## Electronic Supplementary Information (ESI)

Efficient synthesis of trefoil-shaped tricyclic polymers by ROMP-based blocking-cyclization technique<br>Hao Wang, Cuihong Ma, Zhiying Han, Xiaojuan Liao, (id Ruyi Sun* and Meiran Xie (iD*<br>School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241,

China.E-mail: rysun@chem.ecnu.edu.cn; mrxie@chem.ecnu.edu.cn

## Contents

1. Synthesis and characterization of monomers
2. Synthesis and characterization of polymers
3. Modification of trefoil-shaped tricyclic polymer containing pentafluorophenyl ester units

References

## 1. Synthesis and characterization of monomers

Synthesis of 2,3,6,7,10,11-hexa(methyl oxohexanoate) triphenylene (HMHT)
Under nitrogen atmosphere, 2,3,6,7,10,11-hexahydroxytriphenylene (HHT) (0.3 g, 0.9 $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.7 \mathrm{~g}, 27.0 \mathrm{mmol})$ were dispersed into 40 mL of $\mathrm{CH}_{3} \mathrm{CN}$ in a 100 mL three-necked flask, methyl-6-bromohexanoate ( $3.4 \mathrm{~g}, 16.2 \mathrm{mmol}$ ) was then added after 30 $\min$, and the reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 48 h . Upon cooling, the reaction mixture was filtered, and the solvent was removed under reduced pressure. The solid was purified by column chromatography on silica gel using $\mathrm{PE} / \mathrm{EA}=6: 1$ as eluent, to afford pale yellow powder, HMHT $(0.7 \mathrm{~g}, 70 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.81$ (s, 6 H , triphenylene), $4.22\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.68\left(\mathrm{~d}, 18 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.39\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2}\right)$, $1.96\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.78\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.65-1.60\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 174.05,148.87,123.63,107.31,69.32,51.50,34.01$, 29.15, 25.77, 24.76.

## Synthesis of 2,3,6,7,10,11-hexa(oxohexanoic acid) triphenylene (HOHT)

Under nitrogen atmosphere, HMHT ( $0.6 \mathrm{~g}, 0.55 \mathrm{mmol}$ ) and $\mathrm{KOH}(0.55 \mathrm{~g}, 9.9 \mathrm{mmol})$ were dissolved into mixed solvent ( 30 mL of MeOH and 5 mL of deionized water) in a 50 mL three-necked flask and stirred at $50^{\circ} \mathrm{C}$ for 5 days. After cooling, the solvent was removed under reduced pressure, then the $4 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ solution was added dropwise to the reaction mixture until the pH value for 2 , filtered with suction and dried in a vacuum oven overnight, and a yellow solid of HOHT was obtained ( $0.47 \mathrm{~g}, 85 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO- $d_{6}$, $\mathrm{ppm}): \delta 12.00(\mathrm{~s}, 6 \mathrm{H}, \mathrm{COOH}), 7.97\left(\mathrm{~s}, 6 \mathrm{H}\right.$, triphenylene), $4.23\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.27(\mathrm{t}$, $\left.12 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2}\right), 1.83\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.64\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.54(\mathrm{~m}, 12 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ ). ${ }^{13} \mathrm{C}$ NMR ( 125 MHz, DMSO- $d_{6}, \mathrm{ppm}$ ): $\delta 174.59,148.65,123.04,107.33$, 68.77, 33.86, 28.77, 25.50, 24.48.

Synthesis of 2,3,6,7,10,11-hexa(N-4-(phenyl norbornene dicarboximide) oxohexanoate) triphenylene (HNHT)

