Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Thermoresponsive behaviour of poly(N,N-diethylacrylamide) in aqueous two-phase systems

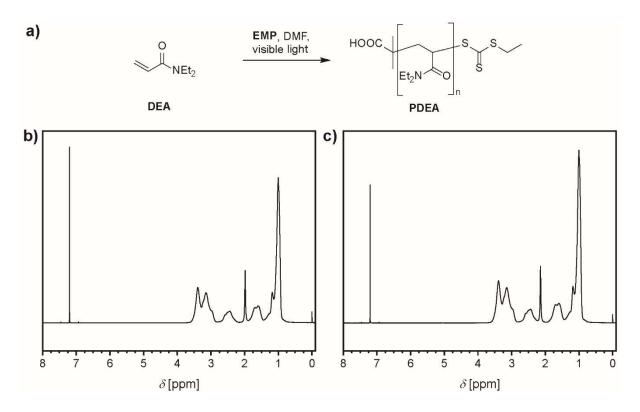
Niamh Bayliss,^a Gokhan Yilmaz,^b Alexander Plucinski,^a C. Remzi Becer^b and Bernhard V. K. J. Schmidt*^a

a School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK

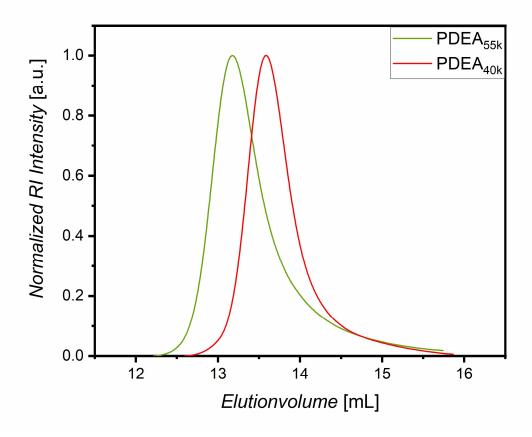
b Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK

Email: bernhard.schmidt@glasgow.ac.uk

Table of Contents


Section	Page
Polymer synthesis	2
Polymer analysis	3
ATPS formation	5
Thermoresponse	11
Analysis of A3PS	14

Polymer Synthesis:

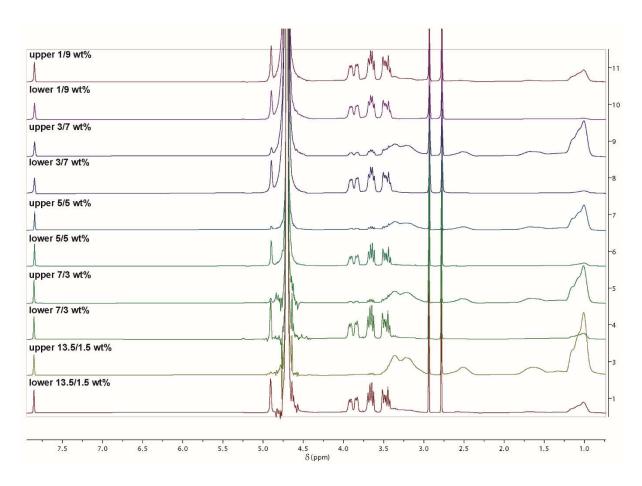

RAFT-polymerisation of PDEA_{40k}

Destabilised DEA (4.0 g, 31.5 mmol, 788 eq.), EMP (9.0 mg, 0.04 mmol, 1.0 eq.), and DMF (4 mL) were mixed in a vial containing a stirring bar and sealed with a septum. The solution was bubbled with nitrogen for 30 min and the polymerisation was initiated using two visible light LEDs 20 cm apart (50 W Bridgelux BXRA-50C5300; λ > 410nm, connected to a self-made circuit and cooling system). The polymerisation was stopped after 24 h. Subsequently, the polymer was dialysed against deionised water (Spectra/Por 3500 Da) for 3 days. Finally, the sample was freeze-dried and a slightly yellow solid (2.17 g, $M_n = 40000 \text{ g} \cdot \text{mol}^{-1}$, D = 1.26) was obtained.

