Supporting Information

Green Synthesis of Silver Nanoparticles using *Phyllanthus emblica* Extract: Investigation of Antibacterial Activity and Biocompatibility *in vivo*

Md Monir Hossain,^{#a} Amir Hamza,^{#a} Shakil Ahmed Polash,^{a,b} Mehedi Hasan Tushar,^a Masato Takikawa,^c Anuj Bhowmik Piash,^a Chaitali Dekiwadia,^d Tanushree Saha,^{e,f} Shinji Takeoka,^g Satya Ranjan Sarker *^a

^aDepartment of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka - 1342, Bangladesh

^bNanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia

^cDepartment of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan

^{*d}RMIT* Microscopy and Microanalysis Facility, RMIT University, Melbourne 3001, Victoria, Australia</sup>

^eSchool of Engineering, RMIT University, Melbourne 3001, Victoria, Australia

^fDepartment of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur 1700, Bangladesh

^gDepartment of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan

Contributed equally

*Corresponding author:

Email: <u>satya.sarker@bgeju.edu.bd</u>

FIGURE S1 | Observation of nanoparticles stability. Ultraviolet-visible spectra of silver nanoparticles synthesized using *Phyllanthus emblica* flesh extract. High-intensity surface plasmon resonance bands are visible at 431 and 436 nm for newly synthesized bAgNPs (without controlled pH) and bAgNPs@pH (controlled pH), respectively. The high-intensity surface plasmon resonance bands for previously (i.e., 3 years ago) synthesized bAgNPs (without controlled pH) and bAgNPs@pH (controlled pH) are also visible at 430 and 432 nm, respectively. There is no discernible differences in the absorption spectra of nanoparticles synthesized at different times, indicating that both the as-synthesized bAgNPs and bAgNPs@pH are highly stable.

Biogenic AgNPs	Hydrodynamic Size (nm)	PDI	Zeta potential (mV)	
bAgNPs@pH	116.8 ± 72.9 (86.1%)	0 566	-24.4 ± 2.2	
	13.2 ± 4.7 (13.9%)	0.500		
bAgNPs	366.4 ± 148.2 (93.2%)	0.014	04.0 + 0.0	
	94.7 ± 17.2 (6.7%)	0.214	-24.2 ± 0.9	

TABLE S1. Hydrodynamic Size, Polydispersity index (PDI), Zeta potentials of biogenic AgNPs

FIGURE S2 | Energy dispersive X-ray (EDS) spectra of bAgNPs (a), and bAgNPs@pH (b). Peaks at ~3 keV indicate the presence of Ag in the biogenic nanoparticles.

		Zone of inhi	ibition (mm)	MIC ((µg)				
Name of strains	bAgNPs (60 μg)	bAgNPs@ pH (60 µg)	Ethanolic plant extract (60 μg)	AgNO ₃	bAgNPs	bAgNPs @pH	Pathogenicity	
B. subtilis	13±1	14.67±0.25	6.33 ± 0.58	8.0±0.0	0.50	0.50	Nonpathogenic	
S. typhi	15.67±0.30	15.33±0.58	7.0 ± 0	7.0±0.55	0.50	0.50	Pathogenic	
H. Alvei	23.67±0.58	25.67±0.58	10.33 ± 0.5	7.0±0.0	0.25	0.25	Pathogenic	
EPEC	18.33±0.58	20±1	9.33 ± 0.58	7.0±0.0	0.25	0.25	Pathogenic	
E. coli DH5α	13.67±0.58	15±1	6.67 ± 0.58	9.0±0.33	0.50	0.50	Nonpathogenic	
V. cholerae	18.33±0.58	20.33±0.58	7.5 ± 0.58	8.5±0.0	0.25	0.25	Pathogenic	
S. aureus	17±1	22.25±0.75	9.67 ± 0.58	9.0±0.0	0.50	0.125	Pathogenic	

TABLE S2. Antibacterial Activity (i.e., MIC Values and the ZOI) of bAgNPs

FIGURE S3 | (a) CellTox Green assay shows that bAgNPs bring about bacterial [*H. alvei* (i) and EPEC (ii)] cell wall damage. Figure (iii) and (iv) are bright field images of them, respectively. (b)

CellTox Green assay shows that bAgNPs@pH bring about bacterial [*H. alvei* (i) and EPEC (ii)] cell wall damage. Figure (iii) and (iv) are bright field images of them, respectively. Scale bar: 20 µm.

