Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Adjustable comb/bottlebrush fast UV-curable epoxy-based form-stable phase change materials with high encapsulation rate and ultralow enthalpy loss

Yu Fan^a, Yanyun Li^a, Xinyuan Tang^a, Junying Zhang^a, Jue Cheng^a*, Qingsong Lian^b*

^aKey Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of

Chemical Technology, Beijing 100029, China

^bCollege of Materials Science and Engineering, North University of China, Taiyuan 030051, China

* Corresponding author and E-mail address:

chengjue@mail.buct.edu.cn (Jue Cheng),

lianqs@nuc.edu.cn (Qingsong Lian),

Tel. /fax: +86 10 64425439

Table of Contents

Abbreviation list

1. The main chemical structures in this study

2. Characterization of xD18

- 2.1 The chemical equation of xD18
- 2.2 ¹H-NMR spectra
- 2.3 FTIR spectra of the xD18
- 2.4 DSC analysis of the xD18

3. Characterization of the un-50DA18-y and 50DA18-y samples

- 3.1 FTIR specta
- 3.2 DSC analysis

4. Characterization of the 50H-50DA18_{Pa-m}-y

4.1 leakage test

4.2 DSC analysis

5. Characterization of the 30H-xDA18 and 30H-xDA18 $_{Pa-m}$

- 5.1 DSC analysis
- 5.2 leakage test
- 6. Photothermal conversion of the FSPCMs

7. NMR of the 50DF18 sample

8. Thermal characteristics of the other samples

Abbreviations list

PCMs	phase change materials	TES	thermal energy storage
FSPCMs	Form-stable PCMs	SLPCMs	solid-liquid PCMs
PEG	polyethylene glycol	PU	polyurethane
PE	polyethylene	EP	epoxy resin
ODT	1-Octadecanethiol	CNT	carbon nanotubes
HDT	1,6-Hexanedithiol	ODA	octadecylamine
FM	furfuryl mercaptan	BMI	bismaleimide
FT-IR	Fourier transform infrared	TGA	thermogravimetric analysis
XRD	X-ray diffraction	РОМ	optical microscopy
DSC	differential scanning calorimetry	SEM	scanning electron microscope
DMA	dynamic mechanical analyses	UV	ultra-violet
Tm	melting temperature	$\Delta H_{\rm f}$	latent heat during freezing

Tg	glass transition temperature	$\Delta H_{\rm m}$	latent heat during melting
D-A	Diels-Alder	⊿G	free energy of mixing

1. The main chemical structures in this study

Scheme. S1 The structures of DADGEBA, ODT, ODA, 1173, HDT, FM, and BMI

2. Characterization of xD18

2.1 The chemical equation of xD18

2.2 ¹H-NMR spectra

Fig. S1 ¹H-NMR spectra of (a) DADGEBA; and (b) 50D18 samples

¹H-NMR spectra shown in **Fig. S1** further proved the consumption of double bonds, because the chemical shifts of the unsaturated H atoms corresponding to allyl groups in DADGEBA (at 3.37, 5.95, and 5.00 ppm) disappeared and moves to 2.69, 2.49, and 1.84 ppm (attributed to D18).

2.3 FTIR spectra of the xD18

Fig. S2 FTIR spectrum of xD18 samples

2.4 DSC analysis of the xD18

Fig. S3 DSC curves of xD18 and ODT samples

3. Characterization of the un-50DA18-y and 50DA18-y

3.1 FTIR spectra

Fig. S4 FTIR spectrum of (a) un-50DA18-2k sample; and (b) un-50DA18-4k sample

Fig. S5 FTIR spectra of the 50H-50DA18-2k, 50H-50DA18-4k, and 50H-50DA18-8k samples

3.2 DSC analysis

Fig. S6 Crystalline process of ODA, 50D18, un-50DA18-8k systems, and 50H-50DA18-8k systems.

Sample	$T_{\rm m}$ (°C)	$\Delta H_{\rm m} ({\rm Jg}^{-1})$	$\Delta H^{\mathrm{T}}_{\mathrm{m}}(\mathrm{Jg}^{-1})$	$\Delta H_{\rm m} { m loss}$	$T_{\rm f}$ (°C)	$\Delta H_{\rm f}(\rm Jg^{-1})$	$\Delta H^{\mathrm{T}}_{\mathrm{f}}(\mathrm{Jg}^{-1})$	$\Delta H_{\rm f} { m loss}$
un-30DA18	40.5	54.7	121.1	54.8%	26.1	48.2	120.8	60.0%
un-50DA18	46.5	74.6	131.9	43.4%	33.8	61.6	129.7	52.5%
un-70DA18	51.1	86.5	140.4	38.4%	39.5	72.9	140.0	47.9%
30H-30DA18	34.5	35.4	51.9	31.8%	16.3	34.9	45.7	23.6%
30H-50DA18	42.4	45.9	71.1	35.4%	21.6	41.4	58.7	29.5%
30H-70DA18	44.3	52.5	82.6	36.4%	28.1	48.0	69.6	31.0%

