Electronic Supporting Information (ESI)

CS_{2}-Based one-pot multicomponent tandem polymerization toward functional polybenzothiazoles

Dongming Liu, ${ }^{a}$ Haoran Zhang, ${ }^{a}$ Lijing Zhang, ${ }^{a}$ Jia Wang, *b Zhiyang Chang*a and Hailin Cong ${ }^{* a}$
${ }^{a}$ School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China. E-mail: conghailin@sdut.edu.cn, zychang2011@,126.com
${ }^{b}$ Songshan Lake Materials Laboratory, Dongguan 523808, China. E-mail: wangjia@sslab.org.cn

Table of Contents

Scheme S1 Synthetic route to model compound 3. S4
Scheme S2 Three-component polymerization of CS_{2}, 1a and 2. S4
Formula S1 The calculation formula of polymer yields. S4
Table S1 Effect of solvent on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}$. S4
Table S2 Effect of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ loading on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}$. S5
Table S3 Effect of $\mathrm{K}_{2} \mathrm{CO}_{3}$ loading on the polymerization of CS_{2}, $\mathbf{1 a}$ and $\mathbf{2}$. S5
Table S4 Effect of monomer concentration on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}$. S5
Table S5 Effect of temperature on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}$. S6
Table S6 Effect of CS_{2} loading on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}$. S6
Table S7 Time course of the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}$. S6
Fig. S1 The GPC curves of $\mathrm{P} \mathbf{1 a} / \mathbf{2} / \mathrm{CS}_{2}-\mathrm{P} \mathbf{1 f} / \mathbf{2} / \mathrm{CS}_{2}$. S7
Fig. S2 FT-IR spectra of monomers $\mathbf{1 a}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{1 a} / \mathbf{2} / \mathrm{CS}_{2}$. S7
Fig. S3 FT-IR spectra of monomers $\mathbf{1 b}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{1 b} / \mathbf{2} / \mathrm{CS}_{2}$. S8
Fig. S4 FT-IR spectra of monomers $\mathbf{1 c}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{c} / \mathbf{2} / \mathrm{CS}_{2}$. S8
Fig. S5 FT-IR spectra of monomers $\mathbf{1 e}$ (A) and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathrm{e} / \mathbf{2} / \mathrm{CS}_{2}$. S9
Fig. S6 FT-IR spectra of monomers $\mathbf{1 f}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{1 f} / \mathbf{2} / \mathrm{CS}_{2}$. S9

Fig. S7 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{1 a}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{1 a} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{1 a}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathrm{a} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S9 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{1 b}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{1 b} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S10 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{1 b}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathbf{b} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S11 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{1 c}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathbf{c} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S12 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{1 c}$ (A) and 2 (B), and P1c/2/CS $\mathbf{C l}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S13 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{1 e}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{e} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S14 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $1 \mathrm{e}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathrm{e} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S15 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $1 \mathrm{f}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathbf{f} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in $\mathrm{DMSO}-d_{6}$. The solvent peaks are marked with asterisks.

Fig. S16 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{1 f}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{1 f} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.S14

Fig. S17 S 2p XPS of model compound $\mathbf{3}$ and P1d/2/CS2. S15

Fig. S18 DSC curves of the PBTs recorded under nitrogen.
S15
Fig. S19 PL spectra of $\mathbf{P 1 b} / \mathbf{2} / \mathrm{CS}_{2}$ in $\mathrm{DMSO} /$ water mixtures with different water fractions $\left(f_{\mathrm{w}}\right)$. Solution concentration: $10 \mu \mathrm{M}$; excitation wavelength: 350 nm .

Scheme S1 Synthetic route to model compound 3.

Scheme S2 The three-component polymerization of CS_{2}, 1a and $\mathbf{2}$.

Formula S1 The calculation formula of polymer yields.
yield $=\frac{m_{a}}{m_{t}} \times 100 \%=\frac{m_{a}}{n \times\left(2 M_{C S_{2}}+M_{1}-2 M_{H}+2 M_{K}+M_{2}\right)-(2 n-1) M_{K I}-(2 n-1) M_{H_{2} S}} \times 100 \%^{a}$
${ }^{a}$ Where m_{a} is the actual mass of the polymer, m_{t} is theoretical mass of the polymer, n is the amount of substance of monomers, and $M_{C S_{2}}, M_{1}, M_{H}, M_{K}, M_{2}, M_{K I}, M_{H_{2} S}$ are the molar mass of CS_{2}, monomer 1, H atom, K atom, monomer 2, KI and $\mathrm{H}_{2} \mathrm{~S}$.

Table S1 Effect of solvent on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}^{a}$.