Under nitrogen atmosphere, HOHT ( $0.4 \mathrm{~g}, 0.4 \mathrm{mmol}$ ), NDI ( $1.2 \mathrm{~g}, 4.8 \mathrm{mmol}$ ) and DMAP $(1.5 \mathrm{~g}, 12 \mathrm{mmol})$ were dissolved into 60 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 100 mL three-necked flask under stirring 30 min , and the $\mathrm{EDCI} \cdot \mathrm{HCl}(2.3 \mathrm{~g}, 12 \mathrm{mmol})$ was added to the reaction mixture and stirred at room temperature for 5 days. The solvent was removed under reduced pressure. The solid was purified by column chromatography on silica gel using $\mathrm{PE} / \mathrm{EA}=$ $1: 2$ as eluent to afford white powder, HNHT ( $0.78 \mathrm{~g}, 80 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 7.84$ (m, 6 H , triphenylene), $7.14(\mathrm{~m}, 24 \mathrm{H}$, aromatic), $6.23(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 4.25$ (t, 12H, OCH $\mathrm{O}_{2} \mathrm{CH}_{2}$ ), $3.48(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCCHCH}), 3.39(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CHCHCH}), 2.61(\mathrm{t}, 12 \mathrm{H}$, $\left.\mathrm{O}=\mathrm{CCH}_{2}\right), 1.99\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.87\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.77(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}\right), 1.70\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.59\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 176.76,171.73,150.50,149.00,134.75,129.28,127.72,122.30,107.39$, 77.36, 69.37, 52.38, 45.90, 45.65, 34.42, 29.28, 25.88, 24.82.


Scheme S1. Synthesis of 2,3,6,7,10,11-hexa(N-4-(phenyl norbornene dicarboximide) oxohexanoate) triphenylene (HNHT).

HNHT was prepared according to a previously reported method. ${ }^{1,2}$ From ${ }^{1} \mathrm{H}$ NMR spectrum (Figure S1a), the ratios of the integral area of protons $\mathrm{H}_{\mathrm{a}}$ at 6.23 ppm to those of protons $\mathrm{H}_{\mathrm{k}}$ at 4.25 ppm and protons $\mathrm{H}_{1}$ at 7.84 ppm and were calculated to be 12:12:6, which matched well with the theoretical values. In addition, the ${ }^{13} \mathrm{C}$ NMR (Figure S1b) and ATRIR (Figure S2) spectra were also analyzed, revealing the successful synthesis of monomer

## HNHT.



Figure S1. (a) ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) and (b) ${ }^{13} \mathrm{C}$ NMR ( 125 MHz ) spectra of HNHT measured in $\mathrm{CDCl}_{3}$.


Figure S2. ATR-IR spectrum of HNHT.

## 2. Synthesis and characterization of polymers

## Synthesis of complex ladderphane PHNHT $_{5}$

The hexafunctional monomer 2,3,6,7,10,11-hexa(N-4-(phenyl norbornene dicarboximide) oxohexanoate) triphenylene (HNHT) ( $24.3 \mathrm{mg}, 0.01 \mathrm{mmol}$ ) was dissolved into 48 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 100 mL of Schlenk tube. Ru-III ( $10.6 \mathrm{mg}, 0.012 \mathrm{mmol}$ ) was dissolved into 2 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 10 mL of Schlenk tube. After degassed with three freeze-vacuumthaw cycles, the solution of Ru-III was then injected into 100 mL Schlenk tube via a syringe under stirring at $30^{\circ} \mathrm{C}$ for 1 h . The solution was precipitated into methanol and dried under vacuum to afford homopolymer PHNHT $_{5}$ as a colorless solid ( $22.8 \mathrm{mg}, 94 \%$ ). GPC: $M_{\mathrm{n}}=4.5 \mathrm{kDa}, M_{\mathrm{a}}=12.8 \mathrm{kDa}, ~ Đ=1.24 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.82$ (m, triphenylene), 7.26 ( d , aromatic), $6.03-5.22$ ( $\mathrm{m}, \mathrm{CH}=\mathrm{CH}$ on PNBE backbone), 4.45$4.05\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.58-2.80(\mathrm{~m}, \mathrm{OCCHCH}+\mathrm{CHCHCH}), 2.76-2.47\left(\mathrm{~s}, \mathrm{O}=\mathrm{CCH}_{2}\right), 2.18-$ $1.52\left(\mathrm{~m}, \mathrm{CHCH}_{2} \mathrm{CH}+\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

Ladderphanes PHNHT $_{3}$ and PHNHT $_{10}$ were also synthesized in a similar way with the above synthetic route.

