Supporting Information for

Fast thermal-responsive azatriphenylene ionic discotic liquid crystalline polymers with shape memory properties

Xiao-Ping Xiong,^a Qian Yang,^a Ruo-Jun Wang,^a Ling-Yi Zeng,^a Wen-Hao Yu, *^{a,b}

Hong-Mei Chen,^a Hai-Liang Ni,^a Chun Feng,^a Ke-Qing Zhao^a and Ping Hu^{*a}

^aCollege of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan Province, 610068, People's Republic of China.

^b College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.

Corresponding author:

Wenhao Yu* Email: yuwenhao@sicnu.edu.cn

Ping

Hu*

Email:

hp_x@sicnu.edu.cn

Table of Content

Title	Page
Scheme 1. Synthetic route of the azatriphenylene IDLC monomers and polymers.	S2
Instruments and Materials	S2
Synthesis of all ionic monomers and polymers	S3-S6
NMR spectrums of all ionic monomers and polymers	S7-S16
HRMS spectrum of all ionic monomers	S17-S19
GPC results of polymers	S20-S22
Fig. S36. ¹ H NMR spectra of COE-TPN6-BF ₄ and H-PTPN6-BF ₄	S23
Table S1. Molecular characteristics of the ionic monomers and polymers.	S23
Fig. S37. TGA thermograms of all ionic monomers and polymers	S24
Textures of ionic monomers and polymers.	S24- S25
Table S2. Mesophases, transition temperatures and enthalpy changes of monomers and polymers.	S25
Fig. S40. Thermal and thermotropic mesophase diagram of all ionic monomers and polymers.	S25
Table S3. X-Ray data for the mesophases of monomers and polymers	S26
Fig. S41. Schematic drawing of the supramolecular structure for COE- TPN6-X ($X = BF_4^-, PF_6^-, TFSI^-$) and H-PTPN6-TFSI.	S27
Fig. S42. (a) (c) UV/Vis absorption spectra and photoluminescence in dilute solution; (b) (d) photoluminescence in thin-films.	S27
Table S4. Photo-physical properties of all ionic monomers and polymers.	S28
Table S5. Mechanical properties of copolymers.	S28
Fig. S43. Typical impedance spectrum presented in the form of the Nyquist plots for captured C-TPN6-TFSI (10:1) at different temperatures.	S28

Experimental Section

Scheme 1. Synthetic route of the azatriphenylene IDLC monomers and polymers.

Instruments and Materials

¹H NMR (600 MHz) and ¹³C NMR (150 MHz) spectra were recorded on a Bruker 600 MHz spectrometer using CDCl₃ as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts were reported in units of parts per million (ppm) by assigning the TMS resonance in the ¹H spectrum as 0.00 ppm and the CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. All coupling constants (*J* values) were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dd = doublet of doublet, m = multiplet. IR spectra were recorded on a Bruker VERTEX70 spectrometer using KBr discs. High-resolution mass spectra were obtained using a Bruker BioTOF-Q mass spectrometer and/or a Varian 7.0T FTMS mass spectrometer. Mesomorphic textures were observed and recorded using a polarizing optical microscope (POM, Zeiss, AXIO Scope A1), equipped with a hot stage (Mettler, FP80HT) and controller (Linkam Scientific, T95-STD). Phase transition temperatures and enthalpies of compounds were investigated using a differential scanning calorimetry (DSC) TA-discovery calorimeter under a nitrogen atmosphere, with heating and cooling rates of 10 °C/min.

Temperature-variation X-ray diffraction (XRD) experiments were conducted on a Rigaku Smartlab (3) X-ray diffractometer equipped with a TCU 110 temperature control unit, and the sample temperature was controlled within ± 1 K. The X-ray source (Cu K α , $\lambda = 0.154$ nm) was provided by 40 kW ceramic tubes. Ultraviolet-visible (UV-vis) absorption spectra were measured at room temperature on a Perkin Elmer Lambda 950 spectrophotometer. Photoluminescence spectra were recorded on a Horiba

Fluorolog-4 spectrophotometer. Dynamic mechanical analysis (DMA) was performed on a DMA Q850 (TA Instruments) in film tension mode (stress control). Uniaxial tensile tests were conducted at room temperature using an Instron 5567 (Instron Corporation, Norwood, MA, USA). Electrochemical impedance spectroscopy (EIS) experiments were recorded on an Autolab PGSTAT302 voltammetric analyser. The molecular weight and polydispersity were investigated using gel permeation chromatography (GPC) on a Waters Associates GPC system. Degassed THF was used as the eluent at a flow rate of 1.0 mL/min.

