Self-Assembly of Single-Chain Nanoparticles from Block Copolymers into Inverse

Bicontinuous Structures

Yalan Sun, Zichao Deng, Aihua Chen*

School of Materials Science and Engineering, Beihang University
No. 37 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
*Corresponding author.

E-mail: chenaihua@,buaa.edu.cn

Synthesis routes of P4VP-CTA, P4VP-b-PS, and P4VP(SCNP)-b-PS

Scheme S1. The synthesis route of P4VP-CTA.

Scheme S2. The synthesis route of P4VP-b-PS.

Scheme S3. The synthesis route of P4VP(SCNP)- b-PS.

Characterization.

NMR Spectroscopy. ${ }^{1} \mathrm{H}$ NMR spectra were obtained by Bruker DMX Spectrometer (400 MHz) using CDCl_{3} as a solvent.

Gel Permeation Chromatography (GPC). The P4VP-b-PS and P4VP(SCNP)-b-PS were measured on Waters 2410 GPC. The eluent was THF with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. The samples were dissolved in THF, and filtered through $0.22 \mu \mathrm{~m}$ syringe filters. The calibration curves were obtained from PS standards. Some samples were also measured on a system comsisted of Wyatt Technology detector, Agilent HPLC pump, and Agilent mixed columns (Plgel $20 \mu \mathrm{~m}$ MIXED-A and PLgel $10 \mu \mathrm{~m}$ MIXED-B). The eluent of DMF with $\mathrm{LiBr}(0.05 \mathrm{~mol} / \mathrm{L})$ was used and the measurements were conducted at $25^{\circ} \mathrm{C}$ with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$.

Dynamic Light Scattering (DLS). DLS measurements were conducted on the instrument of Shandong Naikete NKT-N9 with a 532 nm He-Ne laser.

Scanning Electron Microscopy (SEM). Images were taken using a Tescan Vega3 microscope with an accelerating voltage of 30 kV and a Zeiss SUPRA55 instrument at an accelerating voltage of 10
kV . The dilute dispersion solution was dropped onto a silicon wafer and then sputtered with gold.
Transmission Electron Microscopy (TEM). Images were taken using a JEM-2100Plus microscope with an accelerating voltage of 200 kV . The dilute dispersion solution was dropped onto a copper grid.

Small Angle X-ray Scattering (SAXS). SAXS measurements were performed on the synchrotron radiation at BL16B1 beamline provided by Shanghai Synchrotron Radiation Facility (SSRF) with a wavelength of $1.24 \AA$ at room temperature.

Synthesis of P4VP-CTA via RAFT solution polymerization

P4VP macromolecular chain transfer agents (macro-CTAs) were synthesized by reversible additionfragmentation chain transfer (RAFT) solution polymerization (Scheme S1). Typically, 4-VP (0.63 $\mathrm{g}, 6.0 \mathrm{mmol})$, CPADB ($40.5 \mathrm{mg}, 0.1 \mathrm{mmol}$), and AIBN ($1.64 \mathrm{mg}, 0.01 \mathrm{mmol}$) dissolved in 3 mL ethanol were added into a Schlenk flask. After three freeze-pump-thaw cycles, the flask was sealed. The reaction was quenched in liquid nitrogen after 6 h at $70^{\circ} \mathrm{C}$ and precipitated in petroleum ether three times. Then the product was dialyzed in ethanol and dried under vacuum. The degree of polymerization of $\mathrm{P} 4 \mathrm{VP}\left(\mathrm{DP}_{\mathrm{P} 4 \mathrm{VP}}\right)$ is calculated by ${ }^{1} \mathrm{H}$ NMR (Figure S 1$)$ as follows:

$$
\begin{equation*}
\mathrm{DP}_{\mathrm{P} 4 \mathrm{VP}}=\frac{I_{\mathrm{d}}}{I_{\mathrm{b}}} \tag{S1}
\end{equation*}
$$

where I_{b} represents the integrated value of the proton peaks originating from the phenyl groups of 4-Cyano-4-(phenylcarbonothioylthio) pentanoic acid (CPADB) (signal b, $\delta=7.78-7.90 \mathrm{ppm}) ; I_{\mathrm{d}}$ represents the integrated value of the proton peaks attributed to the pyridine groups of P 4 VP block (signal d, $\delta=8.15-8.65 \mathrm{ppm}$).