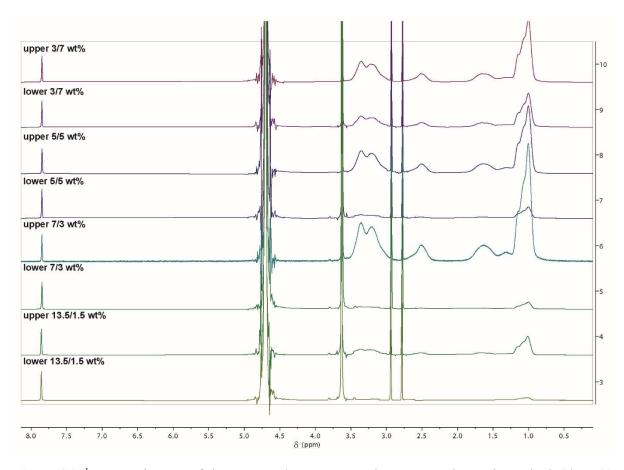
Polymer analysis:

Figure S1. a) Reaction scheme of the photo induced RAFT-polymerisation of *N,N*-diethylacrylamide (DEA), b) ¹H-NMR of PDEA_{55k} in CDCl₃ and c) ¹H-NMR of PDEA_{40k} in CDCl₃.

Figure S2. Results of SEC of PDEA samples in THF against PS standards.


Table S1. Analytical results for PDEA polymers.

Polymer	[DEA]/[EMP]	Conversion ^a	M _{n, theory} (g·mol ⁻¹)	$M_{ m n,SEC}({ m g\cdot mol^{-1}})^{ m b}$	₽b
PDMA _{40k}	788	60%	60100	40000	1.26
PDEA _{55k}	1575	81%	162200	54800	1.30


a) measured via ¹H NMR

b) measured in THF against PS standards

ATPS formation:

Figure S3. 1 H-NMR in D₂O of the PDEA_{55k}/Dex ATPS using DMF as internal standard: 1/9 wt%, 3/7 wt%, 5/5 wt%, 7/3wt% and 13.5/1.5 wt% from top to bottom.

Figure S4. 1 H-NMR in D₂O of the PDEA_{55k}/PEG ATPS using DMF as internal standard: 3/7 wt%, 5/5 wt%, 7/3wt% and 13.5/1.5 wt% from top to bottom.

$$P_X = \frac{c_{XL_1}}{c_{XL_2}}$$

Equation S1. For the calculation of the partition coefficient for a polymer X in the ATPS with P_{X} -partition coefficient, c_{XL1} -concentration of the polymer in the upper phase (L1) and c_{XL2} -concentration of the polymer in the lower phase (L2).

$$F_{X,L_x} = \frac{c_{XL_1}}{c_{XL_1} + c_{XL_2}}$$

Equation S2. For the calculation of mole fractions for a polymer X in the A3PS with $F_{X,Lx}$ -mole fraction, c_{XL1} -concentration of the polymer in the upper phase (L1) and c_{XL2} -concentration of the polymer in the middle phase (L2).

Table S2. Partition coefficients for PDEA_{55k}/Dex systems measured via ¹H NMR.

[PDEA _{55k}]/[Dex] (wt%/wt%)	$P_{ m PDEA,upper}$	$P_{ m PDEA,lower}$	$P_{ m Dex,upper}$	$P_{ m Dex,lower}$
1/9	5.19	0.19	0.74	1.35
1/7	(± 0.294)	(± 0.011)	(± 0.042)	(± 0.076)
2/7	25.25	0.04	0.23	4.39
3/7	(±1.428)	(± 0.002)	(± 0.013)	(± 0.248)
E IE	9.45	0.11	0.30	3.38
5/5	(± 0.535)	(± 0.006)	(± 0.017)	(±0.191)
7/2	4.36	0.23	0.14	7.28
7/3	(± 0.247)	(± 0.013)	(± 0.008)	(± 0.412)
10 7/1 7	2.90	0.35	0.15	6.52
13.5/1.5	(± 0.164)	(± 0.020)	(± 0.009)	(± 0.369)

Table S3. Mole fractions for PDEA $_{55k}$ /Dex systems measured via 1H NMR.