All other chemicals were purchased commercially and used as received unless otherwise indicated. Column chromatography was performed on silica gel (200-300 mesh), and all reported yields are isolated yields.

Synthesis of all ionic monomers and polymers

Synthesis of COE-Br

A 50 mL flask equipped with a magnetic stir bar was charged with cyclooct-4-enol (0.5 g, 4.0 mmol), 4-bromobutyric acid (1.0 g, 6.0 mmol), 4-dimethylaminopyridine (DMAP, 96.8 mg, 0.8 mmol), dicyclohexylcarbodiimide (DCC, 3.3 g, 16.0 mmol), and dichloromethane (CH₂Cl₂, 20 mL). The mixture was stirred at room temperature under a nitrogen atmosphere for 18 hours. The resulting precipitate was filtered off, and the filtrate was concentrated under vacuum. The residue was purified by column chromatography on silica gel, eluting with petroleum ether/CH₂Cl₂ (2:1, v/v), to afford a colorless oily liquid **COE-Br** (0.98 g, 89%). ¹H NMR (CDCl₃, TMS, 600 MHz) δ : 5.63 ~ 5.55 (m, 2H, CH=CH), 4.79 ~ 4.76 (m, 1H, CH), 3.40 ~ 3.38 (m, 2H, CH₂), 2.40 ~ 2.37 (m, 2H, CH₂), 2.28 ~ 2.25 (m, 1H, CH₂), 2.12 ~ 2.08 (m, 4H, CH₂), 2.06 ~ 2.02 (m, 1H, CH₂), 1.83 ~ 1.78 (m, 2H, CH₂), 1.66 ~ 1.62 (m, 1H, CH₂), 1.57 ~ 1.50 (m, 3H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ : 170.84, 128.81, 128.55, 74.89, 32.70, 32.64, 31.86, 31.78, 26.82, 24.54, 23.81, 21.26.

Synthesis of COE-TPN6-Br and COE-TPN12-Br

A solution containing a mixture of **COE-Br** (0.4 g, 1.5 mmol), **TPN6** (0.8 g, 1.3 mmol), 2 mL acetonitrile, and 4 mL trichloromethane was stirred at 82 °C for 48 hours. After cooling, the solution was concentrated under vacuum. The residue was purified by column chromatography on silica gel, first eluting with CH₂Cl₂/ethyl acetate (5:1, v/v) to remove starting reactants, and then eluting with a mixture of CH₂Cl₂:ethanol (2:1, v/v) to give a light yellow solid (0.92 g, 80%) as the product **COE-TPN6-Br**. ¹H NMR (CDCl₃, TMS, 400 MHz) δ : 10.98 (s, 1H, ArH), 8.59 (d, *J* = 6.8 Hz, 1H, ArH), 8.43 (d, *J* = 6.8 Hz, 1H, ArH), 8.36 (s, 1H, ArH), 7.56 (s, 1H, ArH), 7.52 (s, 1H, ArH), 7.48 (s, 1H, ArH), 5.61 ~ 5.53 (m, 2H, CH=CH), 5.33 (t, *J* = 7.2 Hz, 2H, NCH₂), 4.71 ~ 4.65 (m, 1H, OCH), 4.55 (t, *J* = 6.4 Hz, 2H,

