Supporting Information

Imidazolium Triflimide-based Bronsted acidic ionic liquid as organocatalyst to trigger the cationic ring-opening polymerization of cyclotrisiloxanes

Winnie Nzahou Ottou,^a Aurélie Boulègue Mondière,^b Hervé Parisot,^b Delphine Blanc,^b Daniel Portinha^{*a} and Etienne Fleury ^{*a}

^{a.} Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères F-69621 Villeurbanne Cedex, France

^{b.} Elkem Silicones, R&D Chemistry, R&I Centre "ATRiON", 9 rue Specia, F-69190 Saint-Fons, France

Content

Additional SEC chromatogramms and ²⁹Si NMR spectra

Screening of 6 commercial ionic liquids as initiators for ROP of D₃

					C compositic (% wt)		
Entry	Ionic liquid (IL)	$[D_3]_0/[IL]_0$	Time	D ₃	$D_4 + D_5 + D_6$	PDMS	M _n (kg.mol ⁻¹) (<i>Ð</i>) ª
S1	[BMIM]HSO ₄	250/1	5h	100	0	0	No polymer ^b
S2	[BMIM]HSO ₄	50/1	5h	96.1	3.9	0	No polymer ^b
S3	[BMIMSO ₃ H]HSO ₄	250/1	5h	100	0	0	No polymer ^b
S4	[BMIMSO ₃ H]HSO ₄	50/1	5h	97.5	2.5	0	No polymer ^b
S5	[BMIM]OTf	250/1	5h	100	0	0	No polymer ^b
S6	[BMIM]OTf	50/1	5h	99.3	0.7	0	No polymer ^b
S7	[BMIMSO ₃ H]OTf	250/1	15min	0.1	13.0	86.9	317 (1.4)
S8	[BMIM]NTf ₂	250/1	5h	100	0	0	No polymer ^b
S9	[BMIM]NTf ₂	50/1	5h	100	0	0	No polymer ^b
S10	[BMIMSO ₃ H]NTf ₂	250/1	5min	0.1	9.2	90.7	271 (1.4)

Table S1. Ring-opening polymerization (ROP) of D₃ initiated by selected ionic liquids in bulk at 90°C.

a) SEC conducted in toluene using polystyrene (PS) for calibration.

b) As confirmed by FTIR analysis

Table S2. Polymerization of D₃ induced by [BMIMSO₃H]OTf as BAIL in bulk at 90°C.

				NMR compositi	M _n (kg.mol ⁻¹)		
Entry	$[D_3]_0/[IL]_0$	Time	D ₃	$D_4 + D_5 + D_6$	PDMS	Theo ^b	SEC (<i>Ð</i>) ^c
S11	250/1	2h	7.0	28.7	71.3	45	288 (2.2)
S12	1,000/1	2h	8.7	22.7	77.3	174	249 (2.4)
S13	2,500/1	2h	9.4	15	85.0	458	277 (2.1)

b) Theoretical molar masse
$$M_{n}^{\text{Theo}} = \frac{[D_{3}]_{0}}{[BAIL]_{0}} * 3 * \text{conv} * 74.1$$
, where $[D_{3}]_{0}$ and $[BAIL]_{0}$ are the initial molar content of D_{3}

and BAIL. conv is the conversion of D3: conv~=~100 - $\ensuremath{\,^{\rm SEC}}\ensuremath{D_3}\xspace$

c) SEC conducted in toluene using polystyrene (PS) for calibration

Table S3. Polymerization of D_3 induced by [BMIMSO₃H]NTf₂ as BAIL in bulk at 90°C.

			NM	R compositio	M _n (kg.mol ⁻¹)		
Entry	$[D_3]_0/[IL]_0$	Time	D ₃	$D_4 + D_5 + D_6$	PDMS	Theo ^b	SEC (<i>Ð)</i> ℃
S14	250/1	10min	0	13	87.0	47	274 (2.3)
S15	1,100/1	10min	0	9.1	90.9	247	257 (2.2)
S16	2,000/1	10min	0	8.0	92.0	405	218 (2.7)
S17	2,800/1	15min	0	8.1	91.9	619	160 (2.3)

a) Determined by 29 Si NMR in CDCl₃ at 298

$$M_n^{\text{Theo}} = \frac{[D_3]_0}{[BAIL]_0} * 3 * \text{conv} * 74.1$$

b) Theoretical molar masse $[BAIL]_0$, where $[D_3]_0$ and $[BAIL]_0$ are the initial molar content of D_3 and BAIL. conv is the conversion of D_3 : $conv = 100 - \%wt^{SEC}D_3$

c) SEC conducted in toluene using polystyrene (PS) for calibration

- ([BMIMSO₃H]NTf₂) catalyzed ROP of D₃
 - Selection of chain regulators
 - Chain regulators = YOH

Figure S1. SEC traces (RI detector) of [BMIMSO₃H]NTf₂-catalyzed polymerization of D₃ in bulk at 90°C using alcohols as chain regulators (YOH) (Table 1, entries 2-3).