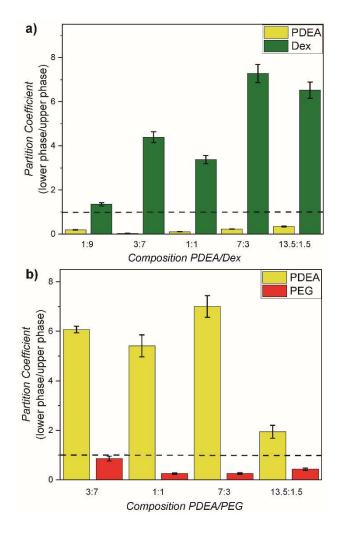
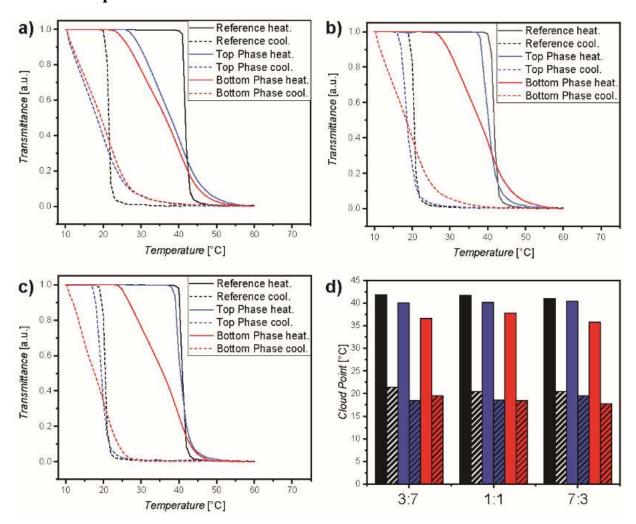

[PDEA _{55k}]/[Dex] (wt%/wt%)	$oldsymbol{F}_{ ext{PDEA}, ext{upper}}$	$F_{ m PDEA,lower}$	$F_{ m Dex,upper}$	$F_{ m Dex,lower}$
1/9	0.84	0.16	0.43	0.57
1/9	(± 0.047)	(± 0.009)	(± 0.024)	(± 0.032)
3/7	0.96	0.04	0.19	0.81
3//	(± 0.054)	(± 0.002)	(± 0.011)	(± 0.046)
EIE	0.90	0.10	0.23	0.77
5/5	(± 0.051)	(± 0.005)	(± 0.013)	(± 0.044)
7/2	0.81	0.19	0.12	0.88
7/3	(± 0.046)	(± 0.011)	(± 0.007)	(± 0.050)
12.54.5	0.74	0.26	0.13	0.87
13.5/1.5	(± 0.042)	(± 0.015)	(± 0.008)	(± 0.049)

Table S4. Partition coefficients for PDEA $_{55k}$ /PEG systems measured via ^1H NMR.

$P_{ m PDEA,upper}$	P _{PDEA,lower}	$P_{\mathrm{PEG,upper}}$	$P_{ m PEG,lower}$
0.16	6.07	1.16	0.86
(± 0.009)	(± 0.343)	(± 0.132)	(± 0.097)
0.18	5.41	3.93	0.25
(± 0.010)	(± 0.306)	(± 0.445)	(± 0.029)
0.14	7.00	3.87	0.26
(± 0.008)	(± 0.396)	(± 0.437)	(± 0.029)
0.51	1.94	2.32	0.43
(± 0.029)	(± 0.110)	(± 0.263)	(± 0.049)
	0.16 (±0.009) 0.18 (±0.010) 0.14 (±0.008)	0.16 6.07 (± 0.009) (± 0.343) 0.18 5.41 (± 0.010) (± 0.306) 0.14 7.00 (± 0.008) (± 0.396) 0.51 1.94	0.16 6.07 1.16 (± 0.009) (± 0.343) (± 0.132) 0.18 5.41 3.93 (± 0.010) (± 0.306) (± 0.445) 0.14 7.00 3.87 (± 0.008) (± 0.396) (± 0.437) 0.51 1.94 2.32


Table S5. Mole fractions for PDEA $_{55k}$ /PEG systems measured via 1H NMR.

