Electronic Supplementary Information (ESI)

Efficient synthesis of trefoil-shaped tricyclic polymers by ROMP-based

blocking-cyclization technique

Hao Wang, Cuihong Ma, Zhiying Han, Xiaojuan Liao, D Ruyi Sun* and Meiran Xie

School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China. E-mail: rysun@chem.ecnu.edu.cn; mrxie@chem.ecnu.edu.cn

Contents

- 1. Synthesis and characterization of monomers
- 2. Synthesis and characterization of polymers
- 3. Modification of trefoil-shaped tricyclic polymer containing pentafluorophenyl ester

units

References

1. Synthesis and characterization of monomers

Synthesis of 2,3,6,7,10,11-hexa(methyl oxohexanoate) triphenylene (HMHT)

Under nitrogen atmosphere, 2,3,6,7,10,11-hexahydroxytriphenylene (**HHT**) (0.3 g, 0.9 mmol) and K₂CO₃ (3.7 g, 27.0 mmol) were dispersed into 40 mL of CH₃CN in a 100 mL three-necked flask, methyl-6-bromohexanoate (3.4 g, 16.2 mmol) was then added after 30 min, and the reaction mixture was stirred at 90 °C for 48 h. Upon cooling, the reaction mixture was filtered, and the solvent was removed under reduced pressure. The solid was purified by column chromatography on silica gel using PE/EA = 6:1 as eluent, to afford pale yellow powder, **HMHT** (0.7 g, 70%). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.81 (s, 6H, triphenylene), 4.22 (t, 12H, OC*H*₂CH₂), 3.68 (d, 18H, OC*H*₃), 2.39 (t, 12H, O=CC*H*₂), 1.96 (t, 12H, OC*H*₂CH₂), 1.78 (t, 12H, CH₂C*H*₂CH₂), 1.65-1.60 (m, 12H, CH₂C*H*₂CH₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 174.05, 148.87, 123.63, 107.31, 69.32, 51.50, 34.01, 29.15, 25.77, 24.76.

Synthesis of 2,3,6,7,10,11-hexa(oxohexanoic acid) triphenylene (HOHT)

Under nitrogen atmosphere, **HMHT** (0.6 g, 0.55 mmol) and KOH (0.55 g, 9.9 mmol) were dissolved into mixed solvent (30 mL of MeOH and 5 mL of deionized water) in a 50 mL three-necked flask and stirred at 50 °C for 5 days. After cooling, the solvent was removed under reduced pressure, then the 4 mol/L HCl solution was added dropwise to the reaction mixture until the pH value for 2, filtered with suction and dried in a vacuum oven overnight, and a yellow solid of **HOHT** was obtained (0.47 g, 85%). ¹H NMR (500 MHz, DMSO- d_6 , ppm): δ 12.00 (s, 6H, COO*H*), 7.97 (s, 6H, triphenylene), 4.23 (t, 12H, OCH₂CH₂), 2.27 (t, 12H, O=CCH₂), 1.83 (m, 12H, CH₂CH₂CH₂), 1.64 (m, 12H, CH₂CH₂CH₂), 1.54 (m, 12H, CH₂CH₂CH₂). ¹³C NMR (125 MHz, DMSO- d_6 , ppm): δ 174.59, 148.65, 123.04, 107.33, 68.77, 33.86, 28.77, 25.50, 24.48.

Synthesis of 2,3,6,7,10,11-hexa(N-4-(phenyl norbornene dicarboximide) oxohexanoate) triphenylene (HNHT)

