Exploring telogen chemical structure and reactivity when forming highly branched polyesters derived from ethylene glycol dimethacrylate homopolymerisation under Transfer-dominated Branching Radical Telomerisation (TBRT) conditions

Sean Flynn,^[a,b] Bethany Linthwaite,^[a,b] Oliver B. Penrhyn-Lowe,^[a,b] Samuel Mckeating,^[a,b] Stephen Wright,^[a,b] Savannah R. Cassin,^[a,b] Pierre Chambon,^[a,b] and Steve P. Rannard^{*[a,b]}

- [a] Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
- [b] Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
- [*] Corresponding author: E-mail: srannard@liv.ac.uk

Experimental

Materials

Anisole (>99%), 2,2'-azobis(2-methylpropionitrile) (AIBN, 98%), benzyl mercaptan (BzM, 99%), chloroform-*d* (CDCl₃, 99.8%D), cyclohexane thiol (CHT, 97%), ethylene glycol methacrylate (EGDMA, 98%), methyl methacrylate (MMA, 99%), phenylethyl mercaptan (PhEM, >99%), 4-*tert*-butyl benzyl mercaptan (*t*BBM) were purchased from Sigma Aldrich. Ethyl acetate (EtOAc, analytical grade), methanol (MeOH, analytical grade) and tetrahydrofuran (THF, HPLC-grade) were purchased from Fischer. All materials were used as received.

Methods

Nuclear magnetic resonance spectroscopy (NMR)

¹H and ¹³C NMR spectra were recorded on a Bruker Advance DPX-400 MHz spectrometer; ¹H and ¹³C spectra were recorded at a frequency of 400 and 100 MHz respectively. Samples were analysed in deuterated chloroform (CDCl₃) at ambient temperature. Chemical shifts (δ) are reported in parts per million (ppm) relative to the known solvent chemical shift (δ = 7.26 ppm).

Size-exclusion chromatography (SEC)

Triple-detection SEC (TD-SEC) of branched polymers was performed using a Malvern Viscotek instrument, equipped with a GPCmax VE2001 auto-sampler, two Viscotek T6000M columns (and a guard column) and a triple detector array TDA305 containing a refractive index (RI) detector VE3580 and a 270 Dual Detector (light scattering and viscometer). A mobile phase of THF at 35 °C was used at a flow-rate of 1 mL min⁻¹. All samples were dissolved in the eluent at concentrations \leq 5 mg mL⁻¹ and filtered through a 0.2 µm PTFE syringe filter prior to injection. Narrow and broad polystyrene standards (Viscotek, M_w = 105 kg mol⁻¹, D = 1.02 and M_w = 245 kg mol⁻¹, D = 2.27 respectively) were used as calibrants. SEC analysis of linear telomers was performed using a Malvern Viscotek instrument, equipped with a GPCmax VE2001 auto-sampler, a mixed column setup of one T2000 column and one T1000 column in series (and a guard column). A mobile phase of THF at 35 °C was used at a flow-rate of 1 mL min⁻¹. Samples were dissolved in the eluent at concentrations \leq 10 mg mL⁻¹ and filtered through a 0.2 µm PTFE syringe filter prior to injection. All TD-SEC associated data were estimated using Omnisec software (Version 5.1).

Matrix-assisted laser desorption ionisation – time of flight (MALDI-TOF) mass spectrometry

MALDI-TOF analysis of linear telomers were analysed using a Bruker Autoflex Mass Spectrometer (Materials Innovation Factory, Liverpool, UK). Spectra obtained for linear telomers were each the sum of 500 shots acquired in positive-reflectron mode. Cesium triiodide (CsI3) and α -cyano-4-hyrdroxycinnamic acid (HCCA) were used as the mass scale calibrant and matrix, respectively. Both the matrix and samples were prepared at 10 mg mL⁻¹ in THF. The solutions were combined at a 5:1 v/v ratio of matrix to sample. 2 µL of the prepared solutions were deposited onto stainless-steel sample plates and air dried prior to analysis.

Gas Chromatography (GC)

GC was conducted using a HP-689 gas chromatography instrument equipped with a HP-5 column (30m \times 0.54 mm \times 0.5 mm); anisole was used as the internal standard. The carrier gas was hydrogen at 1 mL

min⁻¹. The column temperature was increased from a starting value of 90 °C to a maximum of 300 °C at a rate of 10 °C min⁻¹. Peaks were identified based on the corresponding pure reactants. Conversions were calculated based on changes in peak intensities relative to those obtained for an internal standard.