OCH₂), 4.27 (t, J = 6.4 Hz, 2H, OCH₂), 4.21 (t, J = 6.4 Hz, 2H, OCH₂), 4.16 (t, J = 6.4 Hz, 2H, OCH₂), 2.55 (t, J = 6.8 Hz, 2H, COCH₂), 2.37 ~ 2.30 (m, 2H, CH₂), 2.27 ~ 2.23 (m, 1H, CH₂), 2.11 ~ 2.06 (m, 2H, CH₂), 2.02 ~ 1.91 (m, 9H, CH₂), 1.79 ~ 1.71 (m, 4H, CH₂), 1.67 ~ 1.56 (m, 8H, CH₂), 1.55 ~ 1.49 (m, 2H, CH₂), 1.47 ~ 1.35 (m, 16H, CH₂), 0.97 ~ 0.91(m, 12H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ : 171.89, 153.87, 151.70, 150.95, 149.50, 142.71, 137.24, 135.41, 129.76, 129.52, 129.08, 125.35, 124.57, 120.20, 119.94, 118.17, 106.95, 106.57, 105.55, 104.98, 70.87, 69.53, 69.43, 69.35, 59.22, 33.67, 33.57, 31.92, 31.74, 31.68, 30.78, 29.37, 29.24, 29.20, 27.45, 26.08, 26.06, 25.97, 25.87, 25.82, 25.53, 24.78, 22.70, 22.67, 22.21, 14.15, 14.07, 14.06. FT-IR (KBr, cm⁻¹): 3431, 2932, 2853, 1724, 1607, 1522, 1468, 1425, 1377, 1288, 1178, 1016, 825, 723. HRMS (ESI): *m/z* 824.5894 (calcd [M]⁺ = 824.5824).

COE-TPN12-Br was prepared with a yield of 77% (0.48 g) in a similar manner from **COE-Br** (0.16 g, 0.6 mmol) and **TPN12** (0.5 g, 0.5 mmol). ¹H NMR (CDCl₃, TMS, 400 MHz) δ : 11.00 (s, 1H, ArH), 8.61(d, J = 6.8 Hz, 1H, ArH), 8.41 (d, J = 6.8 Hz, 1H, ArH), 8.37 (s, 1H, ArH), 7.55 (s, 1H, ArH), 7.51 (s, 1H, ArH), 7.46 (s, 1H, ArH), 5.63 ~ 5.51 (m, 2H, CH=CH), 5.34 (t, J = 7.6 Hz, 2H, NCH₂), 4.70 ~ 4.64 (m, 1H, OCH), 4.54 (t, J = 6.0 Hz, 2H, OCH₂), 4.26 (t, J = 6.8 Hz, 2H, OCH₂), 4.20 (t, J = 6.8 Hz, 2H, OCH₂), 4.15 (t, J = 6.8 Hz, 2H, OCH₂), 2.55 (t, J = 6.8 Hz, 2H, COCH₂), 2.37 ~ 2.31 (m, 3H, CH₂), 2.9 ~ 2.20 (m, 2H, CH₂), 2.11 ~ 2.06 (m, 2H, CH₂), 2.03 ~ 1.91 (m, 9H, CH₂), 1.80 ~ 1.70 (m, 4H, CH₂), 1.66 ~ 1.51(m, 10H, CH₂), 1.50 ~ 1.24 (m, 62H, CH₂), 0.89 ~ 0.86 (m, 12H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ : 171.82, 153.82, 151.66, 150.93, 149.48, 142.50, 137.20, 135.42, 129.75, 129.52, 129.01, 125.25, 124.52, 120.12, 119.89, 118.14, 106.85, 106.50, 105.53, 104.97, 70.88, 69.51, 69.37, 69.34, 59.18, 33.66, 33.57, 31.97, 30.76, 29.81, 29.77, 29.74, 29.69, 29.63, 29.43, 29.30, 27.43, 26.44, 26.26, 26.19, 25.53, 24.87, 24.77, 22.72, 22.21, 18.46, 14.13. HRMS (MALDI): *m/z* 1160.9570 (calcd[M]⁺ = 1160.9580).

