Electronic Supporting Information (ESI)

CS₂-Based one-pot multicomponent tandem polymerization toward functional polybenzothiazoles

Dongming Liu,^a Haoran Zhang,^a Lijing Zhang,^a Jia Wang,^{*b} Zhiyang Chang^{*a} and Hailin Cong^{*a}

^aSchool of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China. E-mail: <u>conghailin@sdut.edu.cn</u>, <u>zychang2011@126.com</u>

^bSongshan Lake Materials Laboratory, Dongguan 523808, China. E-mail: <u>wangjia@sslab.org.cn</u>

Table of Contents

Scheme S1 Synthetic route to model compound 3.	S4
Scheme S2 Three-component polymerization of CS_2 , 1a and 2.	S4
Formula S1 The calculation formula of polymer yields.	S4
Table S1 Effect of solvent on the polymerization of CS_2 , 1a and 2.	S4
Table S2 Effect of $CuCl_2 \cdot 2H_2O$ loading on the polymerization of CS_2 , 1a and 2.	S5
Table S3 Effect of K_2CO_3 loading on the polymerization of CS_2 , 1a and 2 .	S5
Table S4 Effect of monomer concentration on the polymerization of CS_2 , 1a and 2.	S5
Table S5 Effect of temperature on the polymerization of CS_2 , 1a and 2.	S6
Table S6 Effect of CS_2 loading on the polymerization of CS_2 , 1a and 2.	S6
Table S7 Time course of the polymerization of CS_2 , 1a and 2.	S6
Fig. S1 The GPC curves of $P1a/2/CS_2-P1f/2/CS_2$.	S7
Fig. S2 FT-IR spectra of monomers 1a (A) and 2 (B), and P1a/2/CS ₂ .	S7
Fig. S3 FT-IR spectra of monomers 1b (A) and 2 (B), and P1b/2/CS ₂ .	S8
Fig. S4 FT-IR spectra of monomers 1c (A) and 2 (B), and P1c/2/CS ₂ .	S8
Fig. S5 FT-IR spectra of monomers 1e (A) and 2 (B), and P1e/2/CS ₂ .	S9
Fig. S6 FT-IR spectra of monomers 1f (A) and 2 (B), and P1f/2/CS ₂ .	S9
Fig. S7 ¹ H NMR spectra of monomers 1a (A) and 2 (B), and P1a/2/CS ₂ (C) in DMSO- d	6. The
solvent peaks are marked with asterisks.	S10

Fig. S8 ¹³C NMR spectra of monomers **1a** (A) and **2** (B), and P**1a**/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks. S10

Fig. S9 ¹H NMR spectra of monomers **1b** (A) and **2** (B), and P**1b**/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks. S11

Fig. S10 ¹³C NMR spectra of monomers **1b** (A) and **2** (B), and P**1b**/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks. S11

Fig. S11 ¹H NMR spectra of monomers 1c (A) and 2 (B), and P1c/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks. S12

Fig. S12 ¹³C NMR spectra of monomers **1c** (A) and **2** (B), and P**1c**/**2**/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks. S12

Fig. S13 ¹H NMR spectra of monomers **1e** (A) and **2** (B), and P1e/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks. S13

Fig. S14 ¹³C NMR spectra of monomers **1e** (A) and **2** (B), and P1e/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks. S13

Fig. S15 ¹H NMR spectra of monomers **1f** (A) and **2** (B), and P**1f/2**/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks. S14

Fig. S16 ¹³C NMR spectra of monomers **1f** (A) and **2** (B), and **P1f/2**/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks. S14

Fig. S17 S 2p XPS of model compound 3 and P1d/2/CS2.S15

Fig. S18 DSC curves of the PBTs recorded under nitrogen.S15Fig. S19 PL spectra of P1b/2/CS2 in DMSO/water mixtures with different water fractions (f_w).

Solution concentration: $10 \ \mu\text{M}$; excitation wavelength: 350 nm. S16

Scheme S1 Synthetic route to model compound 3.

Scheme S2 The three-component polymerization of CS₂, 1a and 2.