Entry	Solvent	Yield (\%)	$M_{\mathrm{n}}{ }^{b}$	$M_{\mathrm{w}}{ }^{b}$	D^{b}
1^{c}	Toluene	trace	-	-	-
2^{d}	Chloroform		No polymer		
3^{d}	Tetrahydrofuran	23	4000	4800	1.2
4^{c}	1,4 -Dioxane	trace	-	-	-
5	DMSO	77	10600	18500	1.7
6	DMF	84	8700	13600	1.6
7	DMAc	82	7000	10300	1.5

${ }^{a}$ The first step of this MCTP was carried out at $30^{\circ} \mathrm{C}$ for 1 h , and the second step was carried out at $100{ }^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .[\mathbf{1 a}]=0.15 \mathrm{M},[\mathbf{1 a}] /[\mathbf{2}] /\left[\mathrm{CS}_{2}\right] /\left[\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=1: 1: 2.4: 3: 2 .^{b}$ Determined by gel-permeation chromatography (GPC) using N, N-dimethylformamide (DMF) containing 0.05 M LiBr as an eluent on the basis of a linear polymethyl methacrylate (PMMA) calibration. $D=$ polydispersity index $\left(M_{\mathrm{w}} / M_{\mathrm{n}}, M_{\mathrm{w}}=\right.$ weight-average molecular weight, $M_{\mathrm{n}}=$ number-average molecular weight). ${ }^{c} 90^{\circ} \mathrm{C}$ for $4 \mathrm{~h} .{ }^{d} 50^{\circ} \mathrm{C}$ for 10 h .

Table $\mathbf{S 2}$ Effect of $\mathrm{CuCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}$ loading on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}^{a}$.

Entry	$\mathrm{CuCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}$ (equiv.)	Yield (\%)	$M_{\mathrm{n}}{ }^{b}$	$M_{\mathrm{w}}{ }^{b}$	D^{b}
1	3	78	10500	17800	1.7
2	2	90	10100	16600	1.6
3	1	46	5300	6300	1.2

${ }^{a}$ The first step of this MCTP was carried out in DMSO at $30^{\circ} \mathrm{C}$ for 1 h , and the second step was carried out in DMSO at $100{ }^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .[\mathbf{1 a}]=0.15 \mathrm{M},[\mathbf{1 a}] /[\mathbf{2}] /\left[\mathrm{CS}_{2}\right] /\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=1: 1: 2.4: 2 .{ }^{b}$ Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $D=M_{\mathrm{w}} / M_{\mathrm{n}}$.

Table $\mathbf{S 3}$ Effect of $\mathrm{K}_{2} \mathrm{CO}_{3}$ loading on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}^{a}$.

Entry	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (equiv.)	Yield (\%)	$M_{\mathrm{n}}{ }^{b}$	$M_{\mathrm{w}}{ }^{b}$	D^{b}
1	2	89	7500	16500	2.2
2	1	88	7700	14600	1.9
3	0.5	87	8000	13300	1.7
4	0	81	6400	11300	1.8

${ }^{a}$ The first step of this MCTP was carried out in DMSO at $30^{\circ} \mathrm{C}$ for 1 h , and the second step was carried out in DMSO at $100{ }^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .[\mathbf{1 a}]=0.15 \mathrm{M},[\mathbf{1 a}] /[2] /\left[\mathrm{CS}_{2}\right] /\left[\mathrm{CuCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}\right]=1: 1: 2.4: 2$. ${ }^{b}$ Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $Đ=M_{\mathrm{w}} / M_{\mathrm{n}}$.

Table S4 Effect of monomer concentration on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}^{a}$.

Entry	$[\mathbf{1 a}](\mathrm{mol} / \mathrm{L})$	Yield (\%)	$M_{\mathrm{n}}{ }^{b}$	$M_{\mathrm{w}}{ }^{b}$	D^{b}
1	0.10	88	7600	12800	1.7
2	0.15	89	8300	14800	1.8
3^{c}	0.30	87	11000	23200	2.1
4^{c}	0.40	Gel	-	-	-

${ }^{a}$ The first step of this MCTP was carried out in DMSO at $30^{\circ} \mathrm{C}$ for 1 h , and the second step was carried out in DMSO at $100{ }^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .[\mathbf{1 a}] /[2] /\left[\mathrm{CS}_{2}\right] /\left[\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=1: 1: 2.4: 2: 1 .{ }^{b}$ Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $Đ=M_{\mathrm{w}} / M_{\mathrm{n}}{ }^{c}$ For 10 h .

Table S5 Effect of temperature on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}^{a}$.

Entry	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	$M_{\mathrm{n}}{ }^{b}$	$M_{\mathrm{w}}{ }^{b}$	$Ð^{b}$
1	120	93	8900	33600	3.8
2	100	88	7200	21600	3.0
3	80	86	7000	10800	1.5

${ }^{a}$ The first step of this MCTP was carried out in DMSO at $30^{\circ} \mathrm{C}$ for 1 h , and the second step was carried out in DMSO for $10 \mathrm{~h} .[\mathbf{1 a}]=0.3 \mathrm{M},[\mathbf{1 a}] /[\mathbf{2}] /\left[\mathrm{CS}_{2}\right] /\left[\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=1: 1: 2.4: 2: 1$. ${ }^{b}$ Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $Đ=M_{\mathrm{w}} / M_{\mathrm{n}}$.