Figure S2. SEC traces (RI detector) of [BMIMSO₃H]NTf₂-catalyzed polymerization of D₃ in bulk at 90°C using silanols as chain regulators (YOH) (Table 1, entries 4-5).

Figure S3. SEC traces (RI detector) of [BMIMSO₃H]NTf₂-catalyzed polymerization of D₃ in bulk at 90°C using disiloxanes as chain regulators (Mx) (Table 2, entries 7-8)

Figure S4. ²⁹Si NMR (in CDCl₃) of reaction mixture of [BMIMSO₃H]NTf₂-catalyzed polymerization of D₃ in bulk at 90°C using disiloxanes as chain regulators (Mx) (see legend) (Table 2)

Influence of [D₃]₀/[M₂]₀ initial ratio

Table S4. Polymerization of D_3 at 90°C in bulk using different $[D_3]_0/[M_2]_0$ ratios and $[D_3]_0/[BMIMSO_3H]NTf_2]_0 = 1,400.$

			SEC co	mpositio	onª (%)	nª (%) M _n (kg.mol ⁻¹)		
Entry	Experiment	[D ₃] ₀ /[M ₂] ₀	Time	M ₂ +D ₃	$D_4 + D_5$ + D_6	PDMS	Theo⁵	SEC (<i>Ð</i>)ª
			0	100	0	0	-	-
			5min	10.6	11.0	78.4	-	3.0 (2.2)
			10min	5.3	9.7	85.0	-	3.9 (2.7)
S18	VVR-146	8	15min	3.4	9.2	87.4	-	4.3 (2.7)
			25min	2.1	9.3	88.6	-	4.4 (2.6)
			35min	1.8	9.4	88.8	-	4.3 (2.5)
			45min	1.6	9.5	88.9	-	4.2 (2.4)
			1h	1.4	8.7	89.9	1.9	4.0 (2.3)
			0	100	0	0	-	-
			4min	10.9	13.2	75.9	-	4.3 (2.7)
			8min	3.2	8.1	88.7	-	5.8 (3.1)
S10	MD 100	21	15min	0.5	7.2	92.3	-	6.8 (3.7)
519	WK-180	21	25min	0.4	7.5	92.3	-	6.8 (3.4)
			35min	0.1	7.3	92.4	-	6.5 (3.2)
			45min	0.2	7.9	92.0	-	6.1 (3.1)
			1h	0.2	5.8	94.0	5.0	6.8 (2.7)
			0	100	0	0	-	-
			4min	8.5	11.1	80.4	-	7.1 (3.6)
			8min	0.8	7.7	91.5	-	9.4 (4.0)
	MD 101	48	15min	0.8	6.3	92.9	-	10.5 (4.7)
S20	WK-181		25min	1.8	8.0	90.2	-	10.3 (3.9)
			35min	1.9	6.2	91.9	-	10.2 (3.7)
			45min	1.8	6.7	91.5	-	9.9 (3.6)
			1h	1.1	7.0	91.9	10.8	9.6 (3.4)
			0	100		0	-	-
		83	4min	19.0	10.6	70.4	-	9.0 (3.8)
			8min	1.6	8.9	89.5	-	11.4 (4.5)
621	MD 102		15min	0.4	8.2	91.4	-	12.0 (5.2)
521	VVK-182		25min	0.3	7.1	92.6	-	12.5 (4.8)
			35min	0.6	7.1	92.3	-	11.3 (4.7)
			45min	0.5	6.5	93.0	-	11.4 (4.4)
			1h	0.2	6.3	93.5	19.1	11.5 (4.0)

a) Determined by SEC conducted in toluene using polystyrene (PS) for calibration

b) Theoretical molar masse $M_n^{\text{Theo}} = \frac{[D_3]_0}{[BAIL]_0} * 3 * \text{conv} * 74.1$ and BAIL. conv is the conversion of D_3 : $\text{conv} = 100 - \% \text{wt}^{\text{SEC}} D_3$

Figure S5. Example of SEC traces (RI detector) of $[BMIMSO_3H]NTf_2$ -catalyzed polymerization of D₃ in bulk at 90°C using $[D_3]_0/[M_2]_0/[BAIL]_0 = 21/1/0.01$ (Table S4, entrey 9).

