Supporting Information

Reversible Breakage of C-S Bond: Function of DL-Methionine in PET-RDRP Catalyzed by Zinc Protoporphyrin

Hanyu Lv^a, Ziyu Wang^a, Jiaqi An^a, Ruiwen Hao^b, Zongye Wang^a and Yanwu Zhang^{*a}

^aSchool of Chemical Engineering, Zhengzhou University, 100# Science Road, Zhengzhou,

450001, P.R. China

^bJiangsu Yite New Materials Co., Ltd, Changzhou, 213000, China. E-mail: haoruiwen@jsyit e.cn

*Email: zhangyanwu@zzu.edu.cn

1. Experimental section.

Materials

DL-Methionine (99%, J&K), protoporphyrin (PTP, 92%, Laboratory made), N,Ndimethylformamide (DMF, 99.9%, Sigma-Aldrich), zinc dehydrate acetate (Zn(CH₃COO)₂·2H₂O, 99%, Sigma-Aldrich), methanol (99.5%, Sigma-Aldrich), Nisopropyl acrylamide (NIPAm, 99%, J&K), acrylamide (AM, 99%, J&K), N,N-Dimethylacrylamide (DMA, 99%, Levan), tert-Butyl acrylate (tBA, 99%, J&K), butyl acrylate (BA, 99%, Kermel), methyl methacrylate (MMA, 99%, Kermel), acrylic acid (AA, industrial-grade), sodium hydroxide (NaOH, 96%, Yong Da Chemical), dimethyl sulfoxide (DMSO, 99%, Sigma-Aldrich), ascorbic acid (AH₂, 99%, Kermel), sodium trifluoroacetate (NaTFA, 99%, aladdin), tetrahydrofuran (THF, 99%, aladdin), acetone (99%, aladdin) and dichloromethane (DCM, 99%, aladdin).

Characterization

Fourier transform-infrared (FT-IR) spectra were recorded on an FT-IR Nicole spectrometer over the range of 3480-485 cm⁻¹. UV-Vis absorption spectra were acquired on Shimadzu UV-2450 spectrometer. Fluorescence spectra were recorded on F-4500 Fluorescence spectrophotometer. ¹H NMR spectroscopy was conducted on a Bruker AV 400 spectrometer with Si(CH₃)₄ as an internal standard. Gel permeation chromatography (GPC) measurements were carried out by an Agilent 1100 series equipped with an RI-

G1362A RI detector and a PL gel Mixed-C column using DMF as the mobile phase at a flow rate of 1 mL min⁻¹ at 25 °C and carried out by an Agilent 1260 series equipped with an RI-G7162A RI detector and a PL aquagel-OH Mixed-M column using 0.05M Na₂SO₄ aqueous solution as the mobile phase at a flow rate of 1 mL min⁻¹ at 30 °C. The EMX-9.5/12 X-band spectrometer was used to carry out the Electron Paramagnetic Resonance (EPR) experiments, under magnetic field modulation, at 100 kHz, and the tested power intensity was 20 mW. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis was studied with a Bruker Reflex II time-of-flight mass spectrometer (Bruker-Franzen Analytik, Bremen, Germany).

2. The preparation of ZnPTP.

PTP (28.00 mg) was dissolved in DMF (10.00 mL) and stirred at 140 °C under nitrogen atmosphere in 25.00 mL three-necked flask, and then the saturated methanol solution with $Zn(CH_3COO)_2 \cdot 2H_2O$ (0.20 g, 0.92 mmol, 10.00 mL) was dropped into the reaction solution. Next, the reaction liquid was stirred for 2 h without light. After, the product was concentrated under reduced pressure and washed by deionized water (100 mL × 3). The black and red product (ZnPTP) was centrifuged and collected by vacuum drying. Yield: 83%.

3. PET-RDRP process of DMSO as solvent.

For photo-catalyst-mediated RDRP process, a certain proportion of monomer, control agent, photocatalyst and DMSO were added into a 4 mL glass vial. The glass vial was sealed with a rubber septum without deoxygenation. The reaction mixture was then irradiated under green LED light ($\lambda max = 577 \text{ nm}$, 6 W, intensity = 0.126 mW cm⁻²) at 25 °C. After irradiation, aliquots of the reaction mixtures were withdrawn to measure monomer conversion rate and number-average molecular weights ($M_{n, HNMR}$) by ¹H NMR and polymer molecular weight distributions were measured by GPC. The reaction conditions for control studies where DL-Methionine is omitted entirely were the same as those for the process of PET-RDRP with added DL-Methionine.