Synthesis of COE-TPN6-BF4

All of the anion-exchange reactions used in this study were similar. **COE-TPN6-BF**₄ was used as an example. Firstly, **COE-TPN6-Br** (0.3 g, 0.3 mmol) was dissolved in 3 mL of CH₂Cl₂, and NaBF₄ (0.3 g, 3 mmol) was dissolved in 2 mL of deionized water. Then, the two reaction solutions were mixed and stirred at room temperature for 48 hours. After that, the reaction mixture was extracted with CH₂Cl₂ (3 × 25 mL). The organic phase was washed with deionized water several times until the eluent remained clear without the formation of yellow precipitate, as confirmed by the addition of AgNO₃ solution. The organic phases were combined, dried with anhydrous magnesium sulfate, filtered, concentrated under vacuum, and the yellow solid was obtained with a yield of 83.9% (0.23 g). ¹H NMR (CDCl₃, TMS, 400 MHz) δ : 9.77 (s, 1H, ArH), 8.43 (d, *J* = 6.8 Hz, 1H, ArH), 8.30 (d, *J* = 6.8 Hz, 1H, ArH), 7.90 (s, 1H, ArH), 7.53 (s, 1H, ArH), 7.50 (s, 1H, ArH), 7.49 (s, 1H, ArH), 5.66 ~ 5.54 (m, 2H, CH=CH), 4.77 ~ 4.73 (m, 2H, NCH₂), 4.72 ~ 4.70 (m, 1H, OCH), 4.31 (t, J = 6.4 Hz, 2H, OCH₂), 4.28 ~ 4.22 (m, 4H, OCH₂), 4.11 (t, J = 6.4 Hz, 2H, OCH₂), 2.48 (t, J = 6.8 Hz, 2H, COCH₂), 2.33 ~ 2.20 (m, 3H, CH₂), 2.14 ~ 2.09 (m, 2H, CH₂), 2.07 ~ 1.90 (m, 9H, CH₂), 1.84 ~ 1.76 (m, 2H, CH₂), 1.65 ~ 1.54 (m, 10H, CH₂), 1.51 ~ 1.36 (m, 16H, CH₂), 1.29 ~ 1.25 (m, 2H, CH₂), 0.98 ~ 0.86 (m, 12H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ : 171.78, 154.02, 151.82, 150.83, 149.650, 141.18, 137.40, 134.70, 129.79, 129.53, 129.94, 125.31, 124.74, 120.45, 119.47, 118.08, 106.37, 105.55, 105.11, 104.93, 69.52, 69.46, 69.33, 69.25, 60.09, 33.69, 33.56, 31.83, 31.75, 31.73, 31.69, 30.55, 29.71, 29.36, 29.30, 29.22, 27.22, 27.11, 25.86, 25.79, 25.55, 25.03, 24.80, 24.59, 22.67, 22.21, 14.11, 14.08, 14.05. FT-IR (KBr, cm⁻¹): 3435, 2933, 2856, 1717, 1602, 1525, 1472, 1427, 1379, 1285, 1180, 1057, 837, 721. HRMS (ESI): m/z 824.5894 (calcd [M]⁺ = 824.5824).

Synthesis of COE-TPN6-PF₆

Yellow solid, yield: 86%. ¹H NMR (CDCl₃, TMS, 400 MHz) δ : 9.34 (s, 1H, ArH), 8.39 (d, J = 6.8 Hz, 1H, ArH), 8.18 (d, J = 6.8 Hz, 1H, ArH), 7.63 (s, 1H, ArH), 7.48 ~ 7.46 (m, 3H, ArH), 5.63 ~ 5.59 (m, 2H, CH=CH), 4.74~4.73 (m, 1H, OCH), 4.65 (t, J = 8.0 Hz, 2H, NCH₂), 4.27 ~ 4.21 (m, 6H, OCH₂), 4.06 (t, J = 6.8 Hz, 2H, OCH₂), 2.44 (t, J = 6.8 Hz, 2H, COCH₂), 2.29 ~ 2.22 (m, 3H, CH₂), 2.14 ~ 2.09 (m, 2H, CH₂), 2.04 ~ 1.89 (m, 9H, CH₂), 1.83 ~ 1.77(m, 2H, CH₂), 1.67 ~ 1.53 (m, 10H, CH₂), 1.48 ~ 1.35 (m, 16H, CH₂), 1.29 ~ 1.25 (m, 2H, CH₂), 0.98 ~ 0.91 (m, 12H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ : 171.65, 154.10, 151.93, 150.70, 149.76, 140.09, 137.52, 134.53, 129.79, 129.53, 128.75, 125.01, 124.88, 120.65, 118.97, 118.02, 106.15, 105.44, 104.86, 104.48, 69.43, 69.35, 69.33, 69.20, 60.09, 33.69, 33.54, 31.89, 31.80, 31.76, 31.71, 30.46, 29.79, 29.71, 29.34, 29.25, 29.22, 26.94, 25.87, 25.83, 25.76, 25.55, 24.81, 22.67, 22.20, 14.10, 14.07, 14.06. FT-IR (KBr, cm⁻¹): 3439, 2928, 2862, 1726, 1614, 1527, 1470, 1429, 1382, 1279, 1182, 1022, 840, 723. HRMS(ESI): *m/z* 824.5894 (calcd [M]⁺ = 824.5824).