DEA _{55k}]/[PEG] (wt%/wt%)	F _{PDEA} ,upper	$F_{ m PDEA,lower}$	$oldsymbol{F}_{ ext{PEG,upper}}$	$oldsymbol{F}_{ ext{PEG,lower}}$
3/7	0.14	0.86	0.54	0.46
3/ /	(± 0.008)	(± 0.049)	(± 0.061)	(± 0.052)
5/5	0.16	0.84	0.80	0.20
3/3	(± 0.009)	(± 0.048)	(± 0.090)	(± 0.023)
7/3	0.12	0.88	0.79	0.21
773	(± 0.007)	(± 0.049)	(± 0.090)	(± 0.023)
13.5/1.5	0.34	0.66	0.70	0.30
13.3/1.3	(± 0.019)	(± 0.037)	(± 0.079)	(± 0.034)
	(±0.019)	(±0.037)	(±0.079)	

Figure S5. Partition coefficients after phase separation (lower phase/upper phase), detected *via* ¹H-NMR in D₂O using DMF as internal standard: a) PDEA_{55k} and Dex; b) PDEA_{55k} and PEG.

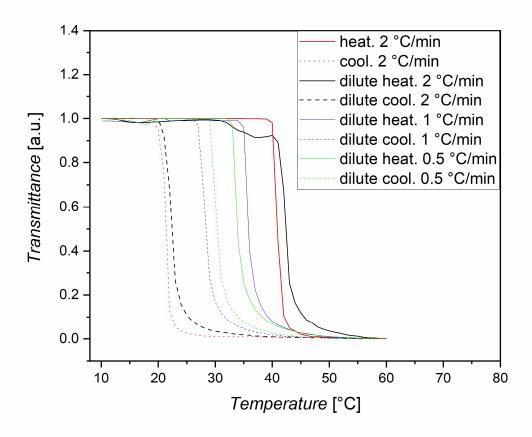

Thermoresponse:

Figure S6. Thermoresponse of PDEA_{55k}/Dex ATPS (heating rate 2 °C min⁻¹): a) turbidimetry results of PDEA_{55k}/Dex 3 wt%/7 wt% (reference PDEA_{55k} in water at 3 wt%), b) turbidimetry results of PDEA_{55k}/Dex 5 wt%/5 wt% (reference PDEA_{55k} in water at 5 wt%), c) turbidimetry results of PDEA_{55k}/Dex 7 wt%/3 wt% (reference PDEA_{55k} in water at 7 wt%) and d) cloud points for various compositions of PDEA_{55k}/Dex ATPS (solid: heating, shaded: cooling; black: reference at the respective concentration in water, blue: top phase, red: bottom phase).

Table S6. Cloud points for the systems PDEA_{40k}/Dex and PDEA_{55k}/Dex (reference measured at the same concentration as in ATPS, heating rate 2 $^{\circ}$ C min⁻¹).

[PDEA _{40k}]/[Dex]	T _{c,reference heat.}	$T_{ m c,reference}$	Tc,upper heat.	Tc,upper cool.	Tc,lower heat.	Tc,upper cool.
(wt%/wt%)	[°C]	cool. [°C]	[°C]	[°C]	[°C]	[°C]
3/7	40.9	21.4	34.8	18.8	36.9	18.1
5/5	41.2	20.5	40.5	23.7	35.5	17.4
7/3	41.5	21.4	38.7	22.7	37.7	20.8
[PDEA _{55k}]/[Dex]	T _{c,reference heat.}	T _{c,reference}	T _{c,upper heat.}	Tc,upper cool.	T _{c,lower heat.}	Tc,upper cool.
(wt%/wt%)	[°C]	cool. [°C]	[°C]	[°C]	[°C]	[°C]
3/7	41.8	21.4	40.0	18.4	36.6	19.5
5/5	41.7	20.5	40.2	18.6	37.8	18.4

Figure S7. Thermoresponse of PDEA_{40k} in water (solid curves heating, dashed curves cooling) at a concentration of 0.5 wt% with heating rate of 2 °C min⁻¹ (black curves), 0.5 wt% with heating rate of 1 °C min⁻¹ (blue curves), 0.5 wt% with heating rate of 0.5 °C min⁻¹ (green curves) and 3 wt% with heating rate of 2 °C min⁻¹ (red curves).