Formula S1 The calculation formula of polymer yields.

$$yield = \frac{m_a}{m_t} \times 100\% = \frac{m_a}{n \times (2M_{CS_2} + M_1 - 2M_H + 2M_K + M_2) - (2n-1)M_{KI} - (2n-1)M_{H_2S})} \times 100\%^a$$

^{*a*}Where m_a is the actual mass of the polymer, m_t is theoretical mass of the polymer, n is the amount of substance of monomers, and M_{CS_2} , M_1 , M_H , M_K , M_2 , M_{KI} , M_{H_2S} are the molar mass of CS₂, monomer **1**, H atom, K atom, monomer **2**, KI and H₂S.

Entry	Solvent	Yield (%)	$M_{\rm n}{}^b$	$M_{ m w}{}^b$	D^b
1^c	Toluene	trace	—	—	—
2^d	Chloroform		No po	lymer	
3^d	Tetrahydrofuran	23	4000	4800	1.2
4 ^{<i>c</i>}	1, 4-Dioxane	trace	_	_	_
5	DMSO	77	10 600	18 500	1.7
6	DMF	84	8700	13 600	1.6
7	DMAc	82	7000	10 300	1.5

Table S1 Effect of solvent on the polymerization of CS_2 , 1a and 2^{*a*}.

^{*a*} The first step of this MCTP was carried out at 30 °C for 1 h, and the second step was carried out at 100 °C for 16 h. [**1a**] = 0.15 M, [**1a**]/[**2**]/[CS₂]/[CuCl₂•2H₂O] /[K₂CO₃] = 1:1:2.4:3:2. ^{*b*} Determined by gel-permeation chromatography (GPC) using *N*,*N*-dimethylformamide (DMF) containing 0.05 M LiBr as an eluent on the basis of a linear polymethyl methacrylate (PMMA) calibration. D = polydispersity index (M_w/M_n , M_w = weight-average molecular weight, M_n = number-average molecular weight). ^{*c*} 90 °C for 4 h. ^{*d*} 50 °C for 10 h.

Entry	CuCl ₂ •2H ₂ O (equiv.)	Yield (%)	$M_{\rm n}{}^b$	$M_{ m w}{}^b$	D^b
1	3	78	10 500	17 800	1.7
2	2	90	10 100	16 600	1.6
3	1	46	5300	6300	1.2

Table S2 Effect of CuCl₂•2H₂O loading on the polymerization of CS₂, 1a and 2^a .

^{*a*} The first step of this MCTP was carried out in DMSO at 30 °C for 1 h, and the second step was carried out in DMSO at 100 °C for 16 h. [**1a**] = 0.15 M, [**1a**]/[**2**]/[CS₂]/[K₂CO₃] = 1:1:2.4:2. ^{*b*} Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $D = M_w/M_n$.

Entry	K ₂ CO ₃ (equiv.)	Yield (%)	$M_{ m n}{}^b$	$M_{ m w}{}^b$	D^b
 1	2	89	7500	16 500	2.2
2	1	88	7700	14 600	1.9
3	0.5	87	8000	13 300	1.7
4	0	81	6400	11 300	1.8

Table S3 Effect of K_2CO_3 loading on the polymerization of CS_2 , **1a** and **2**^{*a*}.

^{*a*} The first step of this MCTP was carried out in DMSO at 30 °C for 1 h, and the second step was carried out in DMSO at 100 °C for 16 h. [**1a**] = 0.15 M, [**1a**]/[**2**]/[CS₂]/[CuCl₂•2H₂O] = 1:1:2.4:2. ^{*b*} Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $D = M_w/M_n$.

Table S4 Effect of monomer concentration on the polymerization of CS_2 , **1a** and **2**^{*a*}.

Entry	[1a] (mol/L)	Yield (%)	$M_{ m n}{}^b$	$M_{ m w}{}^b$	D^b
1	0.10	88	7600	12 800	1.7
2	0.15	89	8300	14 800	1.8
3 ^c	0.30	87	11 000	23 200	2.1
4 ^c	0.40	Gel	_	_	_

^{*a*} The first step of this MCTP was carried out in DMSO at 30 °C for 1 h, and the second step was carried out in DMSO at 100 °C for 16 h. [**1a**]/[**2**]/[CS₂]/[CuCl₂•2H₂O]/[K₂CO₃] = 1:1:2.4:2:1. ^{*b*} Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $D = M_w/M_n$. ^{*c*} For 10 h.