Synthesis of COE-TPN6-TFSI

Yellow solid, yield: 87%. ¹H NMR (CDCl₃, TMS, 400 MHz) δ : 9.75 (s, 1H, ArH), 8.64 (d, J = 6.8 Hz, 1H, ArH), 8.53 (d, J = 6.8 Hz, 1H, ArH), 7.93 (s, 1H, ArH), 7.73 (s, 1H, ArH), 7.66 (s, 1H, ArH), 7.64 (s, 1H, ArH), 5.68 ~ 5.56 (m, 2H, CH=CH), 4.83 (t, J = 7.2 Hz, 2H, NCH₂), 4.79 ~ 4.75 (m, 1H, OCH), 4.32 ~ 4.24 (m, 6H, OCH₂), 4.14 (t, J = 6.4 Hz, 2H, OCH₂), 2.49 (t, J = 6.4 Hz, 2H, COCH₂), 2.39 ~ 2.20 (m, 3H, CH₂), 2.16 ~ 2.11 (m, 2H, CH₂), 2.09 ~ 2.04 (m, 1H, CH₂), 2.02 ~ 1.90 (m, 6H, CH₂), 1.86 ~ 1.80 (m, 2H, CH₂), 1.68 ~ 1.55 (m, 12H, CH₂), 1.51 ~ 1.40 (m, 14H, CH₂), 1.29 ~ 1.25 (m, 4H, CH₂), 0.98 ~ 0.86 (m, 12H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ : 171.85, 154.29, 152.15, 150.91, 149.95,

140.85, 138.04, 135.24, 129.83, 129.52, 129.12, 125.46, 125.29, 120.93, 119.39, 118.81, 118.37, 106.57, 105.76, 105.21, 105.06, 69.69, 69.50, 69.43, 60.30, 33.72, 33.55, 31.72, 31.67, 30.51, 29.30, 29.16, 26.99, 25.88, 25.84, 25.73, 25.58, 24.84, 22.66, 22.19, 14.05. FT-IR (KBr, cm⁻¹): 2939, 2860, 1726, 1604, 1525, 1463, 1431, 1384, 1340, 1276, 1182, 1136, 1053, 829, 736, 648. HRMS (ESI): *m/z* 824.5894 (calcd [M]⁺= 824.5824).

Synthesis of COE-TPN12-TFSI

Yellow solid, yield: 85%. ¹H NMR (CDCl₃, TMS, 400 MHz) δ : 9.67 (s, 1H, ArH), 8.55 (d, J = 6.8 Hz, 1H, ArH), 7.87 (s, 1H, ArH), 7.60 (s, 1H, ArH), 7.56 (s, 1H, ArH), 7.54 (s, 1H, ArH), 5.67 ~ 5.56 (m, 2H, CH=CH), 4.81 ~ 4.74 (m, 3H, CH₂), 4.30 ~ 4.22 (m, 6H, OCH₂), 4.07 (t, J = 6.4 Hz, 2H, OCH₂), 2.47 (t, J = 6.4 Hz, 2H, COCH₂), 2.37 ~ 2.31 (m, 2H, CH₂), 2.30 ~ 2.26 (m, 1H, CH₂), 2.15 ~ 2.10 (m, 2H, CH₂), 2.08 ~ 1.88 (m, 9H, CH₂), 1.85 ~ 1.76 (m, 2H, CH₂), 1.69 ~ 1.51 (m, 12H, CH₂), 1.48 ~ 1.05 (m, 64H, CH₂), 0.90 ~ 0.86 (m, 12H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ : 171.78, 154.20, 152.11, 150.89, 149.91, 140.45, 137.95, 135.09, 129.81, 129.52, 129.00, 125.37, 125.21, 120.94, 120.81, 119.31, 118.80, 106.43, 105.70, 105.03, 104.99, 69.60, 69.45, 69.39, 60.31, 60.20, 33.68, 33.53, 31.97, 30.43, 29.81, 29.76, 29.66, 29.62, 29.59, 29.43, 29.40, 29.26, 29.19, 26.92, 26.27, 26.22, 26.09, 25.56, 24.52, 22.72, 22.19, 14.13. HRMS (MALDI): *m/z* 1160.9570 (calcd [M]⁺ = 1160.9580).