Name of	bAgNPs			bAgNPs@pH			Plant extract
Dacteria	Hours	30 µg	60 µg	Hours	30 µg	60 µg	60 µg
Bacillus 16 Subtilis 20 24	16	12.5 ± 0.58	13 ± 1	16	12.67 ± 0.58	14.67 ± 0.25	6.33 ± 0.58
	20	11.33 ± 0.58	12 ± 1	20	12.25 ± 0.25	14 ± 1	6.67 ± 0.25
	24	10.25 ± 1.25	11 ± 1	24	11 ± 1	12 ± 1	6.33 ± 0.58
E coli	16	12.33 ± 0.58	13.67 ± 0.58	16	13.67 ± 0.58	15 ± 1	6.67 ± 0.58
	20	11.67 ± 0.58	13.33 ± 0.58	20	13.00 ± 0.25	14.33 ± 0.58	6.33 ± 0.58
(DH5α)	24	10.33 ± 0.58	11 ± 1	24	10.67 ± 0.58	11.67 ± 0.58	6.0 ± 0.58
	16	16.67 ± 1.15	18.33 ± 0.58	16	19 ± 1	20.33 ± 0.58	7.5 ± 0.58
V. cholera 20 24	15.67 ± 0.58	15.33 ± 0.58	20	17.33 ± 0.58	18.0 ± 0.58	7.0 ± 0.58	
	13.33 ± 0.58	12.67 ± 0.58	24	15.33 ± 0.58	16.33 ± 0.58	7.0 ± 0.58	
	16	14.75 ± 0.75	17 ± 1	16	21.5 ± 0.5	22.25 ± 0.75	9.67 ± 0.58
S. aureus	20	14 ± 1	15.75 ± 1.25	20	16.5 ± 1.5	17.75 ± 0.25	9.33 ± 0.25
24	8.5 ± 0.5	11.75 ± 0.25	24	10.5 ± 0.5	11.75 ± 0.25	8.67 ± 0.58	
Salmonella 16 20 1924	13.67 ± 0.58	15.67 ± 0.58	16	13.33 ± 0.58	15.33 ± 0.58	7.0 ± 0	
	20	12.33 ± 0.58	14.67 ± 0.58	20	12.33 ± 0.58	14.33 ± 0.58	7.0 ± 0
	24	10.33 ± 0.58	13 ± 1.73	24	10 ± 1	11.67 ± 1.15	6.33 ± 0.58
Hafnia 16 20 alvei 24	16	22 ± 1	23.67 ± 0.58	16	22 ± 1	25.67 ± 0.58	10.33 ± 0.5
	20	21.67 ± 0.58	22.33 ± 0.58	20	21.33 ± 0.58	24 ± 1	10.0 ± 0
	24	18.33 ± 0.58	19.33 ± 0.58	24	18 ± 1	19.67 ± 0.58	8.67 ± 0.58
E. coli (EPEC)	16	17 ± 0.58	18.33 ± 0.58	16	17.67 ± 0.58	20 ± 1	9.33 ± 0.58
	20	16.67 ± 0.58	17.33 ± 0.58	20	16.33 ± 0.58	19.33 ± 0.58	9.0 ± 0.58
	24	14.33 ± 0.58	14.67 ± 0.58	24	14 ± 1	15.67 ± 0.58	8.67 ± 0.58

Table S3: Zone of inhibition (mm) in different doses of nanoparticles and at different time points

FIGURE S4 | Control experiment for hemolysis was performed using Mili Q water (MQ) as positive control, Phosphate buffer saline (PBS) as negative control.

Name of	Povic	lone iodine	Ciprofloxacin		
Bacteria	Hours	100 µg	Hours	5 µg	
Bacillus subtilis	16	12.5 ± 1.0	16	28.5 ± 1.0	
E. coli (DH5α)	16	13.5 ± 1.5	16	29 ± 0.5	
V. cholera	16	14.29 ± 0.5	16	30 ± 1.0	
S. aureus	16	15 ± 0.25	16	31.58 ± 0.25	
Salmonella typhi	16	14.5 ± 1.5	16	30.43 ± 0.75	
Hafnia alvei	16	15 ± 1.0	16	29 ± 1.0	
E. coli (EPEC)	16	12.5 ± 0.5	16	23 ± 0.50	

Table S4: Zone of inhibition of standard drugs used for the antibacterial assays at 16 hours.

Name of tests	Normal reference range of Wistar rat		
ALT (Alanine aminotrasferase)	13-56	U/L	
AST (Aspartate aminotrasferase	34-109	U/L	
γ-GT (Gamma-glutamyl transpeptidase)	0.5-5.3	U/L	
CREAT (Creatinine)	0.2-0.7	mg/dl	

Table S5: The normal reference range of liver and kidney function biomarker ¹.

References

1. Loeb, WF and Quimby, FW. 1999. The Clinical Chemistry of Laboratory Animals, 2nd ed. Philadelphia: Taylor & Francis USA