## Synthesis of end-capped ladderphane PHNHT $_{5}$-6RD

The synthesis process was similar to that of PHNHT $_{5}$, as shown in Scheme S2. The hexafunctional monomer HNHT ( $24.3 \mathrm{mg}, 0.01 \mathrm{mmol}$ ) was dissolved into 48 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 100 mL of Schlenk tube. Ru-III ( $10.6 \mathrm{mg}, 0.012 \mathrm{mmol}$ ) was dissolved into 2 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 10 mL of Schlenk tube. The terminating agent BRD ( $52.2 \mathrm{mg}, 0.12$ mmol) was dissolved into 1 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 10 mL of Schlenk tube. After degassed with three freeze-vacuum-thaw cycles, the solution of Ru-III was injected into 100 mL Schlenk tube via a syringe under stirring at $30^{\circ} \mathrm{C}$ for 1 h . The solution of BRD was then injected into the reaction mixture and stirred for overnight. The reaction mixture was precipitated into the mixed solvent (methanol/acetone $=20: 20$ ), and dried under vacuum to
afford RD group-terminated homopolymer $\mathbf{P H N H T}_{5}$ - $6 \mathbf{R D}$ ( $22.8 \mathrm{mg}, 94 \%$ ). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.82(\mathrm{~m}$, triphenylene), 7.22 (d, aromatic), $5.94-5.07(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}$ on PNBE backbone), 4.77-4.58 (m, $\left.\mathrm{CHCH}_{2} \mathrm{O}\right), 4.46-3.99\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}+\mathrm{NCH}_{2} \mathrm{CO}\right), 3.66(\mathrm{~m}$, $\left.\mathrm{SCH}_{2} \mathrm{CO}\right), 3.60-2.82(\mathrm{~m}, \mathrm{OCCHCH}+\mathrm{CHCHCH}), ~ 2.75-2.47\left(\mathrm{~s}, \mathrm{O}=\mathrm{CCH}_{2}\right), 2.20-1.53(\mathrm{~m}$, $\mathrm{CHCH}_{2} \mathrm{CH}+\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ ).

End-capped ladderphane $\mathbf{P H N H T}_{3}-6$ RD was also synthesized in a similar way as above.


HNHT


PHNHT $_{n}$


Scheme S2. Synthesis of homopolymers $\mathbf{P H N H T}_{\mathrm{n}}$ and $\mathbf{P H N H T}_{\mathrm{n}}$-6RD by ROMP.

Table S1. Characteristics for homopolymers. ${ }^{a}$

| Entry | Polymer | [HNHT] $/[\mathrm{Cat}]^{\text {b }}$ | t (h) | $M_{\mathrm{n}}{ }^{c}(\mathrm{kDa})$ | $\pm^{c}$ | Yield (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1{ }^{d}$ | $\mathrm{PHNHT}_{3}$ | 3:6 | 1.0 | 2.7 | 1.21 | 96 |
| $2^{d}$ | $\mathrm{PHNHT}_{5}$ | 5:6 | 1.0 | 4.5 | 1.24 | 94 |
| $3{ }^{d}$ | $\mathrm{PHNHT}_{10}$ | 10:6 | 1.0 | 4.9 | 1.25 | 55 |
| $4^{d}$ | $\mathrm{PHNHT}_{10}$ | 10:6 | 4.0 | 1 | 1 | 68 |
| $5^{e}$ | $\mathrm{PHNHT}_{5}$ | 5:6 | 1.0 | 1 | 1 | 92 |
| $6{ }^{f}$ | $\mathrm{PHNHT}_{5}$ | 5:6 | 1.0 | 6.1 | 1.34 | 96 |
| 78 | $\mathbf{P H N H T}_{5}$ | 5:6 | 1.0 | 4.4 | 1.26 | 93 |

${ }^{a}$ Polymerization conditions: using Ru-III as catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent, temperature $=30{ }^{\circ} \mathrm{C} .{ }^{b} \mathrm{The}$ feed ratio of monomer to catalyst for polymerization of hexafunctional monomer. ${ }^{\text {c Determined by GPC in }}$ THF relative to monodispersed polystyrene standards. ${ }^{d}[\mathbf{H N H T}]=2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ refers to the concentration of monomer. ${ }^{e}[\mathbf{H N H T}]=1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ refers to the concentration of monomer. ${ }^{f}[$ HNHT] $=5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ refers to the concentration of monomer. ${ }^{g}[\mathbf{H N H T}]=1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ refers to the concentration of monomer.