Synthesis of H-PTPN6-TFSI

H-PTPN6-TFSI was used as an example. **COE-TPN6-TFSI** (0.1 g, 0.1 mmol) was added to a solution of Grubb's second-generation catalyst (0.8 mg, 0.96 μ mol) in 2 mL of anhydrous CH₂Cl₂. The reaction solution was then degassed with three freeze–vacuum–thaw cycles. After the reaction mixture was stirred at 45 °C for 18 hours, the solution was precipitated into an excess of methanol. The precipitate was isolated, dried under vacuum for 24 hours, and obtained as a yellow solid in 72% yield.

Synthesis of C-PTPN6-TFSI (10:1)

C-PTPN6-TFSI (10:1) was used as an example. **COE-TPN6-TFSI** (0.1 g, 0.1 mmol) and **COE** (0.1g \cdot 1 mmol) were added into a Schlenk flask. The mixture was frozen in an ice water bath, vacuumed and unfrozen, repeating this process three times to remove air from the reaction system. A solution of Grubb's second-generation catalyst (0.2 mg, 0.24 µmol) in 1 mL anhydrous CH₂Cl₂ was added dropwise to the mixture. Under a nitrogen atmosphere, the mixture was heated to 45°C and stirred at that temperature for 6 hours. After the reaction, the viscous reaction solution was poured onto a Teflon film, and the yellow film was obtained in 96% yield after the organic solvent had evaporated.

S7

Fig. S3. ¹H NMR spectrum of COE-TPN6-Br.

S11

Fig. S11. ¹H NMR spectrum of COE-TPN12-Br.

Fig. S13. ¹H NMR spectrum of **COE-TPN12-TFSI**.

S13

Fig. S22. HRMS m/z (ESI) spectrum of COE-TPN6-BF₄.

Fig. S24. HRMS m/z (ESI) spectrum of COE-TPN6-TFSI.

Fig. S26. HRMS m/z (MALDI) spectrum of COE-TPN12-TFSI.

Fig. S28. GPC spectrum of H-PTPN6-BF₄.

Fig. S29. GPC spectrum of H-PTPN6-PF₆.

Fig. S31. GPC spectrum of H-PTPN12-Br.

Fig. S32. GPC spectrum of H-PTPN12-TFSI.

Fig. S33. GPC spectrum of C-PTPN6-TFSI(10:1).

Fig. S35. GPC spectrum of C-PTPN6-TFSI(40:1).

Fig. S36. ¹H NMR spectra of COE-TPN6-BF₄ and H-PTPN6-BF₄.

Samples	<i>T</i> _d (℃)	Samples	$T_{\mathbf{d}^{a}}(\mathbf{^{\circ}C})$	<i>Mn</i> ^b (kDa)	PDI ^b
COE-TPN6-Br	230	H-PTPN6-Br	239	1.262	1.25
COE-TPN6-BF ₄	279	H-PTPN6-BF4	288	1.840	1.30
COE-TPN6-PF ₆	285	H-PTPN6-PF ₆	290	2.504	1.24
COE-TPN6-TFSI	289	H-PTPN6-TFSI	309	2.424	1.56
COE-TPN12-Br	236	H-PTPN12-Br	253	1.927	1.35
COE-TPN12-TFSI	309	H-PTPN12-TFSI	312	3.153	1.16
		C-PTPN6-Br (10:1) °	231	F	-
		C-PTPN6-TFSI (10:1)	308	14.421	1.10
		C-PTPN12-TFSI (10:1)	306	14.764	1.09
		C-PTPN6-TFSI (40:1)	309	20.131	1.06

Table S1. Molecular characteristics of the ionic monomers and polymers.

^aTemperature of 5% weight loss evaluated by TGA under nitrogen atmosphere at a heating rate of 10°C/min; ^bDetermined by GPC in THF using polystyrene (PS) standards.

^cThis polymer is poorly soluble in THF.

Fig. S37. TGA thermograms of (a) COE-TPN*n*-X (X = Br⁻, BF₄⁻, PF₆⁻, TFSI⁻), (b) H-PTPN*n*-X and (c) C-PTPN*n*-X measured under nitrogen at a rate of 10 °C/min.