Under nitrogen atmosphere, **HOHT** (0.4 g, 0.4 mmol), **NDI** (1.2 g, 4.8 mmol) and DMAP (1.5 g, 12 mmol) were dissolved into 60 mL of dry CH₂Cl₂ in a 100 mL three-necked flask under stirring 30 min, and the EDCI·HCl (2.3 g, 12 mmol) was added to the reaction mixture and stirred at room temperature for 5 days. The solvent was removed under reduced pressure. The solid was purified by column chromatography on silica gel using PE/EA = 1:2 as eluent to afford white powder, **HNHT** (0.78 g, 80%). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.84 (m, 6H, triphenylene), 7.14 (m, 24H, aromatic), 6.23 (t, 12H, CH=CH), 4.25 (t, 12H, OCH₂CH₂), 3.48 (m, 12H, OCCHCH), 3.39 (m, 12H, CHCHCH), 2.61 (t, 12H, O=CCH₂), 1.99 (m, 12H, CH₂CH₂CH₂), 1.87 (m, 12H, CH₂CH₂CH₂), 1.77 (m, 6H, CHCH₂CH), 1.70 (m, 12H, CH₂CH₂CH₂), 1.59 (d, 6H, CHCH₂CH). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 176.76, 171.73, 150.50, 149.00, 134.75, 129.28, 127.72, 122.30, 107.39, 77.36, 69.37, 52.38, 45.90, 45.65, 34.42, 29.28, 25.88, 24.82.

Scheme S1. Synthesis of 2,3,6,7,10,11-hexa(N-4-(phenyl norbornene dicarboximide) oxohexanoate) triphenylene (**HNHT**).

HNHT was prepared according to a previously reported method.^{1,2} From ¹H NMR spectrum (Figure S1a), the ratios of the integral area of protons H_a at 6.23 ppm to those of protons H_k at 4.25 ppm and protons H_1 at 7.84 ppm and were calculated to be 12:12:6, which matched well with the theoretical values. In addition, the ¹³C NMR (Figure S1b) and ATR-IR (Figure S2) spectra were also analyzed, revealing the successful synthesis of monomer **HNHT**.

Figure S1. (a) ¹H NMR (500 MHz) and (b) ¹³C NMR (125 MHz) spectra of HNHT measured in CDCl₃.

Figure S2. ATR-IR spectrum of HNHT.

2. Synthesis and characterization of polymers

Synthesis of complex ladderphane PHNHT₅

The hexafunctional monomer 2,3,6,7,10,11-hexa(N-4-(phenyl norbornene dicarboximide) oxohexanoate) triphenylene (**HNHT**) (24.3 mg, 0.01 mmol) was dissolved into 48 mL of dry CH₂Cl₂ in a 100 mL of Schlenk tube. **Ru-III** (10.6 mg, 0.012 mmol) was dissolved into 2 mL of dry CH₂Cl₂ in 10 mL of Schlenk tube. After degassed with three freeze-vacuum-thaw cycles, the solution of **Ru-III** was then injected into 100 mL Schlenk tube via a syringe under stirring at 30 °C for 1 h. The solution was precipitated into methanol and dried under vacuum to afford homopolymer **PHNHT**₅ as a colorless solid (22.8 mg, 94%). GPC: $M_n = 4.5$ kDa, $M_a = 12.8$ kDa, D = 1.24. ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.82 (m, triphenylene), 7.26 (d, aromatic), 6.03-5.22 (m, C*H*=C*H* on PNBE backbone), 4.45-4.05 (m, OC*H*₂CH₂), 3.58-2.80 (m, OCC*H*CH + CHC*H*CH), 2.76-2.47 (s, O=CC*H*₂), 2.18-1.52 (m, CHC*H*₂CH + CH₂CH₂).

Ladderphanes **PHNHT**₃ and **PHNHT**₁₀ were also synthesized in a similar way with the above synthetic route.

Synthesis of end-capped ladderphane PHNHT₅-6RD

The synthesis process was similar to that of **PHNHT**₅, as shown in Scheme S2. The hexafunctional monomer **HNHT** (24.3 mg, 0.01 mmol) was dissolved into 48 mL of dry CH_2Cl_2 in a 100 mL of Schlenk tube. **Ru-III** (10.6 mg, 0.012 mmol) was dissolved into 2 mL of dry CH_2Cl_2 in 10 mL of Schlenk tube. The terminating agent **BRD** (52.2 mg, 0.12 mmol) was dissolved into 1 mL of dry CH_2Cl_2 in 10 mL of Schlenk tube. The terminating agent **BRD** (52.2 mg, 0.12 mmol) was dissolved into 1 mL of dry CH_2Cl_2 in 10 mL of Schlenk tube. After degassed with three freeze-vacuum-thaw cycles, the solution of **Ru-III** was injected into 100 mL Schlenk tube via a syringe under stirring at 30 °C for 1 h. The solution of **BRD** was then injected into the reaction mixture and stirred for overnight. The reaction mixture was precipitated into the mixed solvent (methanol/acetone = 20:20), and dried under vacuum to

