Biocompatible, Injectable and Self-healable MOF-Based Anti-freezing Eutectogel for Higher Encapsulation and Sustained Release of Anticancer Drug Curcumin

Nildhara Parsana^a, Hiral Ukani^a, Dharmveer Singh Chauhan^a, Omar El Seoud^b, Sanjay Mehra^c, Arvind Kumar^c, Naina Raje^d, Naved Malek^{a,b*}

^aIonic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of

Technology, Surat-395007, Gujarat, India

^bInstitute of Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil

^cSalt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research ^dAnalytical Chemistry Division, B.A.R.C., Mumbai – 400 085, INDIA

DES (1 ml)	MOF % (w/v)	Suspension	SA (w/v)	Gel
	0.2	Evenly distributed particles	_	_
	0.4	Evenly distributed particles	_	_
	0.6	Evenly distributed particles	_	_
	0.8Evenly distributed particlesCG DES,1.0Evenly distributed particles		_	_
CG DES,			1 %	Viscous sol
CF DES			2 %	Loose gel
			3 %	Gel
	1.2	Particles began to settle down	_	_
	Beyond 1.2	Particles settled down	_	_

Figure S1: FT-IR spectra of a) ChCl, Flu and, CF; b) CF, SA, ZIF-8, CF Gel.

Figure S2: Digital photographs of representative eutectogel at different temperature (20°C, - 20°C, and -50°C).

Figure S3: a) Strain sweep measurement (CF Gel); b) Frequency sweep measurement (CF gel); c) Thixotropic behavior (CF gel).

Figure S4: Shear stress-displacement profiles of representative eutectogel on different substrates.

Table S2: Hemolysis (%) level of CG and CF gel at range of increasing concentration. (Place in ESI)

Gel	Concentration (mg/mL)	Hemolysis (%) ± 0.05
	10	0.98
CG Gel	20	1.02
	30	1.80
	40	1.50
	50	1.70
CF Gel	10	0.92

20	1.34
30	1.41
40	1.30
50	1.60

Figure S5: Comparative FTIR spectra of **a**) Cur, cur in water (0hr) and cur in water (24hr), **b**) Cur, cur loaded CG gel (0 day) and cur loaded CG gel (10 days).

Table S3: Comparative encapsulation efficiency and degradation of curcumin in our studied

 eutectogels with other systems reported in the literature.

System	Curcumin encapsulation	Stability	Reference
		(With time)	
CG Gel	45.60 mg/g	30 days	Present
			work
CF Gel	42.34 mg/g	30 days	Present
			work
(TBAC: DA)	5.9 (±0.8) mg/ml	15 days	1
Choline chloride:sorbitol	1.29 mg/ml	NA	2
(1:1)			
Choline chloride:Fructose	3.11 mg/ml	NA	2

(1:1)			
Choline chloride:glucose	2.90 mg/ml	NA	2
(1:1)			
Choline chloride:sucrose	0.27 mg/ml	NA	2
(1:1)			
Choline chloride:maltose	1.17 mg/ml	NA	2
(1:1)			
Choline chloride: glycerol	7.15 mg/ml	NA	2
(1:1)			
CUR-ME-G	14.9 mg/g	NA	3
Car/Alg beads	$10.16 \pm 0.15 \text{ mg/g}$	NA	4
Cur-loaded SA hydrogel	$7.25\pm3.16~mg/g$	NA	5
beads.			
CUR/CS-Alg-g-PF127	5mg/ml	NA	6
Alginate aldehyde–gelatin	72%*	NA	7
Alg-Ccm conjugare	NA	6h	8
CG/Alg nanoparticles	69%*	NA	9
ZIF-8@PCNF composite	82%*	NA	10
hydrogel			
CCM-ZIF-8-GA	90%*	NA	11
CCMZIF 0.008	87.1%*	4.2 time higher	12
		stable then only	
		CCM (4 hour)	
Cur-ZIF8-HA	96.11%*	48 hours	13
ZIF@CCM	82.76%*	NA	14

* No actual loading values are provided in the literature.

Figure S6: Linear fitting of curcumin release data for **a**) CG gel at pH 5.0, **b**) CG gel at pH 7.4, **c**) CF gel at pH 5.0 and, **d**) CF gel at pH 7.4.

Table S4: Kinetic model fitting in curcumin loaded CG and CF Gel at pH 7.4 and pH 5.0.

