polymeric 

matrix erosion

[9]
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10. NIPA:AAc Free radical 
polymerization

6.8 Ofloxacin non-Fickian 
transport

[10]

11. GGI-g-PAM-cl-MBA microwave 7.4 5-
Fluorouracil

Non-Fickian 
irregular diffusion

[11]

12. Gum tragacanth–acrylic
Acid (Gt-cl-poly(AA)

surface methodology
approach

9.2 Cetirizine 
dihydrochloride

non-Fickian [12]

13. Poly-n-isopropylacrylamide
(P(NIPA))-based gels 

(PNIPA-co-AM)

- - Prodigiosin Fickian (case I)
(n = 0.45) and non-
Fickian diffusion 

(case II) (n > 0.45)

[13]

14. SA/CMCS-ZnO - 7.4 Diclofenac sodium anomalous-
transport

[14]

15. Gg-cl-poly(NIPAco-
AA)/CoFe2O4

free radical 
polymerization

7.4 Metformin 
hydrochloride

Specific case II 
transport

[15]

16. Gg-cl-poly(NIPA-co-AA)/-o-
MWCNT

Free radical 
polymerization

9.2 Metformin 
hydrochloride and 
Sodium Diclofenac

Fickian [16]

17 Gum
ghatti-cl-poly(AA)/-o-

MWCNT

Free radical 
polymerization

7.4 Sodium Diclofenac Fickian diffusion 
(Case-I diffusional)

[17]

18. gum ghatti-cl-poly
(AA-co-NIPAm)/GO

7.4 Metformin 
hydrochloride and 
Sodium Diclofenac

Fickian [18]
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Table S2. Different types of hydrogel systems with their applications.

Sr No Type of Hydrogels Applications Ref
Oral Drug Delivery [19]
Non-cellulosic biopolymer for drug 
delivery

[20]

Smart hydrogel from psyllium (Plantago 
ovata) for intelligent drug delivery

[21]

Tissue engineering and other biomedical 
applications

[22]

1 pH-stimuli 
Hydrogels

Fabrication and biomedical [23]
In Vitro Photodynamic Therapy of Breast 
Cancer

[24]

Targeted drug delivery and 4D cell culture [25]
Light- thermo-pH-salt coupled stimuli for 
biomedical applications

[26]

Peptide hydrogels as smart materials [27]

2 Photosensitive 
Hydrogels

Cancer therapy [28]
Therapeutic agents for disease treatment 
and tissue engineering

[29]

Soft tissues drug delivery [30]

3 Injectable hydrogel

Drug delivery and tissue engineering 
applications

[31]

Hyperthermia and Drug Delivery [32]4 Magnetism-
Responsive
Hydrogels

Soft tissue injuries [33]

Chemo-/photothermal therapy monitored 
by cell imaging

[34]

Tissue regeneration [35]

5 Thermo-stimuli 
Hydrogel

Smart drug delivery [36]
Rheological and biological evaluation
Sana

[37]6 Shear-sensitive 
hydrogels

Biomedical [38]

Table S3. General characteristic properties of Gum ghatti.

Physical appearance Pale yellow to light brown, free flowing powder

Loss on drying NMT 10

Optical rotation -30 to -40°

Colour of slurry Light brown

Specific gravity 1.02–1.10

Clarity of solution Slightly hazy

pH (25 % solution) 4.0–4.5

Heavy metals 20 ppm
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