General procedure for TBRT of EGDMA

In a typical TBRT of EGDMA and *t*BBM, EGDMA (3.00 g, 15.1 mmol, 0.85 equiv.), *t*BBM (3.21 g, 17.8 mmol, 1.00 equiv.) and AIBN (0.0746 g, 0.454 mmol) were placed into a 25 mL round-bottom flask equipped with a magnetic stirrer bar. Ethyl acetate (6.60 g, 7.32 mL) was added and the solution was deoxygenated using a nitrogen purge under magnetic stirring for 30 minutes. An aliquot (~100 μ L) of the mixture was taken for determination of the molar ratio of EGDMA to *t*BBM prior to initiation ([EGDMA]₀/[Tel]₀) by ¹H NMR analysis. The flask was then placed in an oil bath at 70 °C for 24 hours. The reaction was stopped *via* cooling and exposure to air. An aliquot (~100 μ L) of the reaction mixture was taken for determination by ¹H NMR spectroscopy. The reaction mixture was then diluted in THF and precipitated into methanol (using a good solvent: anti-solvent volume ratio of 1:20) at ambient temperature, yielding a white precipitate. The polymer was dried *in vacuo* at 40 °C overnight to yield *p*(*t*BBM-EGDMA) as a white powder. The product was analysed by TD-SEC and both ¹H and ¹³C NMR spectroscopy. All reactions were conducted using a fixed mass of ethyl acetate to ensure a constant concentration of EGDMA during TBRT.

General procedure for linear telomerisation of MMA

In a typical linear telomerisation of MMA and *t*BBM, MMA (1.00 g, 9.99 mmol, 5 equiv.), *t*BBM (0.361 g, 2.00 mmol, 1.00 equiv.) and AIBN (0.0246 g, 0.150 mmol) were placed into a 10 mL roundbottom flask equipped with a magnetic stirrer bar. Ethyl acetate (1.41 g, 1.56 mL) was added and the solution was deoxygenated using a nitrogen purge under magnetic stirring for 30 minutes. An aliquot (~100 μ L) of the mixture was taken for determination of the molar ratio of MMA to *t*BBM prior to initiation ([MMA]₀/[Tel]₀) by ¹H NMR analysis. The flask was then placed in an oil bath at 70 °C for 24 hours. The reaction was stopped *via* cooling and exposure to air. An aliquot (~100 μ L) of the reaction mixture was taken for determination by ¹H NMR spectroscopy. The crude samples were concentrated *in vacuo* initially using a spiral evaporator and finally a vacuum oven at 40 °C for 24 hours. The crude product was then analysed by SEC and MALDI-TOF spectrometry.

General procedure for kinetic monitoring of TBRT

TBRT kinetic studies were conducted in a near-identical manner to the 'General procedure for TBRT of EGDMA' described above; however, 0.500 g of the EtOAc solvent system was replaced with anisole (0.500 g, 0.503 mL) in order to provide an internal standard for determination of EGDMA and telogen conversions by GC analysis. Kinetic studies were conducted using the highest common molar ratio of EGDMA to telogen at which all telogens produce soluble branched polymers under these conditions ($[EGDMA]_0/[Tel]_0 = 0.45$). Aliquots (*ca.* 200 µL) were taken from reaction mixtures at predetermined time intervals and were placed in a cooled glass vial containing BHT (*ca.* 1 mg) and were rapidly diluted with the corresponding cold analytical solvent (EtOAc and CDCl₃ for GC and ¹H NMR spectroscopy respectively). EGDMA and telogen conversions were determined by GC analysis and total vinyl conversion was determined by ¹H NMR spectroscopy.

Differential scanning calorimetry (DSC)

Thermal analyses were conducted using a TA Instruments Discovery DSC 25 instrument equipped with a RCS90 cooling unit. The following thermal protocol was used for all DSC analyses: (1) the sample was heated to 200 °C and subjected to a 3-minute isotherm to erase its thermal history, (2) the sample was then cooled to -90 °C at a rate of -10 °C min⁻¹ followed by a 30-minute isotherm. (3) glass transitions were then studied during heating of the sample to 150 °C at a rate of 20 °C min⁻¹. Glass transition temperatures (T_g) were recorded using TA Instruments software, TRIOS.