Kinetic	CG Gel (pH	CG Gel (pH	CF Gel (pH 7.4)	CF Gel (pH 5.0)
model	7.4)	5.0)		
Zero-order	y = 1.2119x +	y = 1.6668x +	y = 1.2441x +	y = 1.6932x +
	9.6207	12.482	9.7414	11.001
	$R^2 = 0.9382$	$R^2 = 0.9432$	$R^2 = 0.9344$	$R^2 = 0.954$
First-order	y = -0.0086x +	y = -0.0171x +	y = -0.0091x +	y = -0.0176x +

	1.9722	2.0061	1.9737	2.0225
	$R^2 = 0.9852$	$R^2 = 0.983$	$R^2 = 0.9755$	$R^2 = 0.9597$
Higuchi	y = 9.0707x -	y = 12.448x -	y = 9.3158x -	y = 12.542x -
	0.9943	1.9965	1.1727	3.2561
	$R^2 = 0.9946$	$R^2 = 0.9954$	$R^2 = 0.9914$	$R^2 = 0.9905$
Hixcon-	y = 0.0259x +	y = 0.0444x +	y = 0.0269x +	y = 0.0454x +
Crowell	0.1229	0.0944	0.1212	0.0549
	$R^2 = 0.9757$	$R^2 = 0.9913$	$R^2 = 0.9697$	$R^2 = 0.9846$
Korsmeyer-	y = 36.057x -	y = 49.418x -	y = 37.064x -	y = 49.581x -
Peppas	3.9235	5.9402	4.2199	6.9811
	$R^2 = 0.9477$	$R^2 = 0.946$	$R^2 = 0.9464$	$R^2 = 0.9334$

Table S5: Antimicrobial activities of DES and their respective gel with and without curcumin.

System	B. subtilis	E. coli	S. aureus	S. typhi
CG system	6.5 ± 0.13	6.9 ± 0.13	6.6 ± 0.11	6.9 ± 0.14
	10.5 ± 0.21	10.5 ± 0.22	12 ± 0.24	12.5 ± 0.23
	24 ± 0.15	23.5 ± 0.15	25.5 ± 0.3	25 ± 0.48
	6.5 ± 0.13	7 ± 0.14	6.5 ± 0.13	6.8 ± 0.12
CF system	12.1 ± 0.24	11.5 ± 0.23	11.5 ± 0.23	11 ± 0.24
	24 ± 0.48	23.1 ± 0.19	22.5 ± 0.35	22 ± 0.45

Figure S7: a) Time dependent DPPH radical scavenging (%) activities of Cur loaded gels (CG gel, CF gel) and; b) DPPH radical scavenging (%) activities of DESs and their respective gel with and without drug.

References

- 1 D. Dhingra, M. Bisht, B. Bhawna and S. Pandey, J. Mol. Liq., 2021, 339, 117037.
- 2 T. Jeliński, M. Przybyłek and P. Cysewski, *Pharm. Res.*, 2019, **36**, 116.
- Y.-H. Li, Y.-S. Wang, J.-S. Zhao, Z.-Y. Li and H.-H. Chen, *Int. J. Biol. Macromol.*, 2021, 182, 1863–1873.
- 4 K. S. Postolović, M. D. Antonijević, B. Ljujić, M. Miletić Kovačević, M. Gazdić Janković and Z. D. Stanić, *Molecules*, 2022, 27, 4045.
- 5 W. Xu, L. Huang, W. Jin, P. Ge, B. R. Shah, D. Zhu and J. Jing, *Int. J. Biol. Macromol.*, 2019, 134, 210–215.
- 6 S. A. Shah, M. Sohail, S. A. Khan and M. Kousar, *Mater. Sci. Eng. C*, 2021, **126**, 112169.
- A. Karim, A. Rehman, J. Feng, A. Noreen, E. Assadpour, M. S. Kharazmi, Z. Lianfu and S. M. Jafari, *Adv. Colloid Interface Sci.*, 2022, 307, 102744.
- 8 S. Dey and K. Sreenivasan, *Carbohydr. Polym.*, 2014, **99**, 499–507.

- 9 P. R. Sarika and N. R. James, *Carbohydr. Polym.*, 2016, **148**, 354–361.
- 10 Y. Liu, Y. Huo, M. Li, C. Qin and H. Liu, *Cellulose*, 2022, **29**, 379–393.
- 11 S. F. Khalilian, M. Tohidi and B. Rastegari, ACS Omega, 2023, 8, 3245–3257.
- 12 S. Jung, S. Chang, N.-E. Kim, S.-O. Choi, Y.-J. Song, Y. Yuan and J. Kim, ACS Appl. Nano Mater., 2022, 5, 13671–13679.
- 13 X. Wang, G. Fan, Q. Guan, L. Zhao, F. Sun, H. Yang, J. Zhao, J. Zhang, H. Wang, W. Zhang and J. Ma, ACS Appl. Nano Mater., 2022, 5, 16094–16107.
- 14 X. Meng, J. Guan, S. Lai, L. Fang and J. Su, *RSC Adv.*, 2022, **12**, 10005–10013.