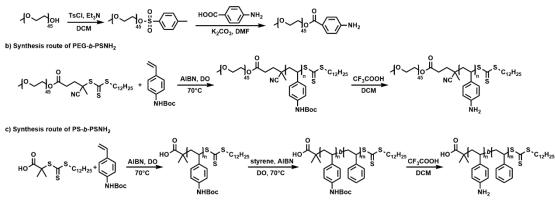
Supplementary Material


One-step Photo-induced Modification of Carbon Nanotubes via

Polymeric Diazonium Chemistry

Zixuan Zhu, Xinyi Pan and Yaning He*

Department of Chemical Engineering, Key Laboratory for Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China.

* Corresponding author. E-mail address: heyaning@mail.tsinghua.edu.cn (Y. He). a) Synthesis route of mPEG-NH₂

Scheme S1 Synthesis routes of (a) mPEG-NH₂, (b) PEG-*b*-PSNH₂ and (c) PS-*b*-PSNH₂.

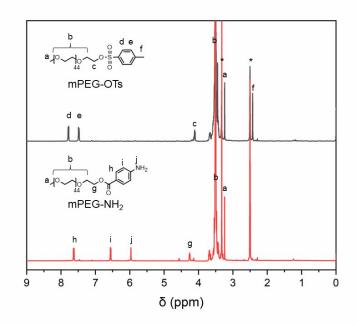


Fig. S1 ¹H NMR spectra of mPEG-OTs and mPEG-NH₂ in DMSO-d₆. Black asterisks (*) indicate the solvent and water peaks.

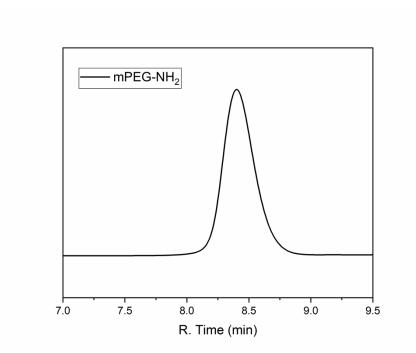


Fig. S2 GPC trace of aniline-terminated poly(ethylene glycol) (mPEG-NH₂). $M_n = 2700$, PDI = 1.04.

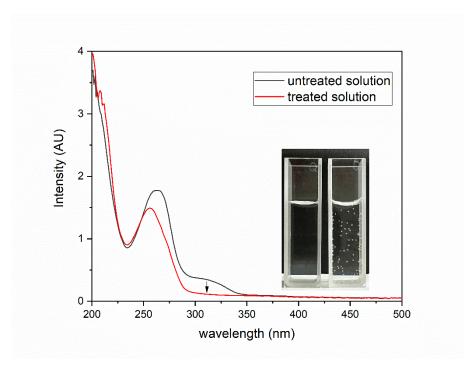
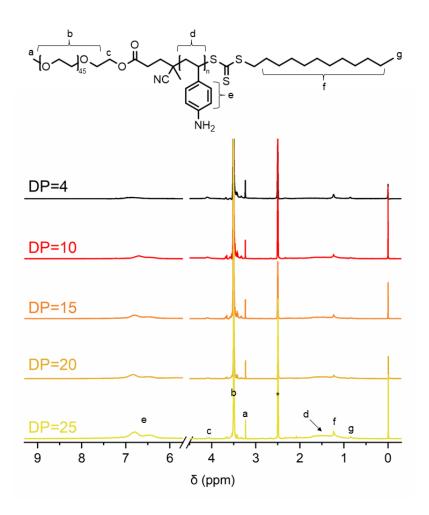



Fig. S3 UV-vis absorption spectra of mPEG- N_2^+ before and after UV irradiation (275 nm). The inset optical graph of untreated solution (left) and treated solution (right) showed the formation of tiny bubbles after irradiation.

Fig. S4 ¹H NMR spectra of PEG-*b*-PSNH₂ (DP = 4, 10, 15, 20, 25) in DMSO-d₆. Black asterisk (*) indicate the solvent peak.