Figure S1 1 H NMR (400 MHz, CDCl₃) spectrum obtained from TBRT of EGDMA with CHT prior to thermal initiation (t₀). The equation provided was used to determine the initial ratio of EGDMA to CHT ([EGDMA]₀/[Tel]₀).

Figure S2 ¹H NMR (400 MHz, CDCl₃) spectrum obtained from TBRT of EGDMA with PhEM prior to thermal initiation (t_0). The equation provided was used to determine the initial ratio of EGDMA to PhEM ([EGDMA]₀/[Tel]₀).

Figure S3 ¹H NMR (400 MHz, CDCl₃) spectrum obtained from TBRT of EGDMA with BzM prior to thermal initiation (t_0). The equation provided was used to determine the initial ratio of EGDMA to BzM ([EGDMA]₀/[Tel]₀).

Figure S4 ¹H NMR (400 MHz, CDCl₃) spectrum obtained from TBRT of EGDMA with *t*BBM prior to thermal initiation (t_0). The equation provided was used to determine the initial ratio of EGDMA to *t*BBM ([EGDMA]₀/[Tel]₀).

Table S1¹H NMR spectroscopic and TD-SEC characterisation of branched polyesters preparedby TBRT of EGDMA with CHT, PhEM, BzM and tBBM.

	¹ F	I NMR (CDC	TD-SEC (THF)					
Telogen	[EGDMA ₀ /	Vinyl	[EGDMA] _F /	M_w	M_n	Ð	α	
	[Tel] ₀	conv. (%)	[Tel.] _F	(g mol ⁻¹)	(g mol ⁻¹)			
CHT	0.45	>99	1.02	328731	14602	154.23	0.325	
PhEM	0.45	>99	1.00	52014	5540	9.39	0.325	
BzM	0.45	>99	1.02	14748	4075	3.62	0.320	
tBBM	0.45	>99	1.01	9007	1336	6.74	0.269	

Figure S5 Overlaid ¹H NMR (400 MHz, CDCl₃) spectra obtained from the TBRT of EGDMA with CHT i) prior to initiation (t_0) and ii) 24 hours after later (t_f) . The equation provided was used to determine vinyl conversion.

Figure S6 Overlaid ¹H NMR (400 MHz, CDCl₃) spectra obtained from the TBRT of EGDMA with PhEM i) prior to initiation (t_0) and ii) 24 hours after later (t_f). The equation provided was used to determine vinyl conversion.

Figure S7 Overlaid ¹H NMR (400 MHz, CDCl₃) spectra obtained from TBRT of EGDMA with BzM i) prior to initiation (t_0) and ii) 24 hours after later (t_f) . The equation provided was used to determine vinyl conversion.

Figure S8 Overlaid ¹H NMR (400 MHz, CDCl₃) spectra obtained from TBRT of EGDMA with *t*BBM i) prior to initiation (t_0) and ii) 24 hours after later (t_f). The equation provided was used to determine vinyl conversion.

Figure S9 Overlaid GC chromatograms obtained for a) EtOAc, b) anisole, c) CHT, d) BzM, e) PhEM, f) EGDMA and f) *t*BBM. The equation provided was used to determine both telogen and EGDMA conversion.

		¹ H	I NMR (CDCl	3) ^a	GC ^b			
Telogen	Time (mins)	Vinyl conv. (%)	ln[M] ₀ /[M]	LOG(1-a)	EGDMA Conv. (%)	Telogen Conv. (%)	Log([Tel]/[Tel] ₀)	
	0	0	0.000	0.000	0	0	0.000	
	3	0	0.002	0.001	1	0	0.000	
	6	6	0.057	0.025	11	2	0.007	
	9	12	0.132	0.057	22	4	0.019	
	12	18	0.201	0.087	32	6	0.026	
	15	25	0.282	0.122	41	8	0.035	
	20	34	0.417	0.181	53	11	0.050	
	25	43	0.559	0.243	64	15	0.070	
BzM	30	50	0.685	0.297	72	17	0.083	
	40	63	0.991	0.431	85	29	0.146	
	50	75	1.369	0.594	93	29	0.150	
	60	85	1.895	0.823	97	34	0.181	
	75	92	2.571	1.117	99	40	0.220	
	90	97	3.405	1.479	>99	43	0.247	
	105	99	4.292	1.864	>99	44	0.255	
	120	99	4.949	2.149	>99	45	0.258	
	180	>99	6.908	3.000	>99	46	0.272	

Table S2Kinetic monitoring of the TBRT of EGDMA and $BzM ([EGDMA]_0/[Tel]_0 = 0.45).$

^a Determined by 1H NMR analysis of the reaction mixture at the stated time intervals. ^a Determined by GC analysis of the reaction mixture at the stated time intervals.