Fig. S38. Textures of COE-TPN6-BF₄ at 60 °C (A), COE-TPN6-PF₆ at 88 °C (B), COE-TPN6-TFSI at 145 °C (C), COE-TPN12-TFSI at 140 °C (D), H-PTPN6-TFSI at 150 °C (E), H-PTPN12-TFSI at 145 °C (F), C-PTPN6-TFSI(10:1) at 60 °C (G), C-PTPN12-TFSI (10:1) at 60 °C (H), C-PTPN6-TFSI (40:1) at 22 °C (I). Typical optical textures are obtained after slow cooling from the isotropic liquid into the mesophases.

Fig. S39. Textures of **C-PTPN12-TFSI** (10:1) was heated from 25 ^oC (A) to 80 ^oC (B), then cooled to 40 ^oC(C). **Table S2.** Mesophases, transition temperatures and enthalpy changes of monomers and polymers.

Compounds	2nd heating /°C (/ H, kJ/mol)	1st cooling /°C (⊿H, kJ/mol)
COE-TPN6-Br	g 46 I	I 45 g
COE-TPN12-Br	g 38 I	I 37 g
COE-TPN6-BF ₄	g 16 Col _h 98 (3.1) I	I 81 (-1.8) Col _h 15 g
COE-TPN6-PF ₆	g 20 Col _h 115 (4.5) I	I 108 (-4.0) Col _h 16 g
COE-TPN6-TFSI	Col _h 157 (15.6) I	I 151 (-15.6) Col _h
COE-TPN12-TFSI	Cr 22 (8.5) Col _h 156 (13.6) I	I 151 (-15.4) Col _h 8 (-14.0) Cr
H-PTPN6-Br	g 97 I	I 94 g
H-PTPN12-Br	g 81 I	I 80 g
H-PTPN6-BF4	g 88 I	I 88 g
H-PTPN6-PF ₆	g 98 I	I 95 g
H-PTPN6-TFSI	Col _h 165 I	I 157 Col _h
H-PTPN12-TFSI	Cr -14 Col _h 163 I	I 154 Col _h -17 Cr
C-PTPN6-Br (10:1)	g 31 I	I -24 g
C-PTPN6-TFSI (10:1)	Cr 18 Col _h 82 I	I 67 Col _h -20 Cr
C-PTPN12-TFSI (10:1)	Cr -15 Col _h 94 I	I 67 Col _h -33 Cr
C-PTPN6-TFSI (40:1)	Cr 11 Col _h 91 I	I 68 Col _h -11 Cr

Cr, crystalline phase; Col_h, hexagonal columnar mesophase; I, isotropic phase; g, glass state.

Fig. S40. Thermal and thermotropic mesophase diagram of all ionic monomers and polymers. (1st cooling cycle).

Samples 2 $ heta$ (°) d (Å) hkl	641	Mesophase		
	$2\theta(^{\circ})$ $u(\mathbf{A})$	<i>u</i> (A)	пкі	parameters
COE TRNC DE	4.74	18.61	100	<i>a</i> = 21.49 Å
60℃	8.17	10.81	110	$A = 399.91 \text{ Å}^2$
	20.18	4.40	$h_{ m ch}$	Z = 0.93
Col _h	25.34	3.51	h_{π}	$V = 1403.68 \text{ Å}^3$
	4.85	18.20	100	21.02 ⁸
COE-TPN6 -PF ₆	8.62	10.25	110	a = 21.02 A
80°C	9.51	9.29	200	$A = 382.48 \text{ A}^2$
Col _h	20.74	4.28	$h_{ m ch}$	Z = 0.84
	25.11	3.54	h_{π}	$V = 1353.99 \text{ A}^3$
	4.79	18.43	100	
	8.11	10.89	110	<i>a</i> = 21.28 Å
COE-TPN6-TFSI	9.35	9.45	200	$A = 392.21 \text{ Å}^2$
80°C	13.95	6.34	300	Z = 0.77
Col _h	19.98	4.44	$h_{ m ch}$	$V = 1408.04 \text{ Å}^3$
	24.76	3.59	h_{π}	
COE-TPN12-	4.14	21.31	100	<i>a</i> = 24.61 Å
TFSI	7.08	12.47	110	$A = 524.37 \text{ Å}^2$
30°C	20.87	4.25	$h_{ m ch}$	Z = 0.76
Col _h	25.63	3.47	h_{π}	$V = 1819.56 \text{ Å}^3$
H-PTPN6-TFSI	4.80	18.39	100	<i>a</i> = 21.23 Å
80°C	8.17	10.82	110	$A = 390.51 \text{ Å}^2$
Col _h	21.37	4.15	$h_{ m ch}$	
	24.60	3.61	h_{π}	
H-PTPN12-TFSI	4.03	21.92	100	<i>a</i> = 25.31 Å
80°C	6.81	12.98	110	$A = 554.82 \text{ Å}^2$
Col _h	20.82	4.26	$h_{ m ch}$	
C-PTPN6-TFSI	3.48	25.35	100	a = 29.27 Å
(10:1)	20.57	4.32	$h_{ m ch}$	$A = 742.04 \text{ Å}^2$
40℃	25.30	3.52	h_{π}	
Col _h				
C-PTPN12-TFSI	3.38	26.11	100	<i>a</i> = 30.15 Å
(10:1)	20.72	4.28	$h_{ m ch}$	$A = 787.20 \text{ Å}^2$
60°C				
Col _h				