Figure S3. GPC traces in THF of homopolymers (a) PHNHT $_{3}$ (black) and PHNHT ${ }_{3}$-6RD (red), (b) $\mathbf{P H N H T}_{5}$ (black) and PHNHT $_{5}-6$ RD (red), and (c) PHNHT $_{10}$ obtained at a monomer concentration of $2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$, as well as (d) $\mathbf{P H N H T}_{\mathrm{n}}$ obtained at a monomer concentration of $5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ (black) and PHNHT $_{5}$ obtained at a monomer concentration of $1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ (red).


Figure S4. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) spectrum of $\mathbf{P H N H T}{ }_{5}$ measured in $\mathrm{CDCl}_{3}$.


Figure S5. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) spectrum of $\mathbf{P H N H T} 3_{3}$ measured in $\mathrm{CDCl}_{3}$.


Figure S6. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) spectrum of $\mathbf{P H N H T}_{5}$ formed under a low monomer concentration of $1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ measured in $\mathrm{CDCl}_{3}$.


Figure S7. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{P H N H T}_{5}-6 \mathbf{R D}$ measured in $\mathrm{CDCl}_{3}$.

The actual integral area ratio of protons $\mathrm{H}_{1}$ to that of $\mathrm{H}_{\mathrm{m}}$ for PHNHT $_{3}-6$ RD (Fig. $\mathrm{S} 8 \dagger$ ) was calculated to be $18: 12$, which was in agreement with the theoretical area ratio of 18:12 based on three HNHT units and six RD end-groups. Furthermore, compared with the integral area ratio of 18:36.18 for the protons $\mathrm{H}_{1}$ to the protons $\mathrm{H}_{\mathrm{k}}$ on $\mathbf{P H N H T}_{3}$ (Fig. $\mathrm{S} 5 \dagger$ ), the actual integral area ratio for the protons $\mathrm{H}_{1}$ to the protons $\mathrm{H}_{\mathrm{k}+\mathrm{n}}$ on $\mathbf{P H N H T} \mathbf{3}_{3}$-6RD (Fig. $\mathrm{S} 8 \dagger)$ increased to 18:48.07, and the increased proton numbers of about 12 (48.07-36.18 = 11.89) was derived from the methylene protons $H_{n}$ of six $\mathbf{R D}$ groups, which also confirmed that PHNHT $_{3}$ owned six living ends.


Figure S8. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) spectrum of $\mathbf{P H N H T}_{3}$-6RD measured in $\mathrm{CDCl}_{3}$.

In addition, the actual integral area ratio of protons $H_{1}$ to that of $H_{m}$ for PHNHT $_{5}$-6RD formed under a lower monomer concentration of $1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\left(6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right.$ of norbornene group) (Fig. $\mathrm{S} 9 \dagger$ ) was calculated to be $30: 12.11$, which was in agreement with the theoretical area ratio of 30:12 based on three HNHT units and six RD end-groups. By comparison, the integral area ratio of $30: 60.27$ for the protons $H_{1}$ to the protons $H_{k}$ on

PHNHT $_{5}$ (Fig. S6 $\dagger$ ), the actual integral area ratio for the protons $\mathrm{H}_{1}$ to the protons $\mathrm{H}_{\mathrm{k}+\mathrm{n}}$ on $\mathbf{P H N H T}_{5}-6 \mathbf{R D}$ (Fig. S9 $\dagger$ ) increased to $30: 72.14$, and thus the increased proton number of about $12(72.14-60.27=11.87)$ was derived from the methylene protons $H_{n}$ of six RD groups, which also confirmed that PHNHT $_{5}$ owned six living ends.


Figure S9. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) spectrum of $\mathbf{P H N H T}_{5}-6 \mathbf{R D}$ formed under a lower monomer concentration of $1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ measured in $\mathrm{CDCl}_{3}$.
(a)

(b)

(c)
(d)



Figure S10. Possible defective ladderphane structures of $\mathbf{P H N H T}_{\mathrm{n}}(\mathrm{a}, \mathrm{b})$ and $\mathbf{P H N H T}_{\mathrm{n}}-\mathbf{x} \mathbf{R D}(\mathrm{c}, \mathrm{d})$.