Table S3	Kinetic monitoring of the TBRT of EGDMA and tBBM ($[EGDMA]_0/[Tel]_0 = 0.45$).

		$^{1}\mathrm{H}$	I NMR (CDCl	3) ^a	GC ^b			
Telogen	Time (mins)	Vinyl conv. (%)	ln[M] ₀ /[M]	Log(1-a)	EGDMA Conv. (%)	Telogen Conv. (%)	Log([Tel]/[Tel] ₀)	
	0	0	0.000	0.000	0	0	0.000	
	3	0	0.000	0.000	1	0	0.000	
	6	0	0.001	0.000	7	0	0.000	
	9	0	0.003	0.001	13	0	0.000	
	12	3	0.025	0.011	19	1	0.003	
	15	27	0.315	0.137	26	2	0.007	
	20	17	0.186	0.081	37	5	0.022	
	25	22	0.249	0.108	48	7	0.034	
tBBM	30	25	0.293	0.127	57	10	0.048	
	40	44	0.575	0.250	71	16	0.075	
	50	53	0.756	0.328	81	20	0.099	
	60	60	0.905	0.393	89	26	0.129	
	75	78	1.522	0.661	95	32	0.168	
	90	85	1.914	0.831	98	38	0.207	
	105	93	2.643	1.148	>99	42	0.235	
	120	95	3.062	1.330	>99	42	0.236	
	180	>99	6.908	3.000	>99	47	0.272	

^a Determined by 1H NMR analysis of the reaction mixture at the stated time intervals. ^a Determined by GC analysis of the reaction mixture at the stated time intervals.

Table S4 Kinetic monitoring of the TBRT of EGDMA and CHT ($[EGDMA]_0/[Tel]_0 = 0.45$).

		1H	I NMR (CDCl	3) ^a	GC ^b			
Telogen	Time (mins)	Vinyl conv. (%)	ln[M] ₀ /[M]	LOG(1-a)	EGDMA Conv. (%)	Telogen Conv. (%)	Log([Tel]/[Tel] ₀)	
	0	0	0.000	0.000	0	0	0.000	
	3	0	0.000	0.000	1	0	0.000	
	6	0	0.000	0.000	6	0	0.000	
	9	0	0.000	0.000	11	0	0.001	
	12	3	0.034	0.015	19	2	0.007	
	15	10	0.100	0.043	25	3	0.012	
CHT	20	20	0.226	0.098	39	5	0.022	
	25	29	0.342	0.148	50	7	0.033	
	30	35	0.428	0.186	60	10	0.044	
	40	53	0.745	0.324	77	15	0.068	
	50	67	1.102	0.479	88	20	0.095	
	60	78	1.505	0.654	95	24	0.119	
	120	>99	5.642	2.450	>99	36	0.193	

^a Determined by 1H NMR analysis of the reaction mixture at the stated time intervals. ^a Determined by GC analysis of the reaction mixture at the stated time intervals.

Table S5	Kinet	$[]_0 = 0.45).$						
			¹ H NMR (CDC	(l ₃) ^a	GC ^b			
Telogen	Time (mins)	Vinyl conv. (%)	ln[M] ₀ /[M]	LOG(1-a)	EGDMA Conv. (%)	Telogen Conv. (%)	Log([Tel]/[Tel] ₀)	
	0	0	0.000	0.000	0	0	0.000	
	3	0	0.000	0.000	4	0	0.000	
	6	2	0.020	0.009	11	0	0.000	
	9	3	0.025	0.011	20	1	0.005	
	12	6	0.058	0.025	27	2	0.011	
	15	13	0.142	0.062	37	5	0.022	
	20	23	0.267	0.116	50	7	0.034	
	25	34	0.416	0.181	61	11	0.049	
PhEM	30	41	0.533	0.232	71	13	0.061	
	40	59	0.884	0.384	85	20	0.095	
	50	72	1.257	0.546	93	25	0.125	
	60	82	1.723	0.748	97	30	0.154	
	75	93	2.630	1.142	>99	36	0.190	
	90	98	3.847	1.671	>99	39	0.213	
	105	99	4.914	2.134	>99	40	0.220	
	120	>99	6.452	2.802	>99	39	0.217	
	180	>99	6.908	3.000	>99	39	0.217	