Figure $\mathbf{S 1}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{P}_{4} \mathrm{VP}_{40}-\mathrm{CTA}$ and $\mathrm{P} 4 \mathrm{VP}_{53}$ - CTA (from top to bottom).

Synthesis of P4VP-b-PS via RAFT dispersion polymerization

The degree of polymerization of $\mathrm{PS}\left(\mathrm{DP}_{\mathrm{PS}}\right)$ is calculated by ${ }^{1} \mathrm{H}$ NMR as follows: ${ }^{1}$

$$
\begin{equation*}
\frac{I_{\mathrm{a}}}{I_{\mathrm{b}+\mathrm{c}+\mathrm{d}}}=\frac{2 \times \mathrm{DP}_{\mathrm{P} 4 \mathrm{VP}}}{5 \times \mathrm{DP}_{\mathrm{PS}}+2 \times \mathrm{DP}_{\mathrm{P} 4 \mathrm{VP}}} \tag{S2}
\end{equation*}
$$

where I_{a} represents the integrated value of the proton peaks at $8.20-8.60 \mathrm{ppm}$, originating from the pyridine groups of P4VP block (signal a); I_{b+c+d} represents the integrated value of the proton peaks at $6.20-7.20 \mathrm{ppm}$, originating from the phenyl groups of PS block and the pyridine groups of P4VP block. Accordingly, the $\mathrm{DP}_{\mathrm{PS}}$ is calculated as follows:
$\mathrm{DP}_{\mathrm{PS}}=\frac{2 \times \mathrm{DP}_{\mathrm{P} 4 \mathrm{VP}} \times\left(\frac{I_{\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}}}{I_{\mathrm{a}}}-1\right)}{5}$

Taking $\mathrm{P}_{4} \mathrm{VP}_{53}-b-\mathrm{PS}_{499}$ as an example:
$\mathrm{DP}_{\mathrm{PS}}=\frac{2 \times \mathrm{DP}_{\mathrm{P} 4 \mathrm{VP}} \times\left(\frac{I_{\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}}}{I_{\mathrm{a}}}-1\right)}{5}=\frac{2 \times 53 \times\left(\frac{24.56}{1}-1\right)}{5} \approx 499$

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P}_{4} \mathrm{VP}_{53}-b-\mathrm{PS}_{499}$.

The volume fraction of the PS block $\left(f_{\mathrm{PS}}\right)$ is calculated as follows: ${ }^{2}$

$$
\begin{equation*}
f_{\mathrm{PS}}=\frac{V_{\mathrm{PS}}}{V_{\mathrm{P} 4 \mathrm{VP}}+V_{\mathrm{PS}}}=\frac{M_{\mathrm{PS}} / \rho_{\mathrm{PS}}}{M_{\mathrm{P} 4 \mathrm{VP}} / \rho_{\mathrm{P} 4 \mathrm{VP}}+M_{\mathrm{PS}} / \rho_{\mathrm{PS}}} \tag{S4}
\end{equation*}
$$

In equation $\mathrm{S} 4, V_{\mathrm{P} 4 \mathrm{VP}}$ and V_{PS} represent the volumes of P 4 VP and PS chains respectively; $M_{\mathrm{P} 4 \mathrm{VP}}$ and M_{PS} denote the molecular weights of the P4VP and PS blocks, respectively; $\rho_{\mathrm{P} 4 \mathrm{VP}}$ represents the density of P4VP, which is about $1.15 \mathrm{~g} \mathrm{~cm}^{-3} ; \rho_{\mathrm{PS}}$ represents the density of PS, which is about 1.05 $\mathrm{g} \mathrm{cm}^{-3}$

Taking $\mathrm{P}_{4} \mathrm{VP}_{53}-b-\mathrm{PS}_{499}$ as an example:
$f_{\mathrm{PS}}=\frac{V_{\mathrm{PS}}}{V_{\mathrm{P} 4 \mathrm{VP}}+V_{\mathrm{PS}}}=\frac{M_{\mathrm{PS}} / \rho_{\mathrm{PS}}}{M_{\mathrm{P} 4 \mathrm{VP}} / \rho_{\mathrm{P} 4 \mathrm{VP}}+M_{\mathrm{PS}} / \rho_{\mathrm{PS}}}=\frac{499 \times 104 / 1.05}{53 \times 105 / 1.15+499 \times 104 / 1.05} \approx 91.1 \%$

Preparation and characterization of tadpole-like SCNPs.

