Multiple Hierarchical Dynamic Interactions Enabled Robust,

Stretchable and Room Temperature Self-Healing

Elastomer

Jianfeng Fan ^a, Xinqin Zhou ^a, Yukun Chen ^{a,b*}

a Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China

b Zhongshan Institute of Modern Industrial Technology, South China University of

Technology, Zhongshan, 528437, China

*Corresponding Author: cyk@scut.edu.cn

1. Supplementary Figures

Fig. S1. GPC chromatograms of PID-0.

Fig. S3. Element mapping images of C, Si, O, N, Al: (a) PID-0; (b) PID-1

Fig. S4. Recyclable stress-strain curves of PID-x: (a) PID-0; (b) PID-1/2; (c) PID-1; (d) PID-2.

Fig. S5. The recyclable stress and strain histogram of PID-x: (a) PID-0; (b) PID-1/2; (c) PID-1; (d) PID-2.

Fig. S6. Stress-strain curves of PID-x self-healing for 3 h, 6 h and 12 h at room temperature: (a) PID-0; (b) PID-1/2; (c) PID-1; (d) PID-2.

2. Supplementary Tables

Sample	PDMS	IPDI	DAP	AlCl ₃ ·6H ₂ O
	[mol]	[mol]	[mol]	[mol]
PID-0	3	4	1	0
PID-1/3	3	4	1	1/3
PID-1/2	3	4	1	1/2
PID-1	3	4	1	1
PID-2	3	4	1	2

Table S1. Compounding formulations of PIDx polysiloxane elastomers

In this work, PDMS components content was calculated according to the following equation, which is up to 82 wt%.

PDMS components content (%) = $\frac{\text{PDMS[g]}}{\text{IPDI } [g] + \text{DAP[g]} + \text{PDMS[g]}}$

Sample	Fracture toughness	Tensile strength	Strain at break
	(MJ/m^3)	(MPa)	(%)
PID0	2.98 ± 0.2	0.45 ± 0.02	897 ± 16
PID-1/3	7.21 ± 0.6	0.75 ± 0.03	1326 ± 22
PID-1/2	11.14 ± 0.5	0.95 ± 0.02	1629 ± 24
PID-1	12.33 ± 0.8	1.04 ± 0.03	1548 ± 21
PID-2	4.67 ± 0.1	1.07 ± 0.02	537 ± 10

Table S2. Mechanical properties of PID-x elastomers