^a Determined by 1H NMR analysis of the reaction mixture at the stated time intervals. ^a Determined by GC analysis of the reaction mixture at the stated time intervals.

Figure S10 Induction period-adjusted kinetic plots of vinyl consumption with time during TBRTs of EGDMA with a) CHT (blue squares), b) PhEM (purple hexagons), c) BzM (red diamonds) and d) *t*BBM (dark grey circles).

Figure S11 Overlaid semi-logarithmic plots of vinyl conversion during TBRTs of EGDMA with a) CHT (blue squares), b) PhEM (purple hexagons), c) BzM (red diamonds) and d) *t*BBM (dark grey circles).

Figure S12 Theoretical illustration of the expected variation in the molar ratio of telogen to multi-vinyl taxogen (MVT, i.e. EGDMA, blue circles) and absolute molecular weight (M, black hollow diamonds), as the number of MVTs in the branched polymer structure increase.

Figure S13 Full plots of $Log([Tel]/[Tel]_0)$ against $Log(1-\alpha)$ obtained from TBRTs of EGDMA with a) CHT, b) PhEM, c) BzM and d) *t*BBM.

Figure S14 ¹H NMR (400 MHz, CDCl₃) spectrum obtained from the linear telomerisation of MMA with CHT prior to thermal initiation (t = 0). The equation provided was used to determine the initial ratio of MMA to CHT ([MMA]₀/[Tel]₀).

Figure S15 ¹H NMR (400 MHz, CDCl₃) spectrum obtained from the linear telomerisation of MMA with PhEM prior to thermal initiation (t = 0). The equation provided was used to determine the initial ratio of MMA to PhEM ([MMA]₀/[Tel]₀).

Figure S16 ¹H NMR (400 MHz, CDCl₃) spectrum obtained from the linear telomerisation of MMA with BzM prior to thermal initiation (t = 0). The equation provided was used to determine the initial ratio of MMA to BzM ([MMA]₀/[Tel]₀).

Figure S17 ¹H NMR (400 MHz, CDCl₃) spectrum obtained from the linear telomerisation of MMA with *t*BBM prior to thermal initiation (t = 0). The equation provided was used to determine the initial ratio of MMA to *t*BBM ([MMA]₀/[Tel]₀).

Figure S18 ¹H NMR (400 MHz, $CDCl_3$) spectrum obtained from the linear telomerisation of MMA with CHT after 24 hours (t_f). The equation provided was used to determine vinyl conversion.

Figure S19 ¹H NMR (400 MHz, CDCl₃) spectrum obtained from the linear telomerisation of MMA with PhEM after 24 hours (t_f). The equation provided was used to determine vinyl conversion.

Figure S20 Overlaid ¹H NMR (400 MHz, $CDCl_3$) spectra obtained from the linear telomerisation of MMA with BzM i) prior to initiation and ii) 24 hours later (t_f). The equation provided was used to determine vinyl conversion.

Figure S21 Overlaid ¹H NMR (400 MHz, $CDCl_3$) spectra obtained from the linear telomerisation of MMA with *t*BBM. i) prior to initiation and ii) 24 hours later (t_f). The equation provided was used to determine vinyl conversion.

Figure S22 Crude MALDI-TOF mass spectrum obtained for CHT-*p*(MMA).

Figure S23 Crude MALDI-TOF mass spectrum obtained for PhEM-*p*(MMA).

Figure S24 Crude MALDI-TOF mass spectrum obtained for BzM-*p*(MMA).

Figure S25 Crude MALDI-TOF mass spectrum obtained for *t*BBM-*p*(MMA).

Figure S26 Overlaid RI chromatograms of linear telomers obtained by SEC of linear telomers.