Figure S11. TEM images (a-c) and the corresponding SAED pattern (d) of polymeric ladderphane PHNHT $_{5}$.

## Synthesis of six-arm star-shaped polymers

A 50 mL of Schlenk tube was charged with hexafunctional monomer HNHT ( $2.4 \mathrm{mg}, 1.0$ $\mu \mathrm{mol})$ dissolved in 2 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Difunctional monomer BNP $(4 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$ was dissolved in 1 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 25 mL of Schlenk tube. Ru-III ( $1.1 \mathrm{mg}, 1.2 \mu \mathrm{~mol}$ ) and monofunctional monomer TNP ( $55.1 \mathrm{mg}, 0.13 \mathrm{mmol})$ were dissolved in 1 mL and 4 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in two 50 mL of Schlenk tubes, respectively. After degassed with three freeze-vacuum-thaw cycles, the solution of Ru-III was injected into the HNHT solution via a syringe under vigorous stirring at $30^{\circ} \mathrm{C}$ for 1 h , and then $\mathbf{B N P}$ solution was injected into the reaction mixture and stirred for further 0.5 h . At last, the solution of TNP was injected into the reaction mixture and stirred for 2 h , affording the six-arm star-shaped polymer $6 a$ $\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-\left(b-\mathbf{P T N P}_{110}\right)_{2}\right]_{3}\right\}(57.2 \mathrm{mg}, 93 \%) . \mathrm{GPC}: M_{\mathrm{n}}=81.8 \mathrm{kDa}, ~ Ð=1.74$. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 8.64$ (m, pery), 8.03-7.77 (m, triphenylene + $\left.\mathrm{F}_{3} \mathrm{CCCH}\right), 7.76-7.60\left(\mathrm{~m}, \mathrm{~F}_{3} \mathrm{CCCHCCF}_{3}\right), 7.58-7.32(\mathrm{~m}$, aromatic +CCCH$), 7.01-6.52(\mathrm{~m}$, aromatic), 5.64-5.15 (m, $\mathrm{CH}=\mathrm{CH}$ on PNBE backbone), 4.32-4.11 (m, $\mathrm{OCH}_{2} \mathrm{CH}_{2}+$
$\left.\mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{9}\right), 3.52-2.50\left(\mathrm{~m}, \mathrm{OCCHCH}+\mathrm{CHCHCH}+\mathrm{O}=\mathrm{CCH}_{2}\right), 2.10-1.11(\mathrm{~m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{CHCH}_{2} \mathrm{CH}+\mathrm{OCCH}_{2}\left(\mathrm{CH}_{2}\right)_{9}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 175.52$, $173.62,166.26,162.545,148.40,143.13,132.21,131.94,127.93,127.84,125.75,124.58$, $122.41,119.25,113.21,49.91,49.69,47.64,46.75,44.90,40.20,39.95,39.04,29.69$, 22.68, 14.11 .