afford **RD** group-terminated homopolymer **PHNHT**₅-6**RD** (22.8 mg, 94%). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.82 (m, triphenylene), 7.22 (d, aromatic), 5.94-5.07 (m, CH=CH on PNBE backbone), 4.77-4.58 (m, CHCH₂O), 4.46-3.99 (m, OCH₂CH₂+NCH₂CO), 3.66 (m, SCH₂CO), 3.60-2.82 (m, OCCHCH + CHCHCH), 2.75-2.47 (s, O=CCH₂), 2.20-1.53 (m, CHCH₂CH + CH₂CH₂CH₂).

End-capped ladderphane **PHNHT**₃-6**RD** was also synthesized in a similar way as above.

Scheme S2. Synthesis of homopolymers $PHNHT_n$ and $PHNHT_n$ -6RD by ROMP.

Entry	Polymer	[HNHT]/[Cat] ^b	t (h)	$M_{\rm n}{}^c$ (kDa)	\tilde{D}^{c}	Yield (%)
1^d	PHNHT ₃	3:6	1.0	2.7	1.21	96
2^d	PHNHT ₅	5:6	1.0	4.5	1.24	94
3^d	PHNHT ₁₀	10:6	1.0	4.9	1.25	55
4^d	PHNHT ₁₀	10:6	4.0	/	/	68
5 ^e	PHNHT ₅	5:6	1.0	/	/	92
6 ^f	PHNHT ₅	5:6	1.0	6.1	1.34	96
7 ^g	PHNHT ₅	5:6	1.0	4.4	1.26	93

Table S1. Characteristics for homopolymers.^a

^{*a*}Polymerization conditions: using **Ru-III** as catalyst, CH_2Cl_2 as solvent, temperature = 30 °C. ^{*b*}The feed ratio of monomer to catalyst for polymerization of hexafunctional monomer. ^{*c*}Determined by GPC in THF relative to monodispersed polystyrene standards. ^{*d*}[**HNHT**] = 2×10⁻⁴ mol L⁻¹ refers to the concentration of monomer. ^{*e*}[**HNHT**] = 1×10⁻³ mol L⁻¹ refers to the concentration of monomer. ^{*f*}[**HNHT**] = 5×10⁻⁴ mol L⁻¹ refers to the concentration of monomer. ^{*g*}[**HNHT**] = 1×10⁻⁴ mol L⁻¹ refers to the concentration of monomer.

Figure S3. GPC traces in THF of homopolymers (a) **PHNHT**₃ (black) and **PHNHT**₃-6**RD** (red), (b) **PHNHT**₅ (black) and **PHNHT**₅-6**RD** (red), and (c) **PHNHT**₁₀ obtained at a monomer concentration of 2×10^{-4} mol L⁻¹, as well as (d) **PHNHT**_n obtained at a monomer concentration of 5×10^{-4} mol L⁻¹ (black) and **PHNHT**₅ obtained at a monomer concentration of 1×10^{-4} mol L⁻¹ (red).

.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 f1 (ppm)

Figure S4. ¹H NMR (500 MHz) spectrum of PHNHT₅ measured in CDCl₃.

Figure S5. ¹H NMR (500 MHz) spectrum of PHNHT₃ measured in CDCl₃.

Figure S6. ¹H NMR (500 MHz) spectrum of **PHNHT**₅ formed under a low monomer concentration of 1×10^{-4} mol L⁻¹ measured in CDCl₃.

Figure S7. ¹H NMR (500 MHz) spectrum of PHNHT₅-6RD measured in CDCl₃.

The actual integral area ratio of protons H_1 to that of H_m for **PHNHT**₃-6**RD** (Fig. S8†) was calculated to be 18:12, which was in agreement with the theoretical area ratio of 18:12 based on three **HNHT** units and six **RD** end-groups. Furthermore, compared with the integral area ratio of 18:36.18 for the protons H_1 to the protons H_k on **PHNHT**₃ (Fig. S5†), the actual integral area ratio for the protons H_1 to the protons H_{k+n} on **PHNHT**₃-6**RD** (Fig. S8†) increased to 18:48.07, and the increased proton numbers of about 12 (48.07-36.18 = 11.89) was derived from the methylene protons H_n of six **RD** groups, which also confirmed that **PHNHT**₃ owned six living ends.

