Supporting Information for

Synthesis and Degradation study of Graft Copolymers of Poly (limonene carbonate)

Dipannita Ghosh¹, Seema Agarwal^{1,2*}

¹Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

²Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

* Corresponding author

Seema Agarwal, Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany, <u>agarwal@uni-bayreuth.de</u>

 Table S1. Graft Copolymerization of ε-caprolactone onto PLimC backbone

Sample name	Feed ratio (PLimC: PCL) Molar ratio	Copolymer composition (PLimC: PCL) Molar ratio	Yield (%)	M _p (g mol ⁻¹)	D^{a}	Grafting density (%)	T _{5%} ^b (°C)
PLimC-g-PCL (1:0.5)	1:0.5	1:0.3	81	102353	1.29	100	226
PLimC-g-PCL (1:2)	1:2	1:1	72	141383	1.29	100	248
PLimC-g-PCL (1:10)	1:10	1:4.4	80	238225	1.28	100	277

^a Determined by THF-GPC; ^b Determined at a heating rate of 10 K min⁻¹ under N₂ atmosphere from TGA.

Figure S1. ¹H NMR of graft copolymers (a) PLimC-g-PCL and (b) PLimC-g-PDLLA with different feed ratios measured in CDCl₃.

Figure S2. ${}^{13}C{}^{1}H$ NMR of graft copolymers (a) PLimC-g-PCL and (b) PLimC-g-PDLLA with different feed ratios measured in CDCl₃.

Figure S3. (a) HMQC NMR spectra and **(b)** HMBC NMR spectra of PLimC-g-PDLLA with feed ratio 1:2 measured in CDCl₃

Figure S4. TGA thermograms of (a) PLimC-g-PCL and (c) PLimC-g-PDLLA with different feed ratios measured under nitrogen with 10 K min⁻¹. DSC thermograms (2nd heating curve) of (b) PLimC-g-PCL and (d) PLimC-g-PDLLA with different feed ratios measured under nitrogen with 10 K min⁻¹.

Figure S5. DMA curves measured for graft copolymers (a) PLimC-g-PCL (b) PLimC-g-PDLLA in the temperature range of -100 °C to 160 °C.

Figure S6. Contact angle measurement of (a) pure PLimC, (b) pure PDLLA and (C) pure PCL

Sample name	Ultimate tensile ^a strength (MPa)	Elongation at break ^a (%)		
Pure PLimC	38 ± 4	5 ± 2		
Pure PCL	26 ± 1	403 ± 3		
Pure PDLLA	68 ± 1	4 ± 1		
PLimC-g-PDLLA (1:0.5)	12 ± 0.5	3 ± 2		
PLimC-g-PDLLA (1:2)	17 ± 0.1	3 ± 1		
PLimC-g-PDLLA (1:10)	9 ± 0.5	5 ± 2		
PLimC-g-PCL (1:0.5)	15 ± 0.5	87 ± 11		
PLimC-g-PCL (1:2)	16 ± 0.5	102 ± 9		
PLimC-g-PCL (1:10)	15 ± 1	114 ± 12		

Table S2. Mechanical properties of PLimC-g-PDLLA and PLimC-g-PCL

^aMeasurement done at 10 mm. min⁻¹ test speed.

Figure S7. Stress-strain curves of PLimC-g-PDLLA and PLimC-g-PCL graft copolymers

Figure S8. Enzymatic degradation of graft copolymers (a) PLimC-g-PCL films with Lipase (0.2 mg mL⁻¹) in phosphate-buffered solution (0.025M, pH = 7.4) and (b) percentage degradation with respect to PCL fraction in 30 days.

Figure S9. THF-GPC curves of graft copolymers (a) PLimC-g-PCL with 1:0.5 feed ratio (b) PLimC-g-PDLLA with 1:0.5 feed ratio (c) PLimC-g-PCL with 1:10 feed ratio and (d) PLimC-g-PDLLA with 1:10 feed ratio before and after enzymatic degradation.

Figure S10. SEM images of PLimC-g-PDLLA and PLimC-g-PCL films before enzymatic degradation (1st row) and PLimC-g-PDLLA and PLimC-g-PCL films after enzymatic degradation (2nd row)

Figure S11. ¹H NMR of the graft copolymers before and after enzymatic degradation (**a**) PLimC-g-PCL with 1:0.5 feed ratio (**b**) PLimC-g-PDLLA with 1:0.5 feed ratio (**c**) PLimC-g-PCL with 1:10 feed ratio and (**d**) PLimC-g-PDLLA with 1:10 feed ratio.