Synthesis of trefoil-shaped tricyclic polymer containing pentafluorophenyl ester units A 50 mL of Schlenk tube was charged with hexafunctional monomer HNHT ( $2.4 \mathrm{mg}, 1.0$ $\mu \mathrm{mol})$ dissolved in 2 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Difunctional monomer BNP $(4 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$ was dissolved in 1 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 25 mL of Schlenk tube. Ru-III ( $1.1 \mathrm{mg}, 1.2 \mu \mathrm{~mol}$ ) was dissolved in 1 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 25 mL of Schlenk tube, and the mixture of monofunctional TNP ( $42.6 \mathrm{mg}, 0.10 \mathrm{mmol}$ ) and PFNI ( $13.3 \mathrm{mg}, 0.03 \mathrm{mmol}$ ) were dissolved in 4 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 24 mL of Schlenk tube. After degassed with three freeze-vacuum-thaw cycles, the solution of Ru-III was injected into the HNHT solution via a syringe under vigorous stirring at $30^{\circ} \mathrm{C}$ for 1 h , and then the solution of TNP and PFNI was injected into the reaction mixture and stirred for further 0.5 h . At last, BNP solution was injected into the reaction mixture and stirred for 2 h , affording the trefoilshaped tricyclic polymer $c$ - $\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\mathbf{P F N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}(59.2 \mathrm{mg}$, $95 \%$ ). GPC: $M_{\mathrm{n}}=71.6 \mathrm{kDa}, Ð=1.76 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 8.67$ (m, pery), 8.37-7.31 ( m , triphenylene + aromatic $+\mathrm{CCCH}+\mathrm{F}_{3} \mathrm{CCCH}+\mathrm{F}_{3} \mathrm{CCCHCCF}_{3}$ ), 6.96-6.45 (m, aromatic), 5.97-5.16 (m, $\mathrm{CH}=\mathrm{CH}$ on PNBE backbone), 4.34-4.13 $\left(\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}+\right.$ $\left.\mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{9}\right), 3.65-2.38\left(\mathrm{~m}, \mathrm{OCCHCH}+\mathrm{CHCHCH}+\mathrm{O}=\mathrm{CCH}_{2}\right), 2.18-1.10(\mathrm{~m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{CHCH} 2 \mathrm{CH}+\mathrm{OCCH}_{2}\left(\mathrm{CH}_{2}\right)_{9}\right)$.

Six-arm star-shaped polymer $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\mathbf{P F N I}_{25}\right)\right)_{2}\right]_{3}\right\}$ was synthesized in a similar way with the above synthetic route.

## Post-polymerization of trefoil-shaped tricyclic polymer containing pentafluorophenyl ester units

Under nitrogen atmosphere, $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\mathbf{P F N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}(30 \mathrm{mg}$, 0.014 mmol of pentafluorophenyl ester group) and $\mathrm{NH}_{2}-\mathrm{POSS}(61.3 \mathrm{mg}, 0.07 \mathrm{mmol})$ were dissolved into 5 mL of dry THF in a 50 mL of Schlenk tube, and the triethylamine (14.1 $\mathrm{mg}, 0.14 \mathrm{mmol}$ ) was added in Schlenk tube and stirred at $50^{\circ} \mathrm{C}$ for 3 days. The reaction mixture was precipitated into the mixed solvent (methanol/ether $=20: 10$ ), and dried under vacuum to afford the POSS-modified six-arm star-shaped polymer $c$ - $\left\{\mathbf{P H N H T}_{5}-[(b-\right.$ $\left.\left.\left.\mathbf{P}\left(\mathbf{T N P}_{85}-\mathrm{co}-\mathbf{P O S S N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\} . \mathrm{GPC}: M_{\mathrm{n}}=122.8 \mathrm{kDa}, ~ Đ=1.68 .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 8.66$ (m, pery), 8.09-7.30 (m, triphenylene + aromatic $+\mathrm{CCCH}+$ $\mathrm{F}_{3} \mathrm{CCCH}+\mathrm{F}_{3} \mathrm{CCCHCCF}_{3}$ ), 7.01-6.48 (m, aromatic), 6.21-5.18 (m, $\mathrm{CH}=\mathrm{CH}$ on PNBE backbone $)$, 4.36-4.09 $\left(\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}+\mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{9}\right), 3.79-2.40(\mathrm{~m}, \mathrm{OCCHCH}+\mathrm{CHCHCH}$ $\left.+\mathrm{O}=\mathrm{CCH}_{2}+\mathrm{POSS}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.14-0.74\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{CHCH} 2 \mathrm{CH}+\mathrm{OCCH}_{2}\left(\mathrm{CH}_{2}\right)_{9}\right.$ $+\mathrm{NCH}_{2} \mathrm{CH}_{2}+\mathrm{CH}$ on POSS), 0.72-0.49 (m, POSS-CH2 $\mathrm{CH}_{2}$ ). ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 175.28,172.88,166.21,162.27,148.41,143.14,132.24,131.95,131.70,127.83$, $126.41,125.88,125.75,124.58,122.41,119.22,113.21,53.41,49.75,47.65,46.73,44.92$, 40.75, 40.21, 39.98, 29.69, 29.06, 28.88, 25.66, 23.83, 22.43, 14.11, 9.46.