Figure S8. ¹H NMR (500 MHz) spectrum of PHNHT₃-6RD measured in CDCl₃.

In addition, the actual integral area ratio of protons H_1 to that of H_m for **PHNHT**₅-6**RD** formed under a lower monomer concentration of 1×10^{-4} mol L⁻¹ (6×10^{-4} mol L⁻¹ of norbornene group) (Fig. S9†) was calculated to be 30:12.11, which was in agreement with the theoretical area ratio of 30:12 based on three **HNHT** units and six **RD** end-groups. By comparison, the integral area ratio of 30:60.27 for the protons H_1 to the protons H_k on

PHNHT₅ (Fig. S6†), the actual integral area ratio for the protons H_1 to the protons H_{k+n} on **PHNHT**₅-6**RD** (Fig. S9†) increased to 30:72.14, and thus the increased proton number of about 12 (72.14-60.27 = 11.87) was derived from the methylene protons H_n of six **RD** groups, which also confirmed that **PHNHT**₅ owned six living ends.

Figure S9. ¹H NMR (500 MHz) spectrum of PHNHT₅-6RD formed under a lower monomer concentration of 1×10^{-4} mol L⁻¹ measured in CDCl₃.

Figure S10. Possible defective ladderphane structures of PHNHT_n (a,b) and PHNHT_n-xRD (c,d).

Figure S11. TEM images (a-c) and the corresponding SAED pattern (d) of polymeric ladderphane PHNHT₅.

Synthesis of six-arm star-shaped polymers

A 50 mL of Schlenk tube was charged with hexafunctional monomer **HNHT** (2.4 mg, 1.0 μ mol) dissolved in 2 mL of dry CH₂Cl₂. Difunctional monomer **BNP** (4 mg, 3.0 μ mol) was dissolved in 1 mL of dry CH₂Cl₂ in 25 mL of Schlenk tube. **Ru-III** (1.1 mg, 1.2 μ mol) and monofunctional monomer **TNP** (55.1 mg, 0.13 mmol) were dissolved in 1 mL and 4 mL of dry CH₂Cl₂ in two 50 mL of Schlenk tubes, respectively. After degassed with three freeze-vacuum-thaw cycles, the solution of **Ru-III** was injected into the **HNHT** solution via a syringe under vigorous stirring at 30 °C for 1 h, and then **BNP** solution was injected into the reaction mixture and stirred for 2 h, affording the six-arm star-shaped polymer *6a*-{**PHNHT**₅-[*b*-**PBNP**₅-(*b*-**PTNP**₁₁₀)₂]₃} (57.2 mg, 93%). GPC: $M_n = 81.8$ kDa, D = 1.74. ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.64 (m, pery), 8.03-7.77 (m, triphenylene + F₃CC*CH*), 7.76-7.60 (m, F₃CC*CH*CCF₃), 7.58-7.32 (m, aromatic + CC*CH*), 7.01-6.52 (m, aromatic), 5.64-5.15 (m, *CH=CH* on PNBE backbone), 4.32-4.11 (m, OCH₂CH₂ +

NC $H_2(CH_2)_9$), 3.52-2.50 (m, OCCHCH + CHCHCH + O=CC H_2), 2.10-1.11 (m, CH₂C H_2CH_2 + CHC H_2CH + OCCH₂(C $H_2)_9$). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 175.52, 173.62, 166.26, 162.545, 148.40, 143.13, 132.21, 131.94, 127.93, 127.84, 125.75, 124.58, 122.41, 119.25, 113.21, 49.91, 49.69, 47.64, 46.75, 44.90, 40.20, 39.95, 39.04, 29.69, 22.68, 14.11.