4. PET-RDRP process of H₂O as solvent.

To improve the solubility of ZnPTP in aqueous solution, a certain proportion of sodium hydroxide was added to deionized water. Photocatalyst and sodium hydroxide aqueous solution were added into a 4 mL glass vial. After ultrasonic dissolution, the mixture was mixed with hydrochloric acid solution until the pH was near neutral. Then a certain proportion of monomer and control agent were added into a 4 mL glass vial. Due to the poor stability of ascorbic acid over time under aqueous conditions, we only added ascorbic acid (AH_2) as singlet oxygen quencher to the reaction mixture prior to the start of polymerization. The glass vial was sealed with a rubber septum without deoxygenation. The reaction mixture was then irradiated under green LED light (λ max = 577 nm, 6 W, intensity = 0.126 mW cm^{-2}) at 25 °C. After irradiation, aliquots of the reaction mixtures were withdrawn to measure monomer conversion rate and numberaverage molecular weights $(M_{n, HNMR})$ by ¹H NMR and dispersity were measured by GPC. The reaction conditions for control studies where DL-Methionine is omitted entirely were the same as those for the process of PET-RDRP with added DL-Methionine.

5. EPR analysis of PET-RDRP polymerization.

200 equiv of NIPAm, 1 equiv of DL-Methionine and 0.16 equiv of ZnPTP and a certain amount of DMSO were added into a 4 mL glass vial. The glass vial was sealed with a rubber septum without deoxygenation. The reaction mixture was then added into a EPR sample tube, also without deoxygenation. Under green light irradiation (λ max = 577 nm, 6 W) for certain time of the sample.

Calculation equation for g-value.

$$g = \frac{hv}{\beta H}$$

Where *h* is the Planck constant (6.62607015×10⁻³⁴ J·s), v is the microwave frequency (9.823917 GHz), β is the Bohr magneton moment value (9.274×10⁻²¹ erg/Gs, 1erg = 10⁻⁷ J), *H* is the magnetic field intensity (3.5 KGs in Fig.3a).

6. MALDI-TOF MS analysis of PET-RDRP process.

The PNIPAm samples (4 mg mL⁻¹ in DCM), DCTB matrices (30 mg mL⁻¹ in acetone) and sodium trifluoroacetate solution (19 mg mL⁻¹ in THF) were all prepared for MALDI-TOF MS analysis. The above solutions were mixed in a ratio of 10:10:1 (PNIPAm:matrix:cationizing salt), and 0.5 μ L of the final solution was deposited onto the MALDI sample target and was allowed to dry at room temperature and ambient atmosphere.

PAA samples (1 μ g/ μ l in acetone and water) and sinapinic acid matrix (20 μ g/ μ l in acetone) were prepared for MALDI-TOF MS analysis. Mix the above 1 μ l sample solution and 1 μ l matrix solution, deposit 1 μ l of the final solution onto the MALDI

sample target, and dry at room temperature and ambient atmosphere.

7. Supplementary Figures

Fig. S1. PET-RDRP of AM mediated by ZnPTP in the presence (Met) or absence (Metfree) of DL-Methionine. (a) GPC curves of PAM; ¹H NMR spectrum of PAM (b) in the presence and (c) in the absence of DL-Methionine.

Fig. S2. PET-RDRP of tBA mediated by ZnPTP in the presence (Met) or absence (Metfree) of DL-Methionine. (a) GPC curves of PtBA; ¹H NMR spectrum of PtBA (b) in the presence and (c) in the absence of DL-Methionine.

Fig. S3. PET-RDRP of BA mediated by ZnPTP in the presence (Met) or absence (Met-

free) of DL-Methionine. (a) GPC curves of PBA; ¹H NMR spectrum of PBA (b) in the presence and (c) in the absence of DL-Methionine.

Fig. S4. PET-RDRP of MMA mediated by ZnPTP in the presence (Met) or absence (Met-free) of DL-Methionine. (a) GPC curves of PMMA; ¹H NMR spectrum of PMMA (b) in the presence and (c) in the absence of DL-Methionine.

Fig. S5. MALDI-TOF MS of low-conversion PAA mediated by DL-Methionine.

Fig. S6. ¹H NMR spectrum of PAA (a) in the presence and (b) in the absence of DL-Methionine.

Fig. S7. ¹H NMR spectrum of 200 ratios of PDMA (a) in the presence and (b) in the absence of DL-Methionine.

Fig. S8. ¹H NMR spectrum of 800 ratios of PDMA (a) in the presence and (b) in the absence of DL-Methionine.

Fig. S9. ¹H NMR spectrum of low molecular weight PDMA in the presence and in the absence of DL-Methionine.

Fig. S10. ¹H NMR spectrum of 800 ratios of PAM (a) in the presence and (b) in the absence of DL-Methionine.

Fig. S11. ¹H NMR spectrum of 200 ratios of PDMA (a) in the presence and (b) in the absence of DL-Methionine.

Fig. S12. ¹H NMR spectrum of 800 ratios of PDMA (a) in the presence and (b) in the

absence of DL-Methionine.

Fig. S13. ¹H NMR spectrum of PDMA mediated by ZnPTP with a mole ratio of DMA:DL-Methionine = 200:1 under dark condition.