Six-arm star-shaped polymer $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\mathbf{P O S S N I}_{25}\right)\right)_{2}\right]_{3}\right\}$ was synthesized in a similar way with the above synthetic route.




Scheme S3. Synthesis of six-arm star-shaped polymers by successive ROMP.


Figure S12. GPC traces of trefoil-shaped tricyclic polymers $\left.c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P T N P}_{\mathrm{m}}\right)_{2}-b-\mathbf{P B N P}\right]_{5}\right]_{3}\right\}(\mathrm{m}$ $=70,90$, and 130 for black, red, and blue, respectively).


Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra of six-arm star-shaped $\sigma a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-\left(b-\mathbf{P T N P}_{110}\right)_{2}\right]_{3}\right\}$ (a) and trefoil-shaped tricyclic $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P T N P}_{110}\right)_{2}-b-\mathbf{P B N P}\right]_{5}\right]_{3}$ (b) measured in $\mathrm{CDCl}_{3}$.


Figure S14. ${ }^{1} \mathrm{H}$ NMR spectra of trefoil-shaped tricyclic polymers $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P T N P}_{\mathrm{m}}\right)_{2}-b-\right.\right.$ $\left.\left.\mathbf{P B N P}_{5}\right]_{3}\right\}\left(\mathrm{m}=70,90\right.$, and 130 as black, red, and blue, respectively) measured in $\mathrm{CDCl}_{3}$.


Figure S15. ${ }^{13} \mathrm{C}$ NMR spectra of six-arm star-shaped $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-\left(b-\mathbf{P T N P}_{110}\right)_{2}\right]_{3}\right\}$ (a) and trefoil-shaped tricyclic $\left.c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P T N P}_{110}\right)_{2}-b-\mathbf{P B N P}\right]_{5}\right]_{3}\right\}$ (b) measured in $\mathrm{CDCl}_{3}$.
(a)

(b)

(c)


Figure S16. Some possible (defective) structures of cyclic polymers in ROMP-based blockingcyclization process for synthesizing trefoil-shaped tricyclic polymer, including (a) one segment in one ring passes through another ring, (b) one ladderphane PBNP in one ring connects with another ring, and (c) a number of the residual olefinic protons on norbornenyl ring.

Table S2. Intrinsic viscosity data over a range of $M_{\mathrm{w}}$ for trefoil-shaped tricyclic and six-arm star-shaped polymers, and $[\eta]_{c} /[\eta]_{6 a}$.

| $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-\left(b-\mathbf{P T N P}_{110}\right)_{2}\right]_{3}\right\}$ | $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P T N P}_{110}\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ | $[\eta]_{c} /[\eta]_{6 a}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\log \left(M_{\mathrm{w}}\right)$ | $[\eta]_{6 a}(\mathrm{~mL} / \mathrm{g})$ | $\log \left(M_{\mathrm{w}}\right)$ | $[\eta]_{c}(\mathrm{~mL} / \mathrm{g})$ | 0.85 |
| 5.14 | 25.1 | 5.14 | 21.4 | 0.84 |
| 5.2 | 26.7 | 5.2 | 22.3 | 0.84 |
| 5.3 | 30.1 | 5.3 | 25.2 | 0.83 |
| 5.4 | 35.6 | 5.4 | 29.4 | 0.81 |
| 5.5 | 42.1 | 5.5 | 34.0 |  |

Table S3. Hydrodynamic diameter of polymers by DLS.

| Entry | Polymer | $D_{\mathrm{h}}(\mathrm{nm})$ |
| :---: | :---: | :---: |
| 1 | $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P T N P}_{70}\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ | 24 |
| 2 | $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P T N P}_{90}\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ | 38 |
| 3 | $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P T N P}_{110}\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ | 51 |
| 4 | $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-\left(b-\mathbf{P T N P}_{110}\right)_{2}\right]_{3}\right\}$ | 59 |
| 5 | $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P T N P}_{130}\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ | 68 |



Figure 17. UV-vis spectra of hexafunctional monomer HNHT (black), monofunctional monomer TNP (red) and difunctional monomer BNP (blue) in THF solution at $0.02 \mathrm{mg} \mathrm{mL}^{-1}$.


Figure S18. TGA curves of six-arm star-shaped and trefoil-shaped tricyclic polymers.

## 3. Modification of trefoil-shaped tricyclic polymer containing pentafluorophenyl ester

 units

Scheme S4. POSS-modification of trefoil-shaped tricyclic polymer


Figure S19. ${ }^{1} \mathrm{H}$ NMR spectra of (a) POSS-modified six-arm star-shaped $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-(b-\right.\right.$ $\left.\left.\left.\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\mathbf{P O S S N I}_{25}\right)\right)_{2}\right]_{3}\right\}$, (b) POSS-modified trefoil-shaped tricyclic $c$ - $\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-\right.\right.\right.\right.$ $\left.\left.\left.\left.c o-\mathbf{P O S S N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$, and (c) trefoil-shaped tricyclic $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\mathbf{P F N I}_{25}\right)\right)_{2}-\right.\right.$ $\left.\left.b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ measured in $\mathrm{CDCl}_{3}$.


Figure S20. ${ }^{13} \mathrm{C}$ NMR spectra of (a) POSS-modified six-arm star-shaped $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-(b-\right.\right.$ $\left.\left.\left.\mathbf{P}\left(\mathbf{T N P}_{85}-\mathrm{co}-\mathbf{P O S S N I}_{25}\right)\right)_{2}\right]_{3}\right\}$ and (b) POSS-modified trefoil-shaped tricyclic $c$ - $\left\{\mathbf{P H N H T}_{5}-[(b-\right.$ $\left.\left.\left.\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\mathbf{P O S S N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}{ }_{5}\right]_{3}\right\}$ measured in $\mathrm{CDCl}_{3}$.


Figure S21. GPC traces of polymers (a) six-arm star-shaped $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5-}\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathbf{P F N I}_{25}\right)\right)_{2}\right]_{3}\right\}$ (black) and trefoil-shaped tricyclic $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\mathbf{P F N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ (red). (b) POSS-modified six-arm star-shaped $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathbf{P O S S N I}_{25}\right)\right)_{2}\right]_{3}\right\}$ (black) and POSS-modified trefoil-shaped tricyclic $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathbf{P O S S N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ (red).


Figure S22. DLS diagrams of (a) six-arm star-shaped $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathbf{P F N I}_{25}\right)\right)_{2}\right]_{3}\right\}$ (black) and trefoil-shaped tricyclic $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\mathbf{P F N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ (red) in THF at $1 \mathrm{mg} \mathrm{mL}^{-1}$. (b) POSS-modified six-arm star-shaped $6 a-\left\{\mathbf{P H N H T}_{5}-\left[b-\mathbf{P B N P}_{5}-(b-\right.\right.$ $\left.\left.\left.\mathbf{P}\left(\mathbf{T N P}_{85}-\mathrm{co}-\mathbf{P O S S N I}_{25}\right)\right)_{2}\right]_{3}\right\}$ (black) and POSS-modified trefoil-shaped tricyclic $c$ - $\left\{\mathbf{P H N H T}_{5}-[(b-\right.$ $\left.\left.\left.\mathbf{P}\left(\mathbf{T N P}_{85}-\mathrm{co}-\mathbf{P O S S N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ (red) in THF at $1 \mathrm{mg} \mathrm{mL}^{-1}$.


Figure S23. TEM images of modified trefoil-shaped tricyclic polymer $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathbf{P O S S N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ film made from THF solution at $5 \times 10^{-4} \mathrm{mg} \mathrm{mL}^{-1}$.


Figure S24. TEM images of modified trefoil-shaped tricyclic polymer $c-\left\{\mathbf{P H N H T}_{5}-\left[\left(b-\mathbf{P}\left(\mathbf{T N P}_{85}-c o-\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathbf{P O S S N I}_{25}\right)\right)_{2}-b-\mathbf{P B N P}_{5}\right]_{3}\right\}$ film made from THF solution at $1 \times 10^{-3} \mathrm{mg} \mathrm{mL}^{-1}$.

## References

1 A. N. Cammidge, H. Gopee and H. Patel, Tetrahedron Lett., 2009, 50, 3513-3515.

2 O. Kocyigit and E. Guler, J. Organomet. Chem., 2011, 696, 3106-3112.

