Synthesis and Post-Polymerization Modification of Star-Shaped Poly(ethylene glycol)-*block*-Poly (dehydroalanine) Block Copolymers: A Versatile Template for Designing Multifunctional Polymers

Peter J. Mons,^{1,2,3} Purushottam Poudel, Marius Hingels, Felix H. Schacher,^{1,2,3} *

¹ Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University

Jena, Lessingstraße 8, D-07743 Jena, Germany

² Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany

³ Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany

Email: felix.schacher@uni-jena.de

Figure S1: Number-weighted DLS CONTIN plot of $[PEG_{27}-b-(PDha_{35}-g-AzoAAm_6)_{41}]_4$ using 2mg/mL with deionized water as solvent.

Modifier	Modifier	Eq modifier per PDha	Solvent\ Base	Polymer concentration	DoF [%] ^a	$M_{\rm n}$ [g/mol]	[<i>Ð</i>]
2 of the or lauryl	PEG- LOM	10	3	6.25 mg/mL	7	-	-
HN Y	NiPAAm	30	1	12.5 mg/mL	63	8 600 ^b	1.8 ^b
	DEA	30	1	12.5 mg/mL	92	7 200 ^ь	1.7 ^b
	^a AMPS	30	1	12.5 mg/mL	30	1 * 10 ^{6 c}	3.4°
HO B OH	AAPBA	10	2	10 mg/mL	17	-	-
× → × → × → ×	AMTC	30	1	12.5 mg/mL	170	9 100 °	1.6°
ů <u>G</u>	EOcT	30	3	10 mg/mL	74	16 400 ^b	1.7 ^b
₿0_//	AGE	15	1	12.5 mg/mL	99	9 000 ^b	1.8 ^b
	ВруОМ	30	3	6.25 mg/mL	13	11 700 ^b	1.7 ^b
	AzoAAm	0.2	3	6.25 mg/mL	13	10 000 ^b	1.7 ^b

Table S1: Summary of synthesized $[PEG_{27}-b-(PDha-g-X)_{41}]_4$ graft copolymers and their characterization *via* ¹H-NMR and SEC.

^aDetermined by ¹H-NMR spectroscopy. ^bDetermined SEC (eluent: DMSO\LiBr [99.79/0.21], 4-arm star PEG calibration) ^c Determined SEC (eluent: water and 0.3% TFA/ 0.1 M NaCl [pH < 2], polyvinyl pyridine calibration).

Figure S2A: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with **AGE** as modifier (DMSO) **B:** SEC-traces of post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with **AGE** as modifier (eluent: DMSO\LiCl [99.79/0.21], 4-arm star PEG calibration)).

Figure S3: A: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with AzoAAm as modifier (DMSO) B: SEC-traces of post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with AzoAAm as modifier (eluent: DMSO\LiCl [99.79/0.21], 4-arm star PEG calibration).

Figure S4: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with NiPAAm as modifier (D₂O) B: SEC-traces of post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with NiPAAm as modifier (eluent: DMSO\LiCl [99.79/0.21], 4-arm star PEG calibration) C: Exemplary ¹³C-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with NiPAAm as modifier (D₂O).

Figure S5: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with EOct as modifier (DMSO) B: SEC-traces of post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with EOct as modifier (eluent: DMSO\LiCl [99.79/0.21], 4-arm star PEG calibration).

Figure S6: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with BpyOM as modifier (DMSO) B: SEC-traces of post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with BpyOM as modifier (eluent: DMSO\LiCl [99.79/0.21], 4-arm star PEG calibration).

Figure S7: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with DEA as modifier (D₂O) B: SEC-traces of post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with DEA as modifier (eluent: DMSO\LiCl [99.79/0.21], 4-arm star PEG calibration).

Figure S8: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with AMTC as modifier (DMSO) B: SEC-traces of post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with AMTC as (eluent: water and 0.3% TFA/ 0.1 M NaCl [pH < 2], poly(vinyl pyridine) calibration).

Figure S9: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with AMPS as modifier (D₂O) B: SEC-traces of post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with AMPS as (eluent: water and 0.3% TFA/ 0.1 M NaCl [pH < 2], poly(vinyl pyridine) calibration).

5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 $\delta(\text{ppm})$

Figure S10: A: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of $[PEG_{27}-b-PDha_{41}]_4$ with PEG-LOM as modifier (D₂O)

Figure S11: Exemplary ¹H-NMR spectrum of successful post polymerization reaction of [PEG₂₇-*b*-PDha₄₁]₄ with AAPBA as modifier (DMSO).