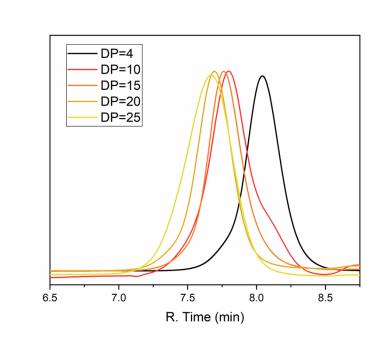


Fig. S5 GPC traces of block copolymer PEG-*b*-PSNHBoc (DP = 4, 10, 15, 20, 25).

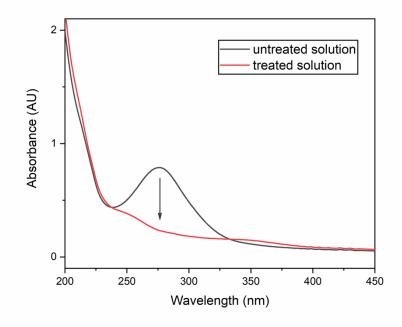


Fig. S6 UV-vis absorption spectra of PEG-*b*-PSN₂⁺ before and after UV irradiation (275 nm).

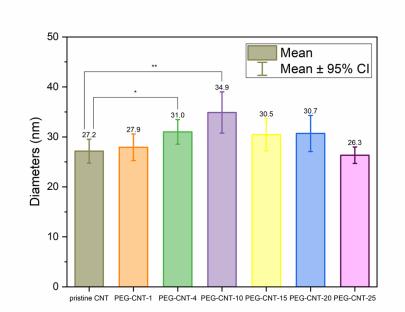


Fig. S7 Diameter distributions of pristine CNTs and PEG-CNTs after modification, where the statistically significant differences were only observed between pristine CNTs and PEG-CNT-4 (p<0.05) and between pristine CNTs and PEG-CNT-10 (p<0.01).

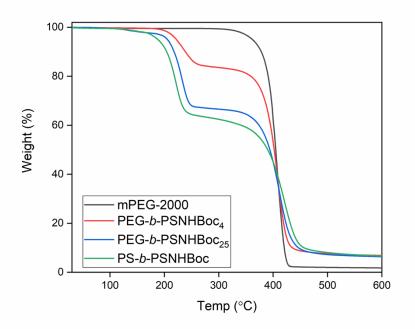
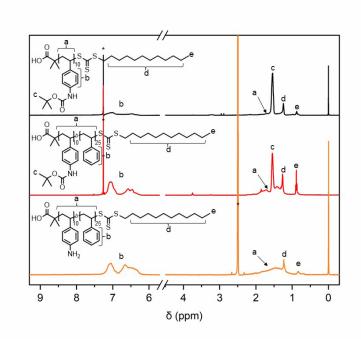



Fig. S8 TGA curves of mPEG-2000 and precursors of block polymeric diazonium salts.

Fig. S9 ¹H NMR spectra of PSNHBoc-DDMAT (black), PS-*b*-PSNHBoc (red) in CDCl₃ and PS-*b*-PSNH₂ (orange) in DMSO- δ_6 . Black asterisks (*) indicate the solvent peaks.

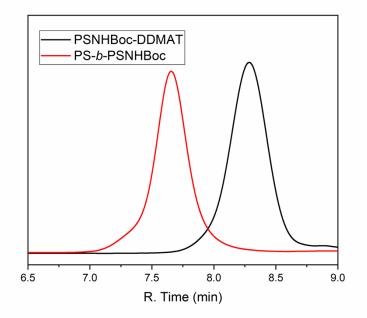


Fig. S10 GPC traces of PSNHBoc-DDMAT (black) and PS-b-PSNHBoc (red).

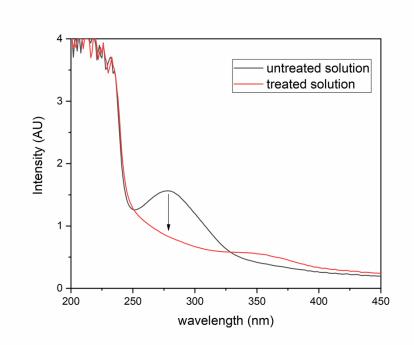


Fig. S11 UV-vis absorption spectra of $PS-b-PSN_2^+$ before and after UV irradiation (275 nm).