Table S1 Thermal characteristics of un-xDA18 and 30H-xDA18

Notes: Tm, Tf, ΔHm, and ΔHf can be obtained directly from DSC curves; ΔHm^T and ΔHf^T of the un-xDA18 samples were calculated by summing the melting or freezing enthalpies of the xDA18, ODT, and ODA parts (respectively multiplying the weight percentage of xDA18, ODT, and ODA with the melting or freezing enthalpies of the xDA18, ODT, and ODA); ΔHm^T and ΔHf^T of the 30H-xDA18 samples were calculated by multiplying the weight percentage of un-xDA18 with the melting or freezing enthalpies of the un-xDA18 samples; ΔHm loss (%) of the 30H-xDA18 samples was the percentage of the difference between ΔHm (ΔHf) and ΔHm^T (ΔHf^T)

Fig. S7 DSC curves of (a) and (b) un-50DA18-2k and 50H-50DA18-2k samples; (c) and (d) un-50DA18-4k and 50H-50DA18-4k samples.

4. Characterization of the 50H-50DA18_{Pa-m}-y

4.1 Leakage test

Table S2 Mass change of all samples after phase change

Sample	Original	After heating	Leakage
_	(gram)	(gram)	problem
50H-50DA18-2k	1.613	1.613	No
50H-50DA18 _{Pa-30} -2k	1.423	1.423	No
50H-50DA18 _{Pa-40} -2k	1.466	1.466	No
50H-50DA18 _{Pa-50} -2k	1.334	1.334	No
50H-50DA18 _{Pa-60} -2k	1.551	1.427	8%
50H-50DA18 _{Pa-70} -2k	1.554	1.290	17%
50H-50DA18-4k	1.731	1.731	No
50H-50DA18 _{Pa-30} -4k	1.501	1.500	No
50H-50DA18 _{Pa-40} -4k	1.332	1.332	No
50H-50DA18 _{Pa-50} -4k	1.621	1.621	No
50H-50DA18 _{Pa-60} -4k	1.550	1.504	3%
50H-50DA18 _{Pa-70} -4k	1.713	1.559	9%
50H-50DA18-8k	1.433	1.433	No
50H-50DA18 _{Pa-30} -8k	1.612	1.612	No
50H-50DA18 _{Pa-40} -8k	1.555	1.555	No
50H-50DA18 _{Pa-50} -8k	1.675	1.675	No
50H-50DA18 _{Pa-60} -8k	1.435	1.435	No
50H-50DA18 _{Pa-70} -8k	1.774	1.703	4%

4.2 DSC analysis

Fig. S8 DSC curve of 50H-50DA18A_{Pa-m}-2k and 50H-50DA18A_{Pa-m}-4k samples.

5. Characterization of the 30H-xDA18 and 30H-xDA18_{Pa-m}

T.LL

5.1 DSC analysis

Fig. S9 The freezing process of DSC curves for ODA and un-xDA18 samples

Fig. S10 The freezing process of DSC curves for 30H-xDA18 samples

CONT DA10

Table S5 Thermal characteristics of 30H-xDA18 _{Pa-m} systems								
Sample	$\Delta H_{\rm m} ({\rm Jg}^{-1})$	$\Delta H^{T}_{m}(Jg^{-1})$	$\Delta H_{\rm m} \log s$	$\Delta H_{\rm f} (\rm Jg^{-1})$	$\Delta H^{\mathrm{T}}_{\mathrm{f}}(\mathrm{Jg}^{-1})$	$\Delta H_{\rm f}$ loss		
30H-30DA18 _{Pa-30}	88.0	91.9	4.2%	86.7	91.0	4.7%		
30H-50DA18 _{Pa-30}	93.7	98.1	4.5%	89.5	94.9	5.7%		
30H-70DA18 _{Pa-30}	98.9	103.9	4.8%	93.5	100.2	6.7%		
30H-30DA18 _{Pa-40}	109.1	110.7	1.4%	107.9	109.7	1.6%		
30H-50DA18 _{Pa-40}	113.9	116.1	1.9%	110.5	113	2.2%		

• ...

Notes: ΔHm^T and ΔHf^T of the 30H-xDA18_{Pa-m} systems were calculated by summing the melting or freezing enthalpies of the 30H-xDA18_{Pa-0} parts (multiplying the weight percentage of 30H-xDA18_{Pa-0} with the melting or freezing enthalpies of the 30H-xDA18_{Pa-0} samples) and the paraffin parts (multiplying the weight percentage of paraffin with the melting or freezing

5.2 Leakage test

Sample	Original	After heating	Leakage problem
	(gram)	(gram)	
30H-30DA18	1.309	1.309	No
30H-30DA18 _{Pa-30}	1.412	1.412	No
30H-30DA18 _{Pa-40}	1.443	1.443.6	No
30H-30DA18 _{Pa-50}	1.533	1.456	5%
30H-50DA18	1.512	1.512	No
30H-50DA18 _{Pa-30}	1.551	1.551	No
30H-50DA18 _{Pa-40}	1.594	1.594	No
30H-30DA18 _{Pa-50}	1.796	1.509	16%
30H-70DA18	1.631	1.631	No
30H-70DA18 _{Pa-30}	1.501	1.501	No
30H-70DA18 _{Pa-30}	1.650	1.551	6%