Table S6 Effect of CS_{2} loading on the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}^{a}$.

Entry	CS_{2} (equiv.)	Yield (\%)	$M_{\mathrm{n}}{ }^{b}$	$M_{\mathrm{w}}{ }^{b}$	Ξ^{b}
1	2.2	87	5500	9500	1.7
2	2.4	92	12900	32000	2.5
3	2.6	85	5100	7100	1.4

${ }^{a}$ The first step of this MCTP was carried out in DMSO at $30^{\circ} \mathrm{C}$ for 1 h , and the second step was carried out in DMSO at $120^{\circ} \mathrm{C}$ for $10 \mathrm{~h} .[\mathbf{1 a}]=0.3 \mathrm{M},[\mathbf{1 a}] /[\mathbf{2}] /\left[\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=1: 1: 2: 1$. ${ }^{b}$ Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $D=M_{\mathrm{w}} / M_{\mathrm{n}}$.

Table $\mathbf{S 7}$ Time course of the polymerization of $\mathrm{CS}_{2}, \mathbf{1 a}$ and $\mathbf{2}^{a}$.

Entry	Time (h)	Yield (\%)	$M_{\mathrm{n}}{ }^{b}$	$M_{\mathrm{w}}{ }^{b}$	D^{b}
1	2	35	4500	5400	1.2
2	4	58	6100	8300	1.4
3	6	87	9200	17600	1.9
4	8	94	14800	43500	2.9
5	10	91	11800	30900	2.6

${ }^{a}$ The first step of this MCTP was carried out in DMSO at $30{ }^{\circ} \mathrm{C}$ for 1 h , and the second step was carried out in DMSO at $120^{\circ} \mathrm{C}$. $[\mathbf{1 a}]=0.3 \mathrm{M},[\mathbf{1 a}] /[2] /\left[\mathrm{CS}_{2}\right] /\left[\mathrm{CuCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=1: 1: 2.4: 2: 1$. ${ }^{b}$ Determined by GPC using DMF containing 0.05 M LiBr as an eluent on the basis of a linear PMMA calibration. $Đ=M_{\mathrm{w}} / M_{\mathrm{n}}$.

Fig. S1 The GPC curves of $\mathrm{P} \mathbf{1 a} / \mathbf{2} / \mathrm{CS}_{2}-\mathrm{P} \mathbf{1 f} / \mathbf{2} / \mathrm{CS}_{2}$.

$4000 \quad 3000 \quad 2000 \quad 1600 \quad 1200 \quad 800 \quad 400$
Wavenumber (cm ${ }^{-1}$)
Fig. S2 FT-IR spectra of monomers $\mathbf{1 a}$ (A) and 2 (B), and P1a/2/CS 2 (C).

Fig. S3 FT-IR spectra of monomers $\mathbf{1 b}$ (A) and 2 (B), and $\mathrm{P} 1 \mathrm{~b} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$.

Fig. S4 FT-IR spectra of monomers $\mathbf{1 c}$ (A) and 2 (B), and $\mathrm{P} \mathbf{1 c} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$.

Fig. S5 FT-IR spectra of monomers $\mathbf{1 e}$ (A) and 2 (B), and $\mathrm{P} \mathbf{1 e} / \mathbf{2} / \mathrm{CS}_{2}$ (C).

Fig. S6 FT-IR spectra of monomers $1 f(\mathrm{~A})$ and 2 (B), and $\mathrm{P} \mathbf{1 f} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$.

Fig. S7 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{1 a}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathbf{a} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{1 a}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathbf{a} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.
A

$$
\mathrm{B}
$$

Fig. S9 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{1 b}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{1 b} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S10 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{1 b}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathrm{~b} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S11 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{1 c}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} \mathbf{1 c} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in $\mathrm{DMSO}-d_{6}$. The solvent peaks are marked with asterisks.

Fig. S12 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{1 c}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathbf{c} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S13 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{1 e}$ (A) and 2 (B), and P1e/2/CS C $_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S14 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{1 e}(\mathrm{A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathrm{e} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S15 ${ }^{1} \mathrm{H}$ NMR spectra of monomers $1 f(\mathrm{~A})$ and 2 (B), and P1f/2/CS $\mathrm{C}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S16 ${ }^{13} \mathrm{C}$ NMR spectra of monomers $1 f(\mathrm{~A})$ and $2(\mathrm{~B})$, and $\mathrm{P} 1 \mathbf{f} / \mathbf{2} / \mathrm{CS}_{2}(\mathrm{C})$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Fig. S17 S 2p XPS of $\mathbf{3}$ and P1d/2/CS 2 .

Fig. S18 DSC curves of the PBTs recorded under nitrogen.

Fig. S19 PL spectra of $\mathbf{P 1 b} / \mathbf{2} / \mathrm{CS}_{2}$ in $\mathrm{DMSO} /$ water mixtures with different water fractions $\left(f_{\mathrm{w}}\right)$. Solution concentration: $10 \mu \mathrm{M}$; excitation wavelength: 350 nm .