The number of DIB (x) linked to P 4 VP is calculated by ${ }^{1} \mathrm{H}$ NMR as follows:
$x=\frac{1}{4} \times \frac{I_{f} \times 2 \times D P_{P 4 V P}}{I_{a}}$

Therefore, the actual CD of SCNPs is calculated by the following equation:
$\mathrm{CD}=\frac{2 x}{\mathrm{DP}_{\mathrm{P} 4 \mathrm{VP}}} \times 100 \%=\frac{I_{\mathrm{f}}}{I_{\mathrm{a}}} \times 100 \%$
Taking $\mathrm{CD}_{27 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{569}$ as an example (Figure S3):
$x=\frac{1}{4} \times \frac{I_{\mathrm{f}} \times 2 \times \mathrm{DP}_{\mathrm{P} 4 \mathrm{VP}}}{I_{\mathrm{a}}}=\frac{1}{4} \times \frac{0.27 \times 2 \times 53}{1}=7.155$
$\mathrm{CD}=\frac{2 \times 7.155}{53} \times 100 \%=\frac{I_{f}}{I_{a}} \times 100 \%=\frac{0.27}{1} \times 100 \%=27 \%$
So, this sample can be named $\mathrm{CD}_{27 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{569}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{CD}_{27 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{569}$ prepared in dilute DCM solution.

Figure S4. GPC traces of $\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{512}$ using DMF as the eluent.

Figure S5. (a) DLS curves of $\mathrm{P}_{4} \mathrm{VP}_{53}-b-\mathrm{PS}_{569}$ and $\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{569}$ at CD of $0 \%, 18 \%$, and 27%.
(b) Comparison curves between 27% and 40%.

Figure S6. TEM image of tadpole-like SCNPs $\left(\mathrm{CD}_{27 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{569}\right)$ prepared in dilute DCM solution.

Self-assembly behavior of linear BCPs and tadpole-like SCNPs in solution.

Figure S7. Cubosomes obtained by linear P4VP-b-PS using DMF as co-solvent. (a, b) SEM image and SAXS pattern of $\mathrm{P}_{4} \mathrm{VP}_{53}-b-\mathrm{PS}_{820}\left(f_{\mathrm{PS}}=94.4 \%\right)$; (c,d) TEM image and SAXS pattern of $\mathrm{P}_{4} \mathrm{VP}_{40}-b-\mathrm{PS}_{731}$ ($f_{\mathrm{PS}}=95.2 \%$).

	(a) 40-544 $\mathrm{CD}=10 \%$
	.15 0.20 0.25 0.30 0.35 0.40 0.45
	$g\left(\mathrm{~nm}^{-1}\right)$

Figure S8. (a) SAXS profile of cubosomes formed by $\mathrm{CD}_{10 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{544}$. SEM images of (b) irregular cubosomes formed by $\mathrm{CD}_{16 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{544}$ and (c) LCMs formed by $\mathrm{CD}_{28 \%}-$ $\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{544}$ using DMF as co-solvent.

Figure S9. (a) SAXS profile of cubosomes formed by $\mathrm{CD}_{39 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{499}$ and (b) TEM image of LCMs with irregular pores and elongated vesicles formed by $\mathrm{CD}_{45 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{499}$ using DMF as co-solvent.

Figure S10. (a, b) SEM images of LCVs formed by linear $\mathrm{P}^{2} \mathrm{VP}_{53}-b-\mathrm{PS}_{569}$; (c, e) SEM images and (d, f) SAXS patterns of cubosomes formed by $\mathrm{CD}_{18 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{569}$ and $\mathrm{CD}_{27 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-$ PS_{569}, respectively; (g) SEM image and (h) TEM image of cubosomes with uneven surface formed by $\mathrm{CD}_{40 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{569}$. All the self-assembles were obtained by using DMF as co-solvent.