Synthesis of trefoil-shaped tricyclic polymer containing pentafluorophenyl ester units A 50 mL of Schlenk tube was charged with hexafunctional monomer HNHT (2.4 mg, 1.0 μmol) dissolved in 2 mL of dry CH₂Cl₂. Difunctional monomer **BNP** (4 mg, 3.0 μmol) was dissolved in 1 mL of dry CH₂Cl₂ in 25 mL of Schlenk tube. Ru-III (1.1 mg, 1.2 µmol) was dissolved in 1 mL of dry CH₂Cl₂ in 25 mL of Schlenk tube, and the mixture of monofunctional TNP (42.6 mg, 0.10 mmol) and PFNI (13.3 mg, 0.03 mmol) were dissolved in 4 mL of dry CH₂Cl₂ in 24 mL of Schlenk tube. After degassed with three freeze-vacuum-thaw cycles, the solution of Ru-III was injected into the HNHT solution via a syringe under vigorous stirring at 30 °C for 1 h, and then the solution of TNP and PFNI was injected into the reaction mixture and stirred for further 0.5 h. At last, BNP solution was injected into the reaction mixture and stirred for 2 h, affording the trefoilshaped tricyclic polymer c-{**PHNHT**₅-[(b-**P**(**TNP**₈₅-co-**PFNI**₂₅))₂-b-**PBNP**₅]₃} (59.2 mg, 95%). GPC: $M_n = 71.6$ kDa, D = 1.76. ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.67 (m, pery), 8.37-7.31 (m, triphenylene + aromatic + CCCH + F₃CCCH + F₃CCCHCCF₃), 6.96-6.45 (m, aromatic), 5.97-5.16 (m, CH=CH on PNBE backbone), 4.34-4.13 (m, OCH₂CH₂ + NCH₂(CH₂)₉), 3.65-2.38 (m, OCCHCH + CHCHCH + O=CCH₂), 2.18-1.10 (m, $CH_2CH_2CH_2 + CHCH_2CH + OCCH_2(CH_2)_9).$

Six-arm star-shaped polymer 6a-{**PHNHT**₅-[b-**PBNP**₅-(b-**P**(**TNP**₈₅-co-**PFNI**₂₅))₂]₃} was synthesized in a similar way with the above synthetic route.

Post-polymerization of trefoil-shaped tricyclic polymer containing pentafluorophenyl ester units

Under nitrogen atmosphere, c-{**PHNHT**₅-[(*b*-**P**(**TNP**₈₅-*co*-**PFNI**₂₅))₂-*b*-**PBNP**₅]₃} (30 mg, 0.014 mmol of pentafluorophenyl ester group) and NH₂-POSS (61.3 mg, 0.07 mmol) were dissolved into 5 mL of dry THF in a 50 mL of Schlenk tube, and the triethylamine (14.1 mg, 0.14 mmol) was added in Schlenk tube and stirred at 50 °C for 3 days. The reaction mixture was precipitated into the mixed solvent (methanol/ether = 20:10), and dried under vacuum to afford the POSS-modified six-arm star-shaped polymer *c*-{**PHNHT**₅-[(*b*-**P**(**TNP**₈₅-*co*-**POSSNI**₂₅))₂-*b*-**PBNP**₅]₃}. GPC: M_n = 122.8 kDa, D = 1.68. ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.66 (m, pery), 8.09-7.30 (m, triphenylene + aromatic + CC*CH* + F₃CC*CH* + F₃CC*CH*CCF₃), 7.01-6.48 (m, aromatic), 6.21-5.18 (m, *CH*=*CH* on PNBE backbone), 4.36-4.09 (m, OC*H*₂CH₂ + NC*H*₂(CH₂)₉), 3.79-2.40 (m, OCC*H*CH + CHC*H*CHCH + O=CC*H*₂ + POSS-CH₂C*H*₂), 2.14-0.74 (m, CH₂C*H*₂CH₂ + CH*CH*₂CH + OCCH₂(*CH*₂)₉ + NC*H*₂CH₂ + CH on POSS), 0.72-0.49 (m, POSS-*CH*₂CH₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 175.28, 172.88, 166.21, 162.27, 148.41, 143.14, 132.24, 131.95, 131.70, 127.83, 126.41, 125.88, 125.75, 124.58, 122.41, 119.22, 113.21, 53.41, 49.75, 47.65, 46.73, 44.92, 40.75, 40.21, 39.98, 29.69, 29.06, 28.88, 25.66, 23.83, 22.43, 14.11, 9.46.