Table S3. X-Ray data for the mesophases of monomers and polymers

Col_h: hexagonal columnar phase; 2θ and d are the experimentally measured diffraction angles [°] and distances [Å]; $d = \lambda/(2\sin\theta)$; *hkl* are the Miller indices of the reflections, h_{ch} : liquid-like lateral distances between molten chains; h_{π} : average distances between stacked triphenylene units. a =lattice parameter = $\sqrt{(4/3)} \times d100$; lattice area $A = a^2 \sin 60^\circ$; lattice volume $V = a^2 \sin 60^\circ \times h_{\pi}$; number of molecules per slice of column (Z) = ($\sqrt{3} \times N_a \times \rho \times a^2 \times h_{\pi}$)/2M; N_a = Avogadro number; $\rho = 10^3$ kg·m⁻³, density; a = lattice parameter; $h_{\pi} =$ core-core peak; M = molecular weight in kg·m⁻³.

Fig. S41. Schematic drawing of the supramolecular structure for COE-TPN6-X ($X = BF_4^-$, PF_6^- , $TFSI^-$) and H-PTPN6-TFSI.

Fig. S42. (a) (c) UV/Vis absorption spectra and photoluminescence in dilute solution; (b) (d) photoluminescence in thin-films.

Compounds	λ_{abs} (nm) solution	$\lambda_{em}(nm)$ solution	$\lambda_{em}(nm)$ film	Quantum yield (%) ^a
COE-TPN6-Br	294	537	555	15.9
COE-TPN6-BF ₄	294	541	557	33.6
COE-TPN6-PF ₆	295	542	553	29.5
COE-TPN6-TFSI	295	545	560	33.8
COE-TPN12-Br	294	538	541	20.4
COE-TPN12-TFSI	295	544	564	32.1
H-PTPN6-Br	294	536	542	14.6
H-PTPN6-BF4	293	550	561	28.6
H-PTPN6-PF ₆	294	546	554	15.2
H-PTPN6-TFSI	294	544	562	31.4
H-PTPN12-Br	294	538	542	11.1
H-PTPN12-TFSI	294	545	562	21.3
C-PTPN6-Br (10:1)	296	538	530	
C-PTPN6-TFSI (10:1)	296	542	561	17.0
C-PTPN12-TFSI (10:1)	296	542	549	19.0
C-PTPN6-TFSI (40:1)	296	542	554	

Table S4. Photo-physical properties of all ionic monomers and polymers^a

^a Fluorescence spectra of monomers and homopolymers were measured at $\lambda_{exc} = 380$ nm and copolymers at $\lambda_{exc} = 365$ nm. The absolute quantum yield of fluorescence was measured at a solution concentration of 1×10^{-5} mol/L for the monomer and 0.1 mg/mL for the polymer.

Table S5. Mechanical properties of copolymers.

Samples	Fracture stress (Mpa)	Fracture strain (%)	Young's modulus (Mpa)
C-PTPN6-Br (10:1)	9.60	120	0.95
C-PTPN6-TFSI (10:1)	8.94	937	0.65
C-PTPN12-TFSI (10:1)	9.65	806	1.00
C-PTPN6-TFSI (40:1)	15.22	232	2.17

Fig. S43. Typical impedance spectrum presented in the form of the Nyquist plots for captured **C-TPN6-TFSI (10:1)** at different temperatures. The inserted figure is a fitting procedure for the impedance spectrum of the equivalent circuit at 85°C.