Figure S11. (a) TEM image and (b) SAXS pattern of sponges formed by linear $\mathrm{P}_{4} \mathrm{VP}_{40}-b-\mathrm{PS}_{512}$; (c, e) SEM images (inserts were TEM and SEM image at magnification) and (d, f) SAXS patterns of cubosomes formed by $\mathrm{CD}_{11 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{512}$ and $\mathrm{CD}_{17 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{512}$, respectively; (g) SEM images and (h) SAXS pattern of LCMs formed by $\mathrm{CD}_{29 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{512}$. All the selfassembles were obtained by using DMF as co-solvent.

Figure S12. SEM images of (a) sponges obtained by linear ${\mathrm{P} 4 \mathrm{VP}_{53}-b-\mathrm{PS}_{750} \text {, cubosomes obtained by (b) }}_{\text {(b) }}$ ($\mathrm{CD}_{14 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{750}$ and (c) $\mathrm{CD}_{19 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{750}$, and (d) LCMs obtained by $\mathrm{CD}_{26 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{750}$ using DMF as co-solvent.

Figure S13. SEM images of cubosomes formed by (a) $\mathrm{CD}_{18 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{820}$ and (b) $\mathrm{CD}_{25 \%}-$
$\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{820}$, and (c) LCMs formed by $\mathrm{CD}_{45 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{820}$ using DMF as cosolvent.

 $\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{67}-b-\mathrm{PS}_{367}$, and (c) nanowires formed by $\mathrm{CD}_{12 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{67}-b-\mathrm{PS}_{367}$ using DMF as cosolvent. SEM images of (d) sponges formed by linear $\mathrm{P}_{4} \mathrm{VP}_{67}-b-\mathrm{PS}_{901}$ and (e, f) nanowires formed by $\mathrm{CD}_{12 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{67}-b-\mathrm{PS}_{901}$ and $\mathrm{CD}_{40 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{67}-b-\mathrm{PS}_{901}$ using DMF as co-solvent.

Figure S15. SEM and TEM images of (a, c) sponges formed by $\mathrm{CD}_{6 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{544}$ and $(\mathrm{b}$, d) LCMs with uneven surface formed by $\mathrm{CD}_{13 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{544}$ using DMF as co-solvent. The
interchain cross-linking nanopartices were prepared in the dilute dioxane solution.

Figure S16. GPC traces of $\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{53}-b-\mathrm{PS}_{569}$ prepared in dilute DCM solution when CD was 27% and 40%, using (a) DMF and (b) THF as the eluent, respectively.

Figure S17. SEM images of (a) LCVs formed by linear $\mathrm{P}_{4} \mathrm{VP}_{40}-b-\mathrm{PS}_{375}$, (b) sponges formed by $\mathrm{CD}_{12 \%}{ }^{-}$ P4VP(SCNP) $)_{40}-b-\mathrm{PS}_{375}$, and LCMs with uneven surface formed by (c) $\mathrm{CD}_{25 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{375}$ and (d) $\mathrm{CD}_{31 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{375}$ using DMF as co-solvent.

Figure S18. SEM and TEM images of LCVs formed by (a, b) linear $\mathrm{P}_{4} \mathrm{VP}_{40}-b-\mathrm{PS}_{544}$ and (c, d) $\mathrm{CD}_{16 \%}-\mathrm{P} 4 \mathrm{VP}(\mathrm{SCNP})_{40}-b-\mathrm{PS}_{544}$ using THF as co-solvent.

Reference:

1.R. Liu, Z. Rong, G. Han, X. Yang and W. Zhang, Polymer, 2021, 215, 123431.
2.Z. Lin, S. Liu, W. Mao, H. Tian, N. Wang, N. Zhang, F. Tian, L. Han, X. Feng and Y. Mai, Angew. Chem., Int. Ed., 2017, 56, 7135-7140.