Six-arm star-shaped polymer 6a-{**PHNHT**₅-[b-**PBNP**₅-(b-**P**(**TNP**₈₅-co-**POSSNI**₂₅))₂]₃} was synthesized in a similar way with the above synthetic route.

Scheme S3. Synthesis of six-arm star-shaped polymers by successive ROMP.

Figure S12. GPC traces of trefoil-shaped tricyclic polymers c-{**PHNHT**₅-[(b-**PTNP**_m)₂-b-**PBNP**₅]₃} (m = 70, 90, and 130 for black, red, and blue, respectively).

Figure S13. ¹H NMR spectra of six-arm star-shaped 6a-{**PHNHT**₅-[b-**PBNP**₅-(b-**PTNP**₁₁₀)₂]₃} (a) and trefoil-shaped tricyclic c-{**PHNHT**₅-[(b-**PTNP**₁₁₀)₂-b-**PBNP**₅]₃} (b) measured in CDCl₃.

Figure S14. ¹H NMR spectra of trefoil-shaped tricyclic polymers c-{PHNHT₅-[(b-PTNP_m)₂-b-PBNP₅]₃} (m = 70, 90, and 130 as black, red, and blue, respectively) measured in CDCl₃.

Figure S15. ¹³C NMR spectra of six-arm star-shaped 6a-{**PHNHT**₅-[b-**PBNP**₅-(b-**PTNP**₁₁₀)₂]₃} (a) and trefoil-shaped tricyclic c-{**PHNHT**₅-[(b-**PTNP**₁₁₀)₂-b-**PBNP**₅]₃} (b) measured in CDCl₃.

Figure S16. Some possible (defective) structures of cyclic polymers in ROMP-based blockingcyclization process for synthesizing trefoil-shaped tricyclic polymer, including (a) one segment in one ring passes through another ring, (b) one ladderphane **PBNP** in one ring connects with another ring, and (c) a number of the residual olefinic protons on norbornenyl ring.

6a-{PHNHT ₅ -[b-PB	$SNP_{5}-(b-PTNP_{110})_{2}]_{3}$	<i>c</i> -{ PHNHT ₅ -[(<i>b</i> -	F] /F]	
$Log(M_w)$	$[\eta]_{6a}$ (mL/g)	$Log(M_w)$	$[\eta]_c (mL/g)$	$[\eta]_c/[\eta]_{6a}$
5.14	25.1	5.14	21.4	0.85
5.2	26.7	5.2	22.3	0.84
5.3	30.1	5.3	25.2	0.84
5.4	35.6	5.4	29.4	0.83
5.5	42.1	5.5	34.0	0.81

Table S2. Intrinsic viscosity data over a range of M_w for trefoil-shaped tricyclic and six-arm star-shaped polymers, and $[\eta]_c/[\eta]_{6a}$.

Entry	Polymer	$D_{\rm h}({\rm nm})$				
1	<i>c</i> -{ PHNHT ₅ -[(<i>b</i> - PTNP ₇₀) ₂ - <i>b</i> - PBNP ₅] ₃ }	24				
2	c -{PHNHT ₅ -[$(b$ -PTNP ₉₀) ₂ - b -PBNP ₅] ₃ }	38				
3	<i>c</i> -{ PHNHT ₅ -[(<i>b</i> - PTNP ₁₁₀) ₂ - <i>b</i> - PBNP ₅] ₃ }	51				
4	<i>6a</i> -{ PHNHT ₅ -[<i>b</i> - PBNP ₅ -(<i>b</i> - PTNP ₁₁₀) ₂] ₃ }	59				
5	c -{PHNHT ₅ -[(b -PTNP ₁₃₀) ₂ - b -PBNP ₅] ₃ }	68				

Table S3. Hydrodynamic diameter of polymers by DLS.

Figure 17. UV-vis spectra of hexafunctional monomer **HNHT** (black), monofunctional monomer **TNP** (red) and difunctional monomer **BNP** (blue) in THF solution at 0.02 mg mL⁻¹.