Figure S6. SEC traces (RI) of $[BMIMSO_3H]NTf_2$ -catalyzed polymerization of D₃ in bulk at 90°C with various $[D_3]_0/[M_2]_0$ ratios. (Table 3, entries 9-12).

Polymerization of functionalized cyclosiloxanes D_n^F

Figure S7. ²⁹Si NMR spectra (in CDCl₃) of D_3^{Vi3} and [BMIMSO₃H]NTf₂-catalyzed copolymerization of D_3^{Vi3} in bulk at 90°C using $[D_3^{Vi3}]_0/[M_2]_0/[BAIL]_0 = 21/1/0.01$ (Table 4, entry 13).

Figure S8. ²⁹Si NMR spectra (in CDCl₃) of [BMIMSO₃H]NTf₂-catalyzed copolymerization of D_3^{Vi} in bulk at 90°C using $[D_3^{Vi3}]_0/[M_2]_0/[BAIL]_0 = 21/1/0.01$ (t = 1h) (Table 4, entry 15)

Figure S9. SEC traces (RI detector) of polymers synthesized from $[BMIMSO_3H]NTf_2$ -catalyzed polymerization of D_n^F in bulk at 90°C using M_2 as chain regulator (Table 4, entries 13-14).

Figure S10. SEC-RI traces of polymer obtained after copolymerization of D₃ with D₃Vi (Table 4, entry 16)

Figure S11.²⁹Si NMR (in CDCl₃) of [BMIMSO₃H]NTf₂-catalyzed copolymerization of D_3/D_3^{Vi} (80/20) in bulk at 90°C using $[D_3+D_3^{Vi3}]_0/[M_2]_0/[BAIL]_0 = 20/1/0.01$ (t = 1h) (Table 4, entry 15).

Table S5. Microstructure of copolymer obtained by $[BMIMSO_3H]NTf_2$ -catalyzed copolymerization of D_3/D_3^{Vi} (80/20) in bulk at 90°C using $[D_3+D_3^{Vi3}]_0/[M_2]_0/[BAIL]_0 = 20/1/0.01$ (t = 1h)

	D units							V units				
	Chai	in-ends (%)	(Triads (%)			nds (%)	Triads (%)			
	<u>р</u> -он	MDV	MDD	V <u>D</u> V	DDV	D <u>D</u> D	<u>v</u> -он	MVD	v <u>v</u> v	V <u>V</u> D	DVD	
D ₃ + D ₃ ^{Vi}	0	13.9	72.3	0.7	14.7	78.2	0	13.8	0	0.3	6.1	

Discussion on polymerization mechanismeInfluence of catalyst structure => Polymerization mechanism

				SEC composition ^b (% wt)			M _n (kg.mol⁻¹)		
Entry	Catalyst	[D _n] ₀ /[M ₂] ₀ / catalyst	Time	D ₃	$D_4 + D_5 + D_6$	PDMS	Theoª	SEC (<i>Ð)</i> ⁵	
622		21/1/0.02	15min	100	0	0	No po	olymer ^c	
522		21/1/0.02	4h	100	0	0	No po	olymer ^c	
		21/1/0.03	15min	0.32	36.9	62.7	4.9	4.1 (2.3)	
622			1h	0.13	38.4	61.5	4.9	3.5 (2.8)	
525	C5-3U3H		2h	0.38	38.2	61.4	4.9	4.6 (2.4)	
			4h	0.40	35.9	63.7	4.9	11.9 (1.7)	
		+ 21/1/0.02/0.03	15min	0.28	34.4	65.3	4.9	4.4 (2.3)	
624	[BMIM]NTf ₂ +		1h	0.27	34.0	65.7	4.9	4.8 (2.4)	
524	C5-SO₃H		2h	0.24	34.5	65.2	4.9	4.7 (2.4)	
			4h	0.11	32.7	67.2	4.9	4.7 (2.7)	

Table S6: Polymerization of D_3 using various catalytic systems in bulk at 90°C.

Figure S12. SEC traces (RI detector) of reaction mixture of polymerization of D_3 using various catalytic systems in bulk at 90°C using $[D_3]_0/[M_2]_0/(C_3) = 21/1/0.003$ (Table S6, entries 22-24).