Entry	Temperature (°C)	Yield (%)	$M_{\rm n}{}^b$	$M_{ m w}{}^b$	D^b
1	120	93	8900	33 600	3.8
2	100	88	7200	21 600	3.0
3	80	86	7000	10 800	1.5

Table S5 Effect of temperature on the polymerization of CS_2 , 1a and 2^{*a*}.

^{*a*} The first step of this MCTP was carried out in DMSO at 30 °C for 1 h, and the second step was carried out in DMSO for 10 h. [**1a**] = 0.3 M, [**1a**]/[**2**]/[CS₂]/[CuCl₂•2H₂O]/[K₂CO₃] = 1:1:2.4:2:1. ^{*b*} Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $D = M_w/M_n$.

Entry	CS ₂ (equiv.)	Yield (%)	$M_{ m n}{}^b$	$M_{ m w}{}^b$	D^b
1	2.2	87	5500	9500	1.7
2	2.4	92	12 900	32 000	2.5
3	2.6	85	5100	7100	1.4

Table S6 Effect of CS_2 loading on the polymerization of CS_2 , **1a** and **2**^{*a*}.

^{*a*} The first step of this MCTP was carried out in DMSO at 30 °C for 1 h, and the second step was carried out in DMSO at 120 °C for 10 h. [**1a**] = 0.3 M, [**1a**]/[**2**]/[CuCl₂•2H₂O]/[K₂CO₃] = 1:1:2:1. ^{*b*} Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $D = M_w/M_n$.

Entry	Time (h)	Yield (%)	$M_{ m n}{}^b$	$M_{ m w}{}^b$	D^b
1	2	35	4500	5400	1.2
2	4	58	6100	8300	1.4
3	6	87	9200	17 600	1.9
4	8	94	14 800	43 500	2.9
5	10	91	11 800	30 900	2.6

Table S7 Time course of the polymerization of CS_2 , **1a** and **2**^{*a*}.

^{*a*} The first step of this MCTP was carried out in DMSO at 30 °C for 1 h, and the second step was carried out in DMSO at 120 °C. **[1a]** = 0.3 M, **[1a]**/**[2]**/**[**CS₂]/**[**CuCl₂•2H₂O]/**[**K₂CO₃**]** = 1:1:2.4:2:1. ^{*b*} Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $D = M_w/M_n$.

Fig. S1 The GPC curves of P1a/2/CS₂-P1f/2/CS₂.

Fig. S2 FT-IR spectra of monomers 1a (A) and 2 (B), and P1a/2/CS₂ (C).

Fig. S3 FT-IR spectra of monomers 1b (A) and 2 (B), and P1b/2/CS₂ (C).

Fig. S4 FT-IR spectra of monomers 1c (A) and 2 (B), and P1c/2/CS₂ (C).

Fig. S5 FT-IR spectra of monomers 1e(A) and 2(B), and $P1e/2/CS_2(C)$.

Fig. S6 FT-IR spectra of monomers 1f(A) and 2(B), and $P1f/2/CS_2(C)$.

Fig. S7 ¹H NMR spectra of monomers 1a (A) and 2 (B), and P1a/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S8 ¹³C NMR spectra of monomers 1a (A) and 2 (B), and P1a/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S9 ¹H NMR spectra of monomers 1b (A) and 2 (B), and P1b/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S10 ¹³C NMR spectra of monomers **1b** (A) and **2** (B), and P**1b**/**2**/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S11 ¹H NMR spectra of monomers 1c (A) and 2 (B), and P1c/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S12 ¹³C NMR spectra of monomers 1c (A) and 2 (B), and P1c/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S13 ¹H NMR spectra of monomers 1e (A) and 2 (B), and P1e/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S14 ¹³C NMR spectra of monomers **1e** (A) and **2** (B), and P**1e**/**2**/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S15 ¹H NMR spectra of monomers 1f (A) and 2 (B), and P1f/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S16 ¹³C NMR spectra of monomers 1f (A) and 2 (B), and P1f/2/CS₂ (C) in DMSO- d_6 . The solvent peaks are marked with asterisks.

Fig. S17 S 2p XPS of 3 and P1d/2/CS₂.

Fig. S18 DSC curves of the PBTs recorded under nitrogen.

Fig. S19 PL spectra of P1b/2/CS₂ in DMSO/water mixtures with different water fractions (f_w). Solution concentration: 10 μ M; excitation wavelength: 350 nm.