Table S4 Mass change of all samples after phase change

6. Photothermal conversion of the FSPCMs

The solar-thermal energy storage efficiency (η) of the PCMs under the light irradiation was estimated by the ratio between the stored thermal energy and the received light energy using the following equation:¹

$$\eta = \frac{Q_s}{Q} = \frac{m \times \Delta H}{P \times A \times t}$$

where Qs is the stored thermal energy by the PCMs, Q is the received light energy by the sample, m (~2.6 g) is the mass of the nanocomposite sample, P (1500 W m⁻²) is the intensity of the simulated solar light, A (6.76 cm²) is the surface area of the nanocomposite exposed to light, t (500s) is the duration of light irradiation for heating the composite from a lower temperature (T1) to a higher temperature (T2), and Δ H is the enthalpy change of the composite between the temperature range (T1 to T2) and can be obtained by the DSC measurements. When the temperature of the PCMs increased from 30 °C to 70 °C, which corresponded to an enthalpy change (Δ H) of 136.6 J g⁻¹, a storage efficiency (η) is calculated to be 70% for this period.

7. Characterization of the 50DF18 sample

Fig. S11 NMR of the 50DFA18 sample

 Table S5 Thermal characteristics of the 50DF18, un-50DFA18 and 50DFA18 samples									
 Sample	$T_{\rm m}$	$\Delta H_{\rm m}$	$\Delta H^{\mathrm{T}}{}_{\mathrm{m}}$	$\Delta H_{\rm m} { m loss}$	T_{f}	$\varDelta H_{ m f}$	$\Delta H^{\mathrm{T}}_{\mathrm{f}}$	$\Delta H_{\rm m} { m loss}$	
	(°C)	(Jg-1)	(Jg ⁻¹)	(%)	(°C)	(Jg ⁻¹)	(Jg ⁻¹)	(%)	
50DF18	32.5	53.7	59.8	10.2	26.3	53.5	57.4	7.0	
un-50DFA18	46.0	70.4	88.6	20.5	36.4	56.9	88.4	35.6	
50DFA18	34.4	20.4	59.5	65.7	14.1	19.8	48.1	58.8	

Notes: Tm, Tf, Δ Hm, and Δ Hf can be obtained directly from DSC curves; Δ Hm^T and Δ Hf^T of the 50DF18 sample was calculated by multiplying the weight percentage of 50D18 with the melting or freezing enthalpies of the 50D18 samples. Δ Hm^T and Δ Hf^T of the un-50DFA18 sample was calculated by summing the melting or freezing enthalpies of the 50DF18 and ODA parts (respectively multiplying the weight percentage of 50DF18 and ODA with the melting or freezing enthalpies of the 50DF18 and ODA); Δ Hm^T and Δ Hf^T of the 50DFA18 sample was calculated by multiplying the weight percentage of 50DF18 and ODA with the melting or freezing enthalpies of the 50DF18 and ODA); Δ Hm^T and Δ Hf^T of the 50DFA18 sample was calculated by multiplying the weight percentage of un-50DFA18 with the melting or freezing enthalpies of theun-50DFA18 samples. Δ Hm loss (%) of the 50DF18, un-50DFA18 and 50DFA18 samples was the percentage of the difference between Δ Hm (Δ Hf) and Δ Hm^T (Δ Hf^T).

8. Thermal characteristics of the other samples

system	$T_{\rm m}$ (°C)	$\Delta H_{\rm m} \left({\rm Jg}^{-1} ight)$	$\Delta H^{\mathrm{T}}{}_{\mathrm{m}}$ (Jg ⁻¹)	$\Delta H_{\rm m}$ loss (%)	$T_{\rm f}(^{\rm o}{\rm C})$	$\Delta H_{\rm f} ({\rm Jg}^{-1})$	$\Delta H^{\mathrm{T}}_{\mathrm{f}}$ (Jg ⁻¹)	$\Delta H_{\rm m}$ loss (%)
ODT	32.7	236.9	/	/	23.3	228.8	/	/
ODA	54.14	306.6	/	/	41.75	306.2	/	/
Paffin	60.93	223.7	/	/	55.26	221.9	/	/
30D18	26.2	46.9	69.1	32.1	19.1	46.7	66.8	30.1
50D18	31.5	69.2	96.5	28.3	22.8	66.4	93.2	28.8
70D18	34.6	83.8	116	27.9	26.5	83.2	112.1	25.8

Table S6 Thermal characteristics of the other samples

Notes: Tm, Tf, Δ Hm, and Δ Hf can be obtained directly from DSC curves; Δ Hm^T and Δ Hf^T of the xD18 samples were calculated by multiplying the weight percentage of ODT with the melting or freezing enthalpies of the ODT samples. Δ Hm loss (%) of the xD18 samples was the percentage of the difference between Δ Hm (Δ Hf) and Δ Hm^T (Δ Hf^T).

Reference

1 L. Zhang, R. Li, B. Tang and P. Wang, Nanoscale, 2016, 8, 14600-14607.