Figure S27 Overlaid a) RI and b) RALS chromatograms obtained from TD-SEC analysis of i) p(CHT-EGDMA), ii) p(PhEM-EGDMA) and iii) p(BzM-EGDMA) and iv) p(tBBM-EGDMA) branched copolymers generated at varied $[EGDMA]_0/[Tel]_0$ ratios (stated on each chromatogram).

Figure S28 Exemplary ¹H NMR spectroscopic characterisation of p(CHT-EGDMA). The equation provided was used to determine the final molar ratio of EGDMA to CHT residues in the purified polymer ([EGDMA]_F/[Tel]_F).

Figure S29 Exemplary ¹H NMR spectroscopic characterisation of p(PhEM-EGDMA). The equation provided was used to determine the final molar ratio of EGDMA to PhEM residues in the purified polymer $([EGDMA]_F/[Tel]_F)$.

Figure S30 Exemplary ¹H NMR spectroscopic characterisation of p(BzM-EGDMA). The equation provided was used to determine the final molar ratio of EGDMA to BzM residues in the purified polymer ($[EGDMA]_F/[Tel]_F$).

Figure S31 Exemplary ¹H NMR spectroscopic characterisation of p(tBBM-EGDMA). The equation provided was used to determine the final molar ratio of EGDMA to tBBM residues in the purified polymer $([EGDMA]_F/[Tel]_F)$.

Figure S33 13 C NMR spectroscopic characterisation of p(BzM-EGDMA).

Figure S35 13 C NMR spectroscopic characterisation of p(tBBM-EGDMA).

Figure S36 Theoretical ¹H chemical shifts predicted for the methyl group protons of poly(MMA)-based telomers containing a) 1, b) 2 and c) 3 MMA units. These values were predicted using ChemDraw Professional – Version 18.1. These values demonstrate the impact of telomer degree of polymerisation on the chemical shift at which methyl protons resonate.

	TD-9	SEC		DSC			Modified Flory-Fox
Telogen	<i>M</i> _w (g mol ⁻¹)	<i>M_n</i> (g mol ⁻¹)	<i>T_g</i> (°C)	1/ M _n	$\frac{1}{(\sqrt{M_n \cdot M_w})}$	<i>Tg</i> ∞ (°C) (R²)	<i>Tg</i> ∞ (°C) (R ²)
	59938	7550	11	0.00013245	0.00004701		
	98528	10146	26	0.00009856	0.00003163	42	39 (0.04)
CHT	320018	13304	31	0.00007517	0.00001533		
	521121	18186	33	0.00005499	0.00001027	(0.83)	(0.94)
	4927000	351772	38	0.00000284	0.00000076		
	102869	6204	15	0.00016119	0.00003958		40 (1.00)
	314036	8198	27	0.00012198	0.00001971	45 (0.91)	
tBBM	638153	10232	32	0.00009773	0.00001238		
	774323	20590	36	0.00004857	0.00000792		
	1543000	25793	37	0.00003877	0.00000501		
	42538	5948	-8	0.00016812	0.00006287		15 (0.86)
	86299	4958	-13	0.00020169	0.00004834		
DLEM	135892	9105	5	0.00010983	0.00002843	19	
Phem	280461	11423	7	0.00008754	0.00001767	(0.97)	
	528656	17793	9	0.00005620	0.00001031		
	2100000	35343	14	0.00002829	0.00000367		
	116151	7019	2	0.00014247	0.00003502		
BzM	262407	9675	11	0.00010336	0.00001985		
	315529	8765	6	0.00011409	0.00001902	21 (0.76)	18
	642013	12690	14	0.00007880	0.00001108		(0.91)
	2093000	31293	16	0.00003196	0.00000391		

Table S6Traditional and modified Flory-Fox analysis of T_g data obtained via DSC analysis of TBRT
homopolymers.

Figure S37 Flory-Fox analysis of the thermal transitions of TBRT homopolymers. Traditional Flory-Fox plots of T_g and molecular weight data obtained for a) p(tBBM-EGDMA), b) p(CHT-EGDMA), c) p(BzM-EGDMA) and d) p(PhEM-EGDMA).

Figure S38 Flory-Fox analysis of the thermal transitions of TBRT homopolymers. Modified Flory-Fox plots of T_g and molecular weight data obtained for a) p(tBBM-EGDMA), b) p(CHT-EGDMA), c) p(BzM-EGDMA) and d) p(PhEM-EGDMA).