Analysis of A3PS:

$$P_{X,L1-L2} = \frac{c_{XL_1}}{c_{XL_2}} \quad P_{X,L2-L3} = \frac{c_{XL_2}}{c_{XL_3}} \quad P_{X,L1-L3} = \frac{c_{XL1}}{c_{XL_3}}$$

Equation S3. For the calculation of the partition coefficient for a polymer X in the A3PS with $P_{X,Lx-Ly}$ -partition coefficient, c_{XL1} -concentration of the polymer in the upper phase (L1), c_{XL2} -concentration of the polymer in the middle phase (L2) and c_{XL3} -concentration of the polymer in the lower phase (L3).

$$F_{X,L_X} = \frac{c_{XL_1}}{c_{XL_1} + c_{XL_2} + c_{XL_3}}$$

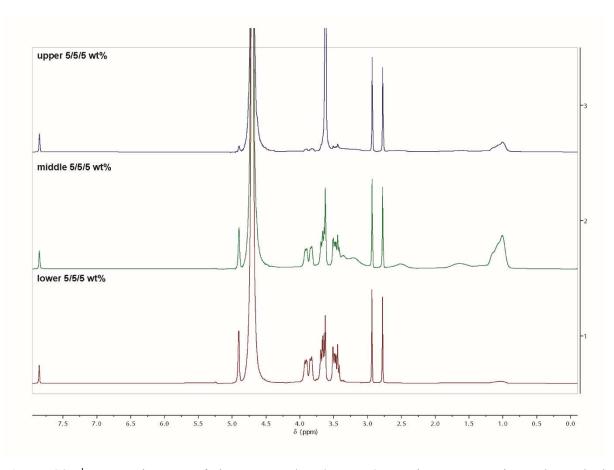

Equation S4. For the calculation of mole fractions for a polymer X in the A3PS with $F_{X,Lx}$ -mole fraction, c_{XL1} -concentration of the polymer in the upper phase (L1), c_{XL2} -concentration of the polymer in the middle phase (L2) and c_{XL3} -concentration of the polymer in the lower phase (L3).

Table S7. Partition coefficients for PDEA_{40k}/Dex/PEG (5/5/5 wt%) system measured via ¹H NMR.

$P_{ m PDEA,upper-middle}$	0.23 (±0.013)
$oldsymbol{P}_{ ext{PDEA,middle-lower}}$	8.07 (±0.457)
$oldsymbol{P}_{ ext{PDEA}, ext{upper-lower}}$	1.87 (±0.106)
$P_{ m Dex,upper-middle}$	0.14 (±0.005)
$oldsymbol{P}_{ ext{Dex,middle-lower}}$	1.04 (±0.042)
$P_{ m Dex,upper-lower}$	0.14 (±0.008)
$oldsymbol{P}_{ ext{PEG,upper-middle}}$	4.97 (±0.281)
$P_{ m PEG, middle-lower}$	0.20 (±0.011)
P _{PEG,upper-lower}	8.14 (±0.461)

Table S8. Mole fractions for PDEA $_{40k}$ /Dex/PEG (5/5/5 wt%) system measured via 1 H NMR.

$F_{ m PDEA,upper}$	$0.17 (\pm 0.010)$
$oldsymbol{F}_{ ext{PDEA,middle}}$	0.74 (±0.042)
$F_{ m PDEA,lower}$	0.09 (±0.005)
F _{Dex,upper}	0.07 (±0.003)
$F_{ m Dex,middle}$	0.48 (±0.027)
$F_{ m Dex,lower}$	0.46 (±0.026)
$oldsymbol{F}_{ ext{PEG,upper}}$	0.76 (±0.043)
$F_{ m PEG, middle}$	0.15 (±0.009)
$F_{ m PEG,lower}$	0.09 (±0.005)

Figure S8. 1 H-NMR in D₂O of the PDEA_{55k}/Dex/PEG A3PS using DMF as internal standard (5/5/5 wt%).

Table S9. Cloud points for the system PDEA_{40k}/Dex/PEG (5/5/5 wt%) (reference measured at the same concentration as in A3PS, heating rate 2 $^{\circ}$ C min⁻¹).

T _{c,ref. heat.}	$T_{ m c,ref.~cool.}$	$T_{ m c,upper\ heat.}$	$T_{ m c,upper\ cool.}$	$T_{ m c,middle\ heat.}$	$T_{ m c,middle\ cool.}$	$T_{ m c,lower\ heat.}$	Tc,upper cool.
[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
41.3	20.5	26.6	13.4	27.9	16.8	45.4	26.1