Figure S18. TGA curves of six-arm star-shaped and trefoil-shaped tricyclic polymers.

3. Modification of trefoil-shaped tricyclic polymer containing pentafluorophenyl ester

Scheme S4. POSS-modification of trefoil-shaped tricyclic polymer

Figure S19. ¹H NMR spectra of (a) POSS-modified six-arm star-shaped *6a*-{**PHNHT**₅-[*b*-**PBNP**₅-(*b*-**P**(**TNP**₈₅-*co*-**POSSNI**₂₅))₂]₃}, (b) POSS-modified trefoil-shaped tricyclic *c*-{**PHNHT**₅-[(*b*-**P**(**TNP**₈₅-*co*-**POSSNI**₂₅))₂-*b*-**PBNP**₅]₃}, and (c) trefoil-shaped tricyclic *c*-{**PHNHT**₅-[(*b*-**P**(**TNP**₈₅-*co*-**PFNI**₂₅))₂-*b*-**PBNP**₅]₃} measured in CDCl₃.

Figure S20. ¹³C NMR spectra of (a) POSS-modified six-arm star-shaped 6a-{PHNHT₅-[b-PBNP₅-(b-P(TNP₈₅-co-POSSNI₂₅))₂]₃} and (b) POSS-modified trefoil-shaped tricyclic c-{PHNHT₅-[(b-P(TNP₈₅-co-POSSNI₂₅))₂-b-PBNP₅]₃} measured in CDCl₃.

Figure S21. GPC traces of polymers (a) six-arm star-shaped 6a-{PHNHT₅-[b-PBNP₅-(b-P(TNP₈₅-co-PFNI₂₅))₂]₃} (black) and trefoil-shaped tricyclic c-{PHNHT₅-[(b-P(TNP₈₅-co-PFNI₂₅))₂-b-PBNP₅]₃} (red). (b) POSS-modified six-arm star-shaped 6a-{PHNHT₅-[b-PBNP₅-(b-P(TNP₈₅-co-POSSNI₂₅))₂]₃} (black) and POSS-modified trefoil-shaped tricyclic c-{PHNHT₅-[(b-P(TNP₈₅-co-POSSNI₂₅))₂]₃} (black) and POSS-modified trefoil-shaped tricyclic c-{PHNHT₅-[(b-P(TNP₈₅-co-POSSNI₂₅))₂]₃} (red).

Figure S22. DLS diagrams of (a) six-arm star-shaped 6a-{PHNHT₅-[b-PBNP₅-(b-P(TNP₈₅-co-PFNI₂₅))₂]₃} (black) and trefoil-shaped tricyclic c-{PHNHT₅-[(b-P(TNP₈₅-co-PFNI₂₅))₂-b-PBNP₅]₃} (red) in THF at 1 mg mL⁻¹. (b) POSS-modified six-arm star-shaped 6a-{PHNHT₅-[b-PBNP₅-(b-P(TNP₈₅-co-POSSNI₂₅))₂]₃} (black) and POSS-modified trefoil-shaped tricyclic c-{PHNHT₅-[(b-P(TNP₈₅-co-POSSNI₂₅))₂]₃} (black) and POSS-modified trefoil-shaped tricyclic c-{PHNHT₅-[(b-P(TNP₈₅-co-POSSNI₂₅))₂]₃} (red) in THF at 1 mg mL⁻¹.

Figure S23. TEM images of modified trefoil-shaped tricyclic polymer c-{PHNHT₅-[(b-P(TNP₈₅-co-POSSNI₂₅))₂-b-PBNP₅]₃} film made from THF solution at 5×10⁻⁴ mg mL⁻¹.

Figure S24. TEM images of modified trefoil-shaped tricyclic polymer *c*-{**PHNHT**₅-[(*b*-**P**(**TNP**₈₅-*co*-**POSSNI**₂₅))₂-*b*-**PBNP**₅]₃} film made from THF solution at 1×10^{-3} mg mL⁻¹.

References

- 1 A. N. Cammidge, H. Gopee and H. Patel, Tetrahedron Lett., 2009, 50, 3513-3515.
- 2 O. Kocyigit and E. Guler, J. Organomet. Chem., 2011, 696, 3106-3112.