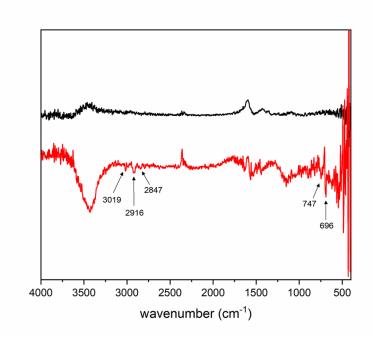


Fig. S12 FTIR spectra of pristine CNT (black) and PS-CNT (red).

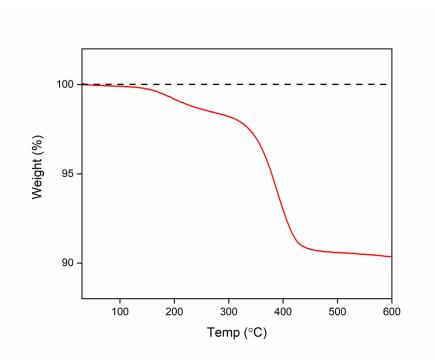


Fig. S13 TGA curve of PS-CNT (red) with dash line that highlights the original weight.

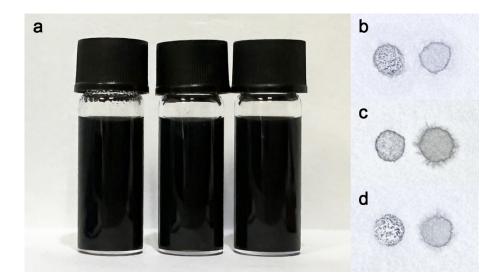


Fig. S14 (a) Organic suspensions of PS-CNT with the concentration of 1 mg/mL after 48 h. Bottles from left to right are suspensions in DMF, THF and acetone. Sediment on filter paper of 10 μ L suspension of pristine CNT (left) and PS-CNT (right) in (b) DMF, (c) THF and (d) acetone.

Table S1 Number Average Molecular Weights (M_n) and Corresponding Molecular Weight Distributions (M_w/M_n) of Block Copolymer PEG-*b*-PSNHBoc (DP = 4, 10, 15, 20, 25).

Polymer	$M_{ m n}$	$M_{ m w}/M_{ m n}$
PEG- <i>b</i> -PSNHBoc ₄	5.0×10 ³	1.06
PEG- <i>b</i> -PSNHBoc ₁₀	7.1×10 ³	1.09
PEG- <i>b</i> -PSNHBoc ₁₅	7.6×10 ³	1.06
PEG-b-PSNHBoc ₂₀	9.0×10 ³	1.06
PEG- <i>b</i> -PSNHBoc ₂₅	9.5×10 ³	1.08

Table S2 Number Average Molecular Weights (M_n) and Corresponding Molecular Weight Distributions (M_w/M_n) of PSNHBoc-DDMAT and PS-*b*-PSNHBoc.

Polymer	DP of PSNHBoc	DP of PS	M _n	$M_{\rm w}/M_{\rm n}$
PSNHBoc-DDMAT	10	/	3.4×10 ³	1.06
PS-b-PSNHBoc	10	25	9.4×10 ³	1.09

Table S3 Feed Amounts of Reagents in Diazotization of mPEG-NH₂ and PEG-b-PSNH₂

Polymer	V _{HCl} (mL)	$V_{\rm H2O}(mL)$	V _{NaNO2} (mL)
mPEG-NH ₂	0.15	3.54	0.06
$PEG-b-PSNH_2(DP = 4)$	0.15	3.36	0.24
$PEG-b-PSNH_2(DP =$	0.15	3.00	0.60
10)			
$PEG-b-PSNH_2(DP =$	0.15	2.70	0.90
15)			
$PEG-b-PSNH_2(DP =$	0.15	2.40	1.20
20)			
$PEG-b-PSNH_2(DP =$	0.